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Abstract

The chemotherapeutic compound, cisplatin causes various kinds of DNA lesions but also triggers other pertubations, such
as ER and oxidative stress. We and others have shown that treatment of pluripotent stem cells with cisplatin causes a
plethora of transcriptional and post-translational alterations that, to a major extent, point to DNA damage response (DDR)
signaling. The orchestrated DDR signaling network is important to arrest the cell cycle and repair the lesions or, in case of
damage beyond repair, eliminate affected cells. Failure to properly balance the various aspects of the DDR in stem cells
contributes to ageing and cancer. Here, we performed metabolic profiling by mass spectrometry of embryonic stem (ES)
cells treated for different time periods with cisplatin. We then integrated metabolomics with transcriptomics analyses and
connected cisplatin-regulated metabolites with regulated metabolic enzymes to identify enriched metabolic pathways.
These included nucleotide metabolism, urea cycle and arginine and proline metabolism. Silencing of identified proline
metabolic and catabolic enzymes indicated that altered proline metabolism serves as an adaptive, rather than a toxic
response. A group of enriched metabolic pathways clustered around the metabolite S-adenosylmethionine, which is a hub
for methylation and transsulfuration reactions and polyamine metabolism. Enzymes and metabolites with pro- or anti-
oxidant functions were also enriched but enhanced levels of reactive oxygen species were not measured in cisplatin-treated
ES cells. Lastly, a number of the differentially regulated metabolic enzymes were identified as target genes of the
transcription factor p53, pointing to p53-mediated alterations in metabolism in response to genotoxic stress. Altogether,
our findings reveal interconnecting metabolic pathways that are responsive to cisplatin and may serve as signaling modules
in the DDR in pluripotent stem cells.
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Introduction

Metabolic changes are associated with a number of complex

diseases, including cancer, diabetes and neurological disorders.

Often, changes in the abundance of small metabolites are linked to

changes in the expression or activity of metabolic enzymes or the

complete rewiring of metabolic pathways, as seen for cancer cells,

which frequently switch their energy production to aerobic

glycolysis (known as Warburg effect) and develop a glutamine

addiction [1,2,3]. Indeed, mutations in a number of metabolic

enzymes were recently related to inherited cancer syndromes [3].

This link between metabolism and disease suggests that metabo-

lomics may be used to identify biomarkers suitable for non-

invasive methods to determine disease state, treatment and toxic

responses [4].

Changes in metabolism may be linked to stress responses, such

as genotoxic stress. Irradiation or chemotherapeutic treatment

alters the abundance of metabolites, including for example

choline-containing compounds, lipids and several amino acids in

cancer cell lines [5,6]. Interestingly, metabolites excreted by

cancer-associated stromal cells can modulate chemosensitivity of

cancer cells in a paracrine manner [7]. Recently, the NCI60 panel

of tumor cells lines was used to correlate treatment response to

platinum drugs with baseline metabolic pathways extracted from

metabolomics and transcriptomics [8]. However, integrated

approaches aimed at unraveling perturbation of metabolic

pathways in response to therapy are currently lacking.

The ability of cells to recognize and respond to DNA damage is

of vital importance for the maintenance of an intact genome. The

DNA crosslinking drug cisplatin is used as common treatment for

various solid tumors, e.g. ovarian, non-small cell lung, head and

neck, bladder, colorectal and testicular cancer. Despite initial good

responses to therapy, patients often develop resistance to cisplatin

treatment and toxicity to healthy tissues (including neuro- and

renal as well as gastric toxicity) limits the therapeutic window [9].

Next to direct DNA damage, cisplatin also induces non-genotoxic

perturbations, such as oxidative stress by shifting the redox

balance through binding to nucleophilic molecules; and ER stress,

which has been shown to kill enucleated cells [10,11]. We have

unraveled cisplatin-responsive signaling networks in mouse
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embryonic stem (ES) cells through integration of functional

genomics, phosphoproteomics, and transcriptomics [12,13]. These

studies point to a major role for DNA damage response (DDR)

signaling in determining the cellular outcome of cisplatin

treatment.

