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Abstract

Selective Plane Illumination Microscopy (SPIM) is an imaging technique particularly suited for long term in-vivo analysis of
transparent specimens, able to visualize small organs or entire organisms, at cellular and eventually even subcellular
resolution. Here we report the application of SPIM in Calcium imaging based on Förster Resonance Energy Transfer (FRET).
Transgenic Arabidopsis plants expressing the genetically encoded-FRET-based Ca2+ probe Cameleon, in the cytosol or
nucleus, were used to demonstrate that SPIM enables ratiometric fluorescence imaging at high spatial and temporal
resolution, both at tissue and single cell level. The SPIM-FRET technique enabled us to follow nuclear and cytosolic Ca2+

dynamics in Arabidopsis root tip cells, deep inside the organ, in response to different stimuli. A relevant physiological
phenomenon, namely Ca2+ signal percolation, predicted in previous studies, has been directly visualized.
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Introduction

Calcium (Ca2+) is a multifaceted second messenger in eukaryotic

organisms. In plants, Ca2+ is involved in many aspects of

development and takes part into different regulatory processes

[1,2]. Plant cells respond to several environmental or develop-

mental stimuli, by changing the intracellular free Ca2+ concen-

tration. These changes are commonly referred as ‘‘Ca2+ signa-

tures’’ and can range from a single transient increase to a series of

repetitive Ca2+ oscillations [3–7]. The leading hypothesis states

that different Ca2+ signatures might encode specific information,

leading to distinct downstream responses [3–9]. Several examples

in support of such hypothesis have been reported in single cell

systems, such as guard cells [3,4] and root hairs of leguminous

species [10] but also in entire seedlings. In the latter case, imposing

distinct Ca2+ elevations differentially affected gene expression

[11,12]. The introduction of genetically encoded Ca2+ indicators

(e.g. aequorin and GFP-based Ca2+ probes), has permitted the

detection and visualization of intracellular Ca2+ dynamics in living

plants [13,14]. Experiments performed using aequorin produced

reliable data, but could only show the response of a population of

cells or plants, not allowing the investigation of intercellular

heterogeneities. In order to improve cellular and subcellular

resolution, the use of other Ca2+ sensors has been pursued in

recent years and, among the genetically encoded Ca2+ indicators,

Cameleons are the most frequently used [14–20]. Cameleons are

Förster Resonance Energy Transfer (FRET) based indicators in

which two fluorescent proteins, CFP and YFP (or circularly

permuted variants of YFP), are linked together by the calcium-

binding protein calmodulin and a calmodulin binding peptide.

Binding of Ca2+ to these calcium-responsive elements alters the

distance between the two fluorophores hence the efficiency of

FRET, allowing a quantitative measurement of Ca2+ dynamics

[21]. In particular, one of the most employed FRET probes in

plant biology is the Yellow Cameleon YC3.6 [22], which has been

specifically designed to improve the brightness and energy transfer

between the FRET couple, CFP and cpVenus. The YC3.6 probe

has several peculiar properties that fit well the needs of plant

biology: i) high signal to noise ratio; ii) high dynamic range; iii) pH

stability in the physiological range; iv) an in vitro Kd for Ca2+ of

250 nM [22]. All these features make Cameleon YC3.6 suitable

Figure 1. Schematic of the SPIM-FRET setup: a cylindrical lens
in combination with a microscope objective create a light-
sheet on the sample orthogonal to the detection axis. Two CCDs
are used to image the CFP (Fluorescence) and cpVenus (FRET) signals.
Note that for the simultaneous acquisition of the two channels, several
configurations are possible: i) two independent cameras; ii) a camera
with two CCDs; iii) a single camera coupled with a beam splitter can be
used (not shown in the cartoon).
doi:10.1371/journal.pone.0075646.g001
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Figure 2. Maximum intensity projections of the stacks obtained for CFP (A,D,G), cpVenus/FRET (B,E,H) and Ratio between the two
channels (C,F,I) in different regions of the Arabidopsis thaliana root (primary root tip, lateral root primordium and root mature zone)
expressing the nuclear localized Cameleon. LRP: lateral root primordium. Scale bar is 50 mm.
doi:10.1371/journal.pone.0075646.g002
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for Ca2+ sensing in different cell types and possibly in subcellular

compartments [19,20,23].