Cancer cells typically have disabled crucial DDR signaling

routes and often rewire metabolic pathways [3,14]. We decided to

make use of ES cells to study the DDR using systems wide analyses

[12,13]. These cells have an intact, effective DDR and show robust

DNA damage-induced apoptosis. At the same time, they have

several features that can be extrapolated to cancer cells, such as the

lack of G1/S checkpoint after DNA damage, expression of marker

genes (e.g. c-Myc), and a high proliferation rate [15,16]. In this

study, we combined metabolomics and transcriptomics analysis of

the response to cisplatin in ES cells. The aim was to integrate

affected metabolites with regulated metabolic enzymes in order to

delineate alterations in metabolic pathways in response to

genotoxic stress in pluripotent stem cells.

Materials and Methods

Cell Culture and Materials
HM1 mouse ES cells derived from OLA/129 genetic

background (provided by Dr. Klaus Willecke, University of Bonn

GE) [17] were maintained under feeder free conditions in GMEM

medium containing 10% FBS, 56105 U mouse recombinant

leukemia inhibitory factor (LIF; PAA), 25 U/ml penicillin, and

25 mg/ml streptomycin. For metabolomics analysis and micro-

arrays ES cells were used at passage 22. Cells were confirmed to be

mycoplasma-free using the Mycosensor kit from Stratagene. The

DNA cross-linker cisplatin (cisplatin; Cis-PtCl2(NH3)2) was pro-

vided by the Pharmacy unit of University Hospital, Leiden NL.

Ammonium acetate (NH4Ac), sodium chloride (NaCl) and

deuterated chloroform (CDCl3) were obtained from Merck

(Darmstadt, Germany); methanol (MeOH) and acetone from

Biosolve (Valkenswaard, The Netherlands). All chemicals and

solvents were purchased in the highest purity available. Ultra-pure

water was obtained using the PureLab equipment from Rossmark

(Ede, The Netherlands).

Cell Viability, Apoptosis and Cell Cycle Analyses
To monitor cisplatin-induced cell killing, a cell viability assay

using ATPlite 1 Step kit (Perkin Elmer) was performed according

to the manufacturer’s instructions followed by luminescence

measurement using a plate reader. For cell cycle and apoptosis

analysis cells were exposed to vehicle (PBS) or cisplatin for 8 h or

24 h. Floating and attached cells were pooled and fixed in 80%

ethanol overnight. Cells were stained using PBS EDTA containing

7.5 mM propidium iodine and 40 mg/ml RNAseA and measured

by flow cytometry (FACSCanto II; Becton Dickinson). The

number of cells in the different cell cycle fractions (and in sub

G0/G1 for apoptotic cells), as seen in Fig. S1 was calculated using

the BD FACSDiva software.

Metabolomics – Sample Preparation
56106 passage 22 ES cells were plated in 75 cm flasks and

medium was replaced 24 h later with 5 mM cisplatin or vehicle

control (PBS). After 4 h or 8 h incubation, lysis and fractionation

were performed as described [18]. Cells were washed four times in

the flask with 10 ml of ice cold 0.9% saline (isotonic) to separate

the cells from the cell medium; this was followed by one 10 ml

wash using 1.2% ammonium acetate (volatile salt) to eliminate

possible excess of non-volatile salt in later sample concentration

steps. Lysis was acchieved by osmotic shock in 3 ml of ice-cold

pure water after which the flask was scraped; this was repeated 3

times (total volume 9 ml; ice-cold heavy dilution to stop enzyme

activity). Lysed cell suspensions were then ultrasonicly treated at

4uC to further ensure cell disruption and protein denaturation.