The in-vivo visualization of FRET sensors in complex plant

organs/tissues such as the root, is possible with standard

microscopy modalities, all of which present different limita-

tions.

Wide-field microscopy has been successfully used with the main

limitation of absence of depth sectioning [19,20], the Ca2+

response is averaged over the entire volume, analysis at single

cell resolution is not possible and, as a result, only the averaged

cellular response can be observed. Single cell resolution in the root

has been achieved by means of confocal laser scanning microscopy

(CLSM) using Cameleon probes in response to both biotic and

abiotic stimuli [16,17,19,24]. However, CLSM can cause strong

photo-bleaching (in particular for repetitive three-dimensional

measurements), the acquisition is slow or limited to a small

volume, restricting the analysis to single or few cell layers

[17,19,24,25]. Furthermore, in the majority of microscopes the

plant is mounted horizontally on a glass slide. Although largely

used, such specimen preparation can itself induce stress conditions

or physiological responses such as hormone/s redistribution. A

simple case occurs in the root tissues, where the auxin distribution

is known to be regulated in response to a gravitropic stimulus [26].

In order to overcome these limitations, we used Selective Plane

Illumination Microscopy (SPIM) to image Arabidopsis transgenic

plants expressing the nuclear and cytosolic-targeted Cameleon

YC3.6, previously generated by Schumacher and coworkers [19].

The system is equipped with parallel detection of two wavelength

channels for ratiometric FRET imaging (Figure 1). SPIM [27] is a

fluorescence microscopy technique, in which the illumination axis

is perpendicular to the detection axis. A laser beam is used to

create a thin light-sheet right in the focal plane of the detection

objective. The light-sheet can be a few microns thin thus avoiding

out of focus fluorescence and providing optical sectioning. The

lateral resolution is given by the detection objective, yielding

subcellular details. SPIM is well suited for rapid 3D in-vivo imaging

of Arabidopsis thaliana specimens at high spatial resolution, with

minimal photo-damage to the sample [28,29]. In fact, only the

plane of the specimen under observation is illuminated. This

configuration greatly reduces the light dose and therefore photo-

bleaching and photo-toxicity. Another advantage of SPIM is that,

during the entire analyses, the seedlings are placed in conditions

similar to those used for their growth, with the root floating and

growing in the water based solution and the shoot in free air

(Figure 1).

Materials and Methods

SPIM apparatus
The microscope is a modified version of the OpenSPIM project

[30], and it is similar to a single illumination arm SPIM [31]. A

single mode fiber coupled laser at 442 nm (MDL-III-442, CNI) is

collimated and used for SPIM illumination. An automatic shutter

switches the beam on and off via computer control. A cylindrical

lens focuses the light in a horizontal plane and a 16 telescope

images the focal plane of the cylindrical lens in the back focal

plane of the illumination 106water dipping microscope objective

(UMPLFLN 10XW, Olympus). As a result, a vertical light-sheet is

created on the sample in the front focal plane of this objective. A

slit placed in the center of the telescope confines the excitation

light-sheet within the imaged area. The height of the light-sheet is

600 mm and its thickness is about 3 mm (beam waist in the focal

plane of the illumination objective). Typical illumination power at

the sample was between 10 and 50 mW. We didn’t observe any

photo-bleaching (during continuous illumination for more than

5 minutes) for illumination powers below 15 mW. The detection

unit consists in a 206 water dipping microscope objective

(UMPLFLN 20XW, Olympus), a tube lens (U-TLU-1-2, Olym-

pus), and a dual sensor CCD camera (Orca D2, Hamamatsu

Photonics K.K.). The illumination and the detection microscope

objectives are precisely aligned at 90u in the imaging chamber,

which is filled with a water-based solution. The detector consists of

a dual-CCD system in which the two sensors are positioned at 90u
after a dichroic filter (at 510 nm). One of the two sensors can be

rotated and translated to correct focus and alignment in order to

produce high contrast images. In addition to the dichroic filter,

two band-pass filters (centered at 483 and 542 nm) are used to

detect CFP and cpVenus (FRET) signals simultaneously. A white-

LED illuminator in transmitted light configuration is used during

the alignment of the sample to minimize the exposure to the laser

light.

Sample preparation
The sample consists of 12–14 day-old transgenic Arabidopsis

seedlings expressing the cytosolic (NES-YC3.6) or nuclear (NLS-

YC3.6) localized Cameleon YC3.6. The generation of these lines

was previously reported in Ref. [19] in which the full description of

the targeting strategies is reported. The seeds are surface sterilized

by vapor-phase sterilization and directly placed, with a toothpick,

over a conical plastic holder (typically a 10 mL pipette tip) [32].

The holder is filled with half strength Murashige and Skoog

medium (MS, M0222 elements including Vitamins, Duchefa,

http://www.duchefa-biochemie.nl/) [33] supplemented with

0.1% sucrose, 2.34 mM MES with a final pH of the media to

6.060.1 with 0.5 M KOH and 0.8% of micro agar (Duchefa). The

plastic holders are then transferred to a transparent plastic box

filled with sterile half strength MS solution for hydroponic culture

and placed in a growth chamber under 16/8 h cycles of white light

at 22uC. The hydroponic system allows the seedling roots to grow,

following the positive gravitropism, first into the agar and

subsequently directly in hydroponic solution when they reach

the bottom hole of the holder. Once the root comes out the hole of

the plastic holder, the specimen is transferred to the SPIM-FRET

setup into the imaging chamber filled with the desired solution (for

our Ca2+ dynamic analyses a 10 mM MES, 5 mM KCl, 10 mM

CaCl2, pH 5.8 adjusted with TRIS-BASE solution was employed).

This procedure prevents any kind of damage or major stress to the

root and maintains the seedling vertical. For the analysis of

spatiotemporal dynamics of the [Ca2+] rise, a volume of 120 mL

(100X) glutamate (L-Glu) or external ATP (eATP) was directly

Figure 3. Single plane FRET ratio in root tip of Arabidopsis seedlings expressing the nuclear localized Cameleon, measured at
different times in the course of 1 mM L-Glu (A) and 0.1 mM eATP (B) stimuli. (A) First row: FRET ratio images at different time points from
the sensing (Pre) of the L-Glu stimulus. Second row: close up (white rectangle in the top-left image) of the FRET ratios including 6 selected nuclei
(green rectangle). Third row: temporal evolution of the FRET ratio in the 6 distinct nuclei (left), average on the 6 nuclei (center), average on the entire
plane (right). (B) First row: FRET ratio images at different time points from the sensing (Pre) of the eATP stimulus. Second row: close up (white
rectangle in the top-left image) of the FRET ratios including 6 selected nuclei (green rectangle as in panel A). Third row: temporal evolution of the
FRET ratio in the 6 distinct nuclei (left), average on the 6 nuclei (center), average on the entire plane (right). Scale bar is 50 mm and 10 mm for low and
high magnifications respectively.
doi:10.1371/journal.pone.0075646.g003
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added to one corner of the imaging chamber (filled with 12 mL of

imaging solution). The final concentration of the stimuli was

1 mM and 0.1 mM for L-Glu and eATP respectively. The stock

ATP solution was diluted in a TRIS buffer (pH 5.8) in order to

prevent any pH change of the imaging solution.