1 ml of 1 M ammonium acetate was then added to ensure good

pelleting of membranes during centrifugation (Hereaus, Labofuge

400 R; 4uC for 60 minutes at 3000 rpm). The membrane-free

supernatant containing polar and semi-polar metabolites (polar

fraction) was frozen at 280uC and then freeze-dried for 2–3 days.

The pellet containing the lipid fraction was used as the apolar

fraction. As a further precaution to have sterility, protein

denaturation and removal of protein before LC-MS analysis, the

polar fraction was resuspended in 1 ml of pure methanol, dried

under N2 and then redissolved/resuspended again in 1 ml of 50%

methanol/50% pure water. This was then centrifuged for 15

minutes at 4500 g at 4uC to remove any pellet. In a final

precipitation step in the supernatant remaining gelatin (used as

adhesive for ES cells in the flasks) was removed by adding 4 ml of

ice-cold acetone for 10 minutes and then repeating the centrifuge

step at 13000 g for 15 minutes at 4uC. The supernatant is then

dried overnight under a gentle N2-flow at room temperature after

which it was stored at 280uC until use. The apolar fraction was

resuspended in 1 M NH4Ac (these counter-ions ensure better

extraction), freeze-dried, extracted with CDCl3, and the organic

solvent was evaporated under N2 flow. The dried extract was

stored at 280uC until use. Five independent biological replicates

were examined in each experiment. Metabolomics analysis was

performed on the apolar fraction, containing the membranes and

intracellular lipids (1H-NMR), and the polar fraction containing

the polar and semi-polar intracellular metabolites (U-HPLC-

Orbitrap-MS). This procedure for sample preparation (extraction,

washing efficiency, etc) has been optimized and monitored by 1H-

NMR previously [18].

Metabolomics – Measurements
Prior to 1H-NMR analysis the dried apolar samples were

dissolved in 1 ml of CDCl3. of which 0.6 ml of was actually used

for 1H-NMR analysis. The 1H-NMR spectra were recorded at

400.13 MHz at 300.0 (60.02) K on a Bruker Avance 400 narrow

bore using a 5.0-mm probe. The spectrometer settings were the

same as described previously [18].

The polar samples were analyzed by ultra-high performance

liquid chromatography (U-HPLC)-Orbitrap-MS. For this the

dried samples were dissolved in 2 ml of H2O; formic acid was

added to a final concentration of 0.1%. The injection sequence

was randomized as described [19]. U-HPLC was performed on a

U-HPLC Accela system (Thermo Fisher Scientific, San Jose, CA,

USA), with a 150 mm62.1 mm UPLC BEH-C18 column with

1.7 mm particles (Waters). Chromatographic conditions were as

described [18]. The U-HPLC was directly interfaced to a single

stage Orbitrap mass spectrometer (Exactive, Thermo Fisher

Scientific). Settings of the Orbitrap mass spectrometer are

provided (see Material S1). Data were recorded using Xcalibur

software version 2.1.0.1139 (Thermo Fisher Scientific). When

identification of mass peaks was needed, samples were subjected to

LC-nanomate-Orbitrap-MS analysis using chromatography con-

ditions as described above. These identification procedures are as

previously described [18]. The raw data obtained in this study are

available on request (arjen.lommen@wur.nl).

Metabolomics - Data Analysis
NMR data analysis of apolar samples. A method for

normalization of data using phospholipid signals in apolar samples

was accessed as previously described [18]. The NMR data were

The Metabolic Response to Cisplatin

PLOS ONE | www.plosone.org 2 October 2013 | Volume 8 | Issue 10 | e76476



pre-processed and aligned as described using a for Windows

updated version of in-house developed software [20]. Based on

equal phospholipid content, normalization of data was not

required (see Results section). Subsequently, the spreadsheet

containing aligned data of the apolar samples was subjected to

statistical analysis using Genemaths XT (http://www.applied-

maths.com/genemaths/genemaths.htm). Standard initial analysis

entailed performing a 2Log transformation and a principal

component analysis (PCA) (average of rows and columns

subtracted). This was followed by a 2Log transformation, a pre-

selection of variables using an ANOVA (p,0.01), followed by a

PCA (average of rows and columns subtracted). The grouping in

the ANOVA was on the replicates (n = 5) per treatment (control

and 5 mM cisplatin) for each timepoint (4 and 8 hours) creating 4

groups with 5 replicates or on the treatments, creating 2 groups of

10 replicates.

LC-MS data analysis of polar samples. U-HPLC-Orbi-

trap-MS data were pre-processed, mass corrected to sub-ppm

precision [20] and aligned using MetAlign (http://www.metalign.

nl) [21]. In short, this software performs a baseline correction,

accurate mass calculation, data smoothing, and noise reduction,

followed by alignment between chromatograms. Since the NMR

data on apolar samples did not indicate a need for normalization

(see Results) and the polar samples were derived from the same cell

cultures no normalization was applied on U-HPLC-Orbitrap-MS

data. The generated spreadsheet of the dataset (21173 mass peaks)

was subjected to statistical analysis using Genemaths XT.

Standard initial analysis entailed performing a 2Log transforma-

tion and a PCA (average of rows and columns subtracted). This

was followed by a 2Log transformation, a pre-selection of variables

using an ANOVA (p,0.01; false discovery rate control by the

Benjamini & Hochberg procedure), followed by a PCA (average of

rows and columns subtracted). The grouping in the ANOVA was:

on the replicates for each time point and treatment (4 groups with

5 replicates), per treatment (2 groups of 10 replicates), on the

control samples at both time points (2 groups of 5 replicates), as

well as per treatment at each time point (2 groups of 5 replicates at

4 h and 2 groups of 5 replicates at 8 h). The peak loadings

responsible for the separation in the different PCAs were selected

and exported as described [21]. Only those signals with intensity

higher than 5 times noise and a fold change higher than 1.2 were

taken as candidates for further identification.

Identification of metabolites. To facilitate further analysis

and identification of the selected signals, GM2MS, an application

of MetAlign that re-creates ‘‘new chromatograms’’ only containing

the peaks exported from the PCA selection, was used [21]. Polar

metabolites were afterwards identified with commercially available

standards, using previously acquired identification information

[18], with FT-MS/MS analysis (using the LC-nanomate-Orbi-

trap-MS method described above), and using databases such as the

HMDB [http://www.hmdb.ca/] (see Table S1 for the identified

metabolites).

Transcriptomics Analysis and Integration of
Metabolomics and Transcriptomics Data
Transcriptional microarray data have been published [12] and

are available from ArrayExpress. HM1 ES cells were treated with

10 mM cisplatin or vehicle control for 8 hours in three

independent experiments. Total RNA was isolated using the

RNAeasy kit (Qiagen) according to manufacturer’s instructions.

RNA quality and integrity was assessed with Agilent 2100

Bioanalyzer system (Agilent technologies). Gene expression was

measured using Affimetrix MG430 PM Array plates. All raw data

passed the affimetrix quality criteria. Normalization of raw data

using the robust multi-array average algorithm and statistical

analysis was performed using BRBarray tools (http://linus.nci.nih.

gov/BRB-ArrayTools.html). The 2269 genes whose expression

differed significantly (parametric p,0.0005) between control ES

cells and ES cells treated for 8 hours with 10 mM cisplatin were

used as input in Ingenuity pathway analysis (IPA) or the cytoscape

plug-in Metscape to identify metabolic enzymes [22,23]. Tran-

scriptional heatmaps were obtained using Multiple Array Viewer

(MEV) software. Differentially expressed genes encoding meta-

bolic enzymes and the metabolites that were differentially

regulated at 4 h or 8 h (p,0.01) were imported in IPA and

Metscape to form integrated metabolic signaling networks and

from those retrieve enriched metabolic pathways, based on the

criteria ‘‘at least three affected molecules, including at least one

affected metabolite’’.