Imaging procedure
In the course of SPIM acquisition the root was imaged

simultaneously by the 2 CCDs of the dual-sensor camera (Orca

D2, Hamamatsu Photonics K.K.) and automatically translated

with steps of 1 to 10 mm to create a 3D reconstruction of a large

Figure 4. Single plane FRET ratio in root tip of Arabidopsis seedlings expressing the cytosolic localized Cameleon, measured at
different times in the course of 1 mM L-Glu (A) and 0.1 mM eATP (B) stimuli. (A) Upper images: FRET ratio measured at different time points
from the sensing (Pre) of the L-Glu stimulus. Lower images: close up (white rectangle in the top-let image) of the same selected FRET ratios. Upper
graph: temporal evolution of the FRET ratio for the entire region highlighted by the cyan rectangle. Bottom graph: temporal evolution of the FRET
ratios for two selected cells (blue and red rectangles in the lower images). (B) Upper images: FRET ratio measured at different time points from the
sensing (Pre) of the eATP stimulus. Lower images: close up (white rectangle in the top-let image) of the same selected FRET ratios. Upper graph:
temporal evolution of the FRET ratio for the entire region highlighted by the cyan rectangle. Bottom graph: temporal evolution of the FRET ratios for
two selected cells (blue and red rectangles in the lower images). Scale bar is 50 mm and 9 mm for low and high magnifications respectively.
doi:10.1371/journal.pone.0075646.g004
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tissue volume by generating multiple image stacks. The shutter,

the translation stage and the camera were controlled using Micro-

Manager (www.micro-manager.org). This software enables the

user to easily program the scanning of the sample over the light

sheet and time-lapse acquisition parameters at the beginning of

each experiment. The exposure time for each plane was typically

50–500 ms. Two different types of acquisitions were carried out: i)

two-dimensional analysis, in which a single plane was imaged with

continuous illumination and multiple acquisitions lasting 60–

300 s; ii) three-dimensional analysis, in which several planes

(typically 10–20) were acquired successively: every 5–10 s the

acquisition of the entire stack was repeated. The fluorescence

intensity was determined over Regions Of Interests (ROIs)

corresponding to large root tip areas, single cells or nuclei.

Background subtraction was performed in each channel before

FRET ratio calculation by selecting a ROI outside the sample.

The FRET ratio (R) was calculated and visualized using the

Ratio Plus Plugin for Fiji (http://fiji.sc/) or NisElement (Nikon).

For time course experiments the change in the FRET ratio (DR)

was normalized to the initial value (R0) and plotted versus time

(DR/R0).

Results and Discussion

Image quality
Three different regions of the seedling root (primary root tip,

lateral root primordium and root mature zone) are shown in

Figure 2. The raw data corresponding to the primary root tip are

presented in Figure S1. Single nuclei can be distinguished not only

in the thicker mature zone, but also in developing organs such as

the lateral root primordium, where cells are still clustered together

(see also Movies S1, S2, S3). The achievable resolution depends on

scattering and absorption properties of the sample and the image

quality decreases as the optical path length increases. Therefore,

the side of the sample which is closer to the camera tends to be

sharper than the opposite side (see also Figure S1). However,

notwithstanding the presence of strong scattering at the excitation

wavelength (442 nm), these images show sub cellular details in

depth over a large tissue volume (root diameter is approximately

100 mm). Further improvement of the image quality could be

achieved using multi-view SPIM [34], multi-directional SPIM [31]

or two-photon excitation [35]. It is worth noting that the use of

water immersion objectives substantially improves the quality of

the image compared to other approaches in which the sample is

immersed in a cuvette and air objectives are used: image de-

convolution [29] was not applied to the present data. The 3D

reconstructions of the acquired root regions (Movies S1, S2, S3)

show the SPIM ability to provide high resolution imaging over a

large part of the specimen, a result that is difficult to reach with

standard CLSM [28,36].

FRET response
One of the current and future challenges for biologists is the

possibility to perform analyses of single cells laying in their natural

context avoiding undesired environmental perturbation. In this

view, SPIM has proved suitable for long-term visualization of

Arabidopsis root growth in near physiological conditions during

imaging [28,29]. A further step is to use this microscopy modality

to monitor intracellular responses, such as stimulus-induced Ca2+

mobilization, at single cell resolution and in unstressed conditions.

In order to reach this goal we performed a series of experiments

with Arabidopsis seedling expressing nuclear or cytosolic localized

Cameleon YC3.6 [19].

Figure 3 shows the FRET ratio measured in the nuclei of a

single plane of the primary root of Arabidopsis expressing the

nuclear localized Cameleon. Figure 3A presents the nuclear

response after treatment with 1 mM Glutamate (L-Glu), a stimulus

known to induce Ca2+ rises in plant cells [37]. Indeed, the

treatment induces a Ca2+ peak in the cells of the entire root tip.

This is visualized as a change in the FRET ratio, which

corresponds to Ca2+ variations (the higher the ratio the higher

the Ca2+ concentration [21]). A more detailed analysis reveals that

the response to L-Glu was primarily sensed by the nuclei of the

lateral root cap cells, followed by the response of the nuclei located

in the upper part of the root tip (see Movie S4). Additionally

distinct individual responses of single cells can be observed: the

Ca2+ peaks measured on 6 distinct nuclei (highlighted in green in

Figure 3A) show differences both in amplitudes and temporal

delay (lower panel, left). Averaging the curves over the six nuclei

leads to a broader time curve (Figure 3A, lower panel, center) and

when the average is calculated on the entire plane we can observe

a considerably longer response (Figure 3A, lower panel, right),

which mimics the response achievable at lower resolution [38].

Few minutes after the recovery from the treatment with L-Glu,

the same root was treated with a second stimulus consisting in

external ATP (0.1 mM eATP), which has also been reported to

induce intracellular Ca2+ rise in plant cells [19,20,24]. As for L-

Glu, the cells of the lateral root cap primarily sensed the eATP

followed by the nuclei located in the transition and elongation

zones (Movie S5). It is worth noting that the images were acquired

with SPIM in the same plane of the sample in the course of the two

stimuli and the very same nuclei are visualized in Figure 3A, B. In

particular, for the 6 nuclei (labeled in green in Figure 3A, B) the L-

Glu stimulus produces single and narrow peaks, whereas eATP

induces a more sustained Ca2+ transient, pointing out to the

existence of different mechanisms responsible for the generation of

the observed triggered Ca2+ dynamics.

Each experiment (injection of L-Glu first and eATP later) was

repeated n = 6 times. The reproducibility of the responses is shown

in Figure S2A, B. We observed similar responses in all experiments

whereas in n = 3 control experiments (injection of the solution

without any Ca2+ mobilizing agent) the FRET changes were below

the camera noise.

The comparison of the two stimuli demonstrates that SPIM

offers sufficient spatial and temporal resolution to appreciate single

cell responses, while monitoring large sample sizes. In Figure 3,

nuclei appear as isolated and well-defined fluorescent spots,

facilitating the analyses of single cells. In order to fully validate the

SPIM approach, we repeated the experiments in root tip cells of

Arabidopsis seedlings expressing the cytosolic localized Cameleon

[19]. Figure 4A, B show the response of a root tip to L-Glu and

eATP respectively, again acquired on the same plane with SPIM.

In accordance to what observed with nuclei, the response to the

two stimuli was primarily sensed by lateral root cap cells, followed

by the response of cells present in deeper tissue, with a spread of

[Ca2+] rises towards the cells of the transition and elongation zones

(see Movie S6, S7 where Ca2+ propagation/percolation is

observable). The comparison of the two stimuli (L-Glu and

Figure 5. FRET ratio imaged in space and time, with 10 mm steps (columns) and every 30 s (rows), in root tip of Arabidopsis
seedlings expressing the nuclear localized Cameleon, in the course of 0.1 mM eATP stimulus. Graphs on the right hand side show
temporal evolution of the averaged FRET ratio for each single selected plane. Scale bar is 50 mm.
doi:10.1371/journal.pone.0075646.g005
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eATP), performed by plotting the average FRET responses of the

entire imaged plane (cyan curve in Figure 4A, B), allows one to

appreciate that L-Glu and eATP produced similar Ca2+ peak

amplitudes with different dynamics, being eATP able to induce

more sustained Ca2+ rises than L-Glu (see also Figure S2A, B).

Double peaks are also present at longer times, as shown later.

Conversely, the analysis performed in two selected lateral root cap

cells (blue and red curves in Figure 4A, B) shows that they respond

with very different peak amplitudes in the course of L-Glu

administration. Instead, their response is similar with eATP. These

data, in agreement with previous reports [38,39], indicate that the

kinetic analysis of an averaged response does not necessarily reflect

the response of a single cell.