RNAi Experiments
siRNA Smartpools were purchased from ThermoFisher Scien-

tific. Cells were transfected with 50 nM Smartpool in 96 well

plates using Dharmafect1 transfection reagent (ThermoFisher

Scientific). The medium was refreshed after 24 h and cells were

exposed to indicated compounds or vehicle controls 48 h post-

transfection for 24 h. As readout, a cell viability assay using

ATPlite 1 Step kit (Perkin Elmer) was performed according to the

manufacturer’s instructions.

ROS Formation Assay
For probing intracellular ROS, cells were cultured in mClear 96

well plates to 70% confluence. Cells were washed twice with PBS

and incubated for 1 h with 40 mM 5-(and-6)-Carboxy-29,79-

Dichlorofluorescein Diacetate (DCF-DA, Invitrogen) in phenol-

red free culture medium. After washing with PBS, cells were

exposed to 5 mM cisplatin or 250 mM Hydrogen peroxide (H2O2)

in the presence or absence of 10 mM of the ROS scavenger N-

acetylcysteine (NAC). Fluorescence was measured at different time

points after exposure using a plate reader.

Results

Cisplatin-induced Changes on the Metabolome of
Embryonic Stem Cells
General considerations - To explore intracellular metabolic changes

in response to genotoxic stress in pluripotent stem cells, ES cells

were treated with a sub-lethal dose of 5 mM cisplatin for 4 h and

8 h and lysates were prepared for metabolomics analysis (Fig.

S1A). At 8 h cells began to accumulate in the S/G2 phase of the

cell cycle but viability was not significantly affected at these early

timepoints while analysis of parallel control plates at later time

points confirmed induction of apoptosis by this concentration of

cisplatin (Fig. S1B–D). Apolar and polar fractions were collected

and used for 1H-NMR and U-HPLC-Orbitrap-MS analysis,

respectively. To assess whether data normalization was required to

correct for potential differences in cell numbers 1H-NMR data on

the apolar fraction of control and cisplatin-treated ES cells at both

time points were analyzed. Since no significant differences

(ANOVA p,0.01) in phospholipid content or other apolar

metabolites were detected (examples of overlaid spectra are given

in Fig. S2), normalization of metabolite data to correct for cell

numbers was not required. Fig. S3 shows for the UHPLC-

Orbitrap-MS data the PCA after ANOVA (p,0.01; false

discovery rate control by the Benjamini & Hochberg procedure);

a small subset of 293 mass peaks survive out of a potential of 21173

mass peaks and can be observed to separate the 4 groups in a

reproducible way.

The Metabolic Response to Cisplatin
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Identification of metabolites significantly affected by cisplatin - Polar

fractions of control- and cisplatin-treated samples were compared

for each time point independently. Masses were identified that

significantly contributed to the observed separation between

treatments at the different time points (Table S1). At 4 h,

metabolites that were differentially regulated between control

and cisplatin-treated samples were mainly involved in methionine

degradation pathways (including transmethylation, transsulfura-

tion/glutathione synthesis), as well as polyamine synthesis and

catabolism, urea cycle, proline and arginine metabolism, and

nucleotide metabolism (Fig. 1A). Furthermore, we detected

increased levels of the metabolite N-acetyl-aspartyl-glutamic acid

(NAAG), a common neuropeptide and its precursor N-acetyl-L-

aspartate (NAA) [24] (Fig. 1A). After 8 h of cisplatin treatment,

levels of reduced glutathione and proline remained increased,

while other differentially regulated metabolites were mainly

involved in nucleotide metabolism (Fig. 1 B, Table S1).