Although understanding the mechanisms underlying the ob-

served differences in terms of nuclear and cytosolic Ca2+ dynamics

in response to the two stimuli, is beyond the aim of the present work,

the different responses demonstrate that the use of SPIM with plants

expressing a genetically encoded Ca2+ probe, offers an adequate

resolution to perform single cell analysis over a complex organ.

Moreover, the fast acquisition rate (typically 2–10 Hz for a single

plane), enables one to obtain an easy visualization of Ca2+ signal

percolation in plants (see also Movies S4, S5, S6, S7) [39]. In order

to demonstrate the SPIM ability to perform 3D analysis we treated

primary root tips of Arabidopsis seedlings with 0.1 mM eATP,

acquiring adjacent image planes (typically 10 planes, with 5–10 mm

steps, every 5–8 s), in the course of the stimulus. Figure 5 and 6 show

the FRET ratio imaged at different times and depths (Z-position).

Note that only a subset of the acquired planes and time points are

presented. The temporal FRET responses, averaged on each plane,

allows one to observe that the entire organ responds to eATP, with

differences among planes. In particular, every plane shows different

responses in terms of peak amplitudes and dynamics (see graphs in

the right hand side of Figure 5, 6). The cytosolic Ca2+ dynamics

present several oscillations, whereas the responses of the nuclei show

less resolved peaks, as we previously observed with wide-field

microscopy [20]. A 3D reconstruction of the sample over time is

possible, as shown in Movies S7, S8. In this case, the entire root tip

can be visualized, allowing one to observe fine details of the nuclei

and the cytosols. At the same time, it is possible to observe the

systemic root tip response. Similar results could not be reached by

means of wide-field microscopy (Figure S3A), which can be used to

visualize large plant volumes, due to the lack of optical sectioning

and single cell resolution.

Comparison with CLSM
Single cell visualization of intracellular Ca2+ dynamics in a root

tip layer has been reported by some authors [24,40] along with a

recently published detailed protocol to image Cameleon with

CLSM has been recently published [41]. The results presented in

Figure 3, 4 show that SPIM is indeed an alternative approach to

CLSM, in terms of imaging quality. SPIM has lower spatial

resolution than CLSM (Figure S3), but it is still able to offer

subcellular detail in a large tissue volume. SPIM seems to have a

higher temporal resolution than standard CLSM since it allows

one to study Ca2+ dynamics in multiple planes in a time window

compatible with relatively fast (few seconds) biological events. In

particular, when 3D reconstructions are taken into consideration

the photobleaching caused by the selective illumination of single

planes has been reported to be orders of magnitude lower than the

one caused by CLSM [27,42]. A further advantage is the

simplicity of the setup and its low cost (for an estimate of the

cost see Ref. [30].

Although a quantitative comparison of the techniques strongly

depends on the actual CLSM microscope employed, a parallel

series of experiments were carried out with CLSM and SPIM

(Figure S3B, C). The experiments consisted in the injection of

0.1 mM of eATP to induce an increase and oscillation in Ca2+,

lasting up to 5 min (Figure S3A). In SPIM, some horizontal lines

appeared in the images, caused by the presence of shadows within

the light sheet. These lines can however be removed by hardware

[31]. The contrast is slightly lower with SPIM, mainly because of

the noise of the camera (note that in Figure S3A background

subtraction was not applied). Nevertheless, we observed a stronger

response with SPIM (+35610%, n = 3), thanks to the higher

dynamic range of the camera. Finally a larger region of the sample

could be imaged with SPIM.

Hence, SPIM combines the advantages of different microscopy

approaches in a single technique. As a matter of fact, single cell

resolution, typical of CLSM techniques is coupled with the ability

to observe systemic root responses, characteristic of wide field

microscopy.

Conclusions

The above presented data indicate that the developed SPIM-

FRET method is ideally suited to monitor Ca2+ signaling in vivo, at

high resolution, with negligible photo-bleaching and in depth over

a large tissue volume. The instrument is relatively simple and cost

effective. Such technology could lead to many different experi-

ments that combine developmental programs with environmental

stimuli. Imaging of Ca2+ using SPIM-FRET is not limited to plant

biology but can be used for 3D mapping of Ca2+ dynamics in a

variety of semi-transparent biological samples including embryos

such as zebrafish (Danio rerio) and Drosophila melanogaster.