Expression of Metabolic Enzymes Significantly Affected
by Cisplatin
In parallel to metabolomics, transcriptomics analysis was

performed to determine cisplatin-induced changes in metabolic

enzymes at 8 h. Cytoscape and IPA-based pathway analysis led to

the identification of a list of 144 metabolism-related enzymes

(Table S2, Fig. 2A). A large proportion of these metabolic enzymes

were involved in lipid metabolism; inositol phosphate metabolism

(mostly myo-Inositol), glycerophospholipid and sphingolipid me-

tabolism. We furthermore detected changes in the mRNA levels of

metabolic enzymes that are involved in sugar and fatty acid

metabolism (Fig. 2A). Next to those, a number of differentially

regulated metabolic enzymes correlated with the metabolic

pathways, which had been identified based on the changes in

metabolite levels, including urea cycle and arginine/proline

metabolism, polyamine metabolism and nucleotide metabolism

(Fig. 2A). Interestingly, several of the cisplatin-regulated metabolic

enzymes were identified as target genes of the transcription factor

p53 (Fig. 2B). p53 target genes implicated in lipid metabolism were

commonly suppressed while p53 target genes encoding enzymes

functioning in amino acid or nucleotide metabolism were mostly

enhanced.

Identification of Affected Metabolic Pathways through
Integration of Metabolomics and Transcriptomics
Identified changes in metabolites and metabolic enzymes were

combined to derive integrated signaling networks. For this, 144

regulated enzymes and 35 regulated metabolites were imported in

IPA and Metscape to form an integrated metabolic signaling

network (Fig. 3; Fig. S4). Clusters of significantly enriched

metabolic pathways were identified based on the criteria [.3

affected molecules including at least 1 affected metabolite and 1

affected enzyme]. Lipid metabolism, despite the observed changes

in expression of several enzymes in this process (Fig. 2A; Table S2),

was not selected since the sample analysis methodology (NMR)

used here for the apolar (lipid) fraction does not have the required

resolution for detection of lipd metabolites on the individual

species level (such as for instance PIP3 etc). Networks included a

purine and a pyrimidine metabolism cluster, a cluster of S-

adenosylmethionine (SAMe)-related pathways, a polyamine syn-

thesis cluster, and a urea cycle cluster, featuring pathways related

to the metabolism of proline, arginine and citrulline (Fig. 3, 4, 5,

Fig. 6, 7).

At 4 h of cisplatin treatment many metabolites linked to SAMe-

related pathways were increased (Fig. 1,3,4). SAMe is the methyl

donor in methylation of DNA, RNA and methylation of lysine

during biosynthesis of carnitine [25]. We detected cisplatin-

induced changes in the levels of the RNA nucleosides 3-

methylcytidine, 4-methylcytidine, and of carnitine, as well as

changes in mRNA levels of the methyltransferases MLL3, PCMT1

and TPMT (Fig. 2A, Fig. 3). We reinvestigated the list of

differentially regulated genes and identified regulation of several

other methylation enzymes that had been missed by IPA and

Metscape analysis, including histone methyltransferases and

demethlyases as well as RNA methyltransferases (Fig. S5A). This

additional list included the RNA methyltransferase METLL6,

which has been correlated to cisplatin sensitivity in lung cancer

patients [26]. SAMe is a critical hub between trans-sulfuration,

polyamine synthesis, and the folate cycle [25]. Multiple enzymes

and metabolites in these pathways were significantly regulated by

cisplatin (Fig. 4). This included an increase in cystathionine-beta-

synthase (CBS), an enzyme that is critical for the conversion of

homocysteine to cystathione [25]. Cystathione is a precursor for

glutathione and levels of oxidized and reduced glutathione were

increased after 4 h of cisplatin treatment, while after 8 h only the

reduced form persisted (Fig. 1, Table S1). Enzymes related to

tetrahydrofolate (THF) synthesis, which is a crucial part of the

folate cycle were also affected. THF is not only involved in

transmethylation, but is also crucial to pyrimidine and purine

synthesis. Amongst the regulated enzymes we found upregulation

of FPGS and DHFR, which are directly involved in THF

synthesis, and downregulation of MTHFD1L, which is involved in

the ATP/ADP-dependent interconversion of 10-formyl-THF

(needed for purine synthesis) (Fig. 4).