Supporting Information

Figure S1 Sagittal (A–C) and two transverse sections (D–I) of the

specimen (Arabidopsis expressing the nuclear localized Cameleon)

for CFP signal, cpVenus and FRET ratio. The sagittal sections are

acquired within approximately one third of the sample thickness.

The transverse sections are obtained scanning the entire sample

within the light sheet. Scale bar is 50 mm.

(TIF)

Figure S2 Statistical analysis of the response amplitude and

duration, in root tip of Arabidopsis seedlings expressing the

nuclear or cytosolic localized Cameleon, for 0.1 mM eATP and

1 mM L-Glu stimuli. (A) Mean value of the FRET ratio changes

measured on the peak of the response (DRmax/R0). (B) Mean value

of the FRET ratio changes measured 40 s after the stimulus

(DRt40/R0). The eATP response is still active at long times while

the L-Glu response is depleted. Values are means 6 SE (n = 6). p-

values were calculated by Student’s t test.

(TIF)

Figure S3 Comparison of different microscopy modalities for

measuring eATP-induced Ca2+ dynamics in root tip of Arabi-

dopsis seedlings expressing the cytosolic localized Cameleon.

Selected FRET ratios images of the root tip at different time points

Figure 6. FRET ratio imaged in space and time, with 10 mm steps (columns) and every 30 s (rows), in root tip of Arabidopsis
seedlings expressing the cytosolic localized Cameleon, in the course of 0.1 mM eATP stimulus. Graphs on the right hand side report
temporal evolution of the average FRET ratio for each single selected plane. Scale bar is 50 mm.
doi:10.1371/journal.pone.0075646.g006
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from the sensing (Pre) of the eATP stimulus acquired with: (A)

Wide-field microscopy with a 206detection objective as described

in Ref. [20]; (B) CLSM analysis. The images were acquired with a

636 water immersion objective as described in Ref. [41]; (C)

SPIM microscopy. The images were acquired with a 206
objective as described in Material and methods. Scale bar is

50 mm. Background subtraction was not applied to these

experiments.

(TIF)

Movie S1 Three-dimensional (3D) reconstruction of the primary

root tip of Arabidopsis thaliana (CFP fluorescence signal) expressing

the nuclear localized Cameleon.

(MP4)

Movie S2 Three-dimensional (3D) reconstruction of a lateral

root primordium of Arabidopsis thaliana (CFP fluorescence signal)

expressing the nuclear localized Cameleon.

(MP4)

Movie S3 Three-dimensional (3D) reconstruction of the root

mature zone of Arabidopsis thaliana (CFP fluorescence signal)

expressing the nuclear localized Cameleon.

(MP4)

Movie S4 Time series of nuclear FRET ratio images of an

Arabidopsis seedling root tip expressing the nuclear localized

Cameleon challenged with 1 mM L-Glu. The movie plays 4 times

at real-time.

(AVI)

Movie S5 Time series of nuclear FRET ratio images of an

Arabidopsis seedling root tip expressing the nuclear localized

Cameleon challenged with 0.1 mM eATP. The movie plays 4

times at real-time.

(AVI)

Movie S6 Time series of cytosolic FRET ratio images of an

Arabidopsis seedling root tip expressing the cytosolic localized

Cameleon challenged with 1 mM L-Glu. The movie plays 4 times

at real-time.

(AVI)

Movie S7 Time series of cytosolic FRET ratio images of an

Arabidopsis seedling root tip expressing the cytosolic localized

Cameleon challenged with 0.1 mM eATP. The movie plays 4

times at real-time.

(AVI)

Movie S8 Time lapse 3D reconstruction of nuclear FRET ratio

of an Arabidopsis seedling root tip expressing the nuclear localized

Cameleon challenged with 0.1 mM eATP. The movie plays 20

times at real-time.

(AVI)

Movie S9 Time lapse 3D reconstruction of cytosolic FRET ratio

of an Arabidopsis seedling root tip expressing the cytosolic

localized Cameleon challenged with 0.1 mM eATP. The movie

plays 20 times at real-time.

(AVI)
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