A cluster of reactions related to polyamine synthesis and

catabolism were identified based on cisplatin-regulation of

enzymes and metabolites (Fig. 4,5). After 4 h of cisplatin treatment

we identified increased levels of the polyamine metabolites

spermine and its precursor putrescine. At 8 h the concentrations

were normalized again, while at the same time spermine synthase

(SMS) mRNA levels were reduced and spermine oxidase (SMOX)

mRNA levels were increased. In addition, changes in metabolites

and enzymes related to urea cycle and proline/arginine metab-

olism were identified (Fig. 1,5). Arginine catabolism appeared to

be enhanced even though we did not observe transcriptional

changes in superoxide dismutase or NO-synthase. ADC was found

to be strongly increased, potentially resulting in a higher

conversion of arginine to agmatine, which itself is an inhibitor of

NO-synthase. Moreover, expression of GATM, which forms a

creatine precursor from arginine and glycine was enhanced (Fig. 5)

[27]. Enhanced levels of metabolic products of arginine catabolism

such as urea, putrescine (and spermine) and proline were also

detected [27] (Fig. 5). Next to increased proline levels at 4 h and

8 h of treatment, enzymes involved in reduction of P5C to proline

(PYCR2), as well as proline breakdown (PRODH, Aldh4a1) were

upregulated [28]. IPA analysis identified PRODH, Aldh4a1, and

GATM as known p53 target genes [29,30] (Fig. 2A). Interestingly,

altered proline metabolism appeared to act as an adaptive

response since knockdown of PYCR2 or PRODH, significantly

sensitized ES cells to cisplatin-induced cell death (Fig. 5B).

Since many of the enzymes and metabolites have been

previously implicated in anti- or prooxidant function (e.g.

glutathione, methionine, proline, PRODH, SMOX) we tested

whether cisplatin treatment, at the time points of our analysis, led

to an increase in reactive oxygen species (ROS) formation.

However, while hydrogen peroxide (H2O2) led to a strong increase

in ROS levels, no significant increase in intracellular ROS levels

was detected after cisplatin treatment, at any of the studied time

points (Fig. S5B).
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Lastly, several metabolites and metabolic enzymes involved in

purine/pyrimidine metabolism were significantly regulated by

cisplatin treatment (Fig. 1,2,3,6,7). These were implicated in de

novo synthesis and salvage pathways (Fig. 6,7) and included a

group of enzymes encoded by genes that were identified in IPA as

p53 targets. For instance, DNA polymerase b and RRM2 were

upregulated while the catalytic subunit of the replicative B-family

DNA polymerase a was downregulated [31,32] (Fig. 2B).

Discussion

The DDR activates, in a damage-specific fashion, the appro-

priate enzyme complexes dedicated to the repair of a variety of

DNA lesions. It is critical that the DDR is integrated with ongoing

cellular activities, including cell cycle progression, transcription,

and translation. In the case of severe damage it is important to

arrest the cell cycle, prevent aberrant transcription and translation,

preserve energy, and, if damage is beyond repair, to activate cell

death mechanisms. This is particularly relevant in stem cells where

defective DDR signaling can have major impacts on ageing and

cancer [33,34]. Clearly, the DDR extends into all vital cellular

processes. Our current study identifies alterations in metabolic

pathways that are likewise controlled by the DDR in pluripotent

stem cells.

It must be noted that the metabolomics profiles generated here

provide a snapshot of the total dynamic regulation of metabolism

under standard and stressed conditions This is for instance due to

technical limitations that exclude certain metabolites from the

analysis, the labile nature of some metabolites, and the absence of

information on fluxes. Nevertheless, the strong reproducibility of

Figure 1. Network of differentially regulated metabolites. Orange, Blue and Grey boxes indicate metabolites (mean of 5 replicates)
upregulated, downregulated, and unchanged in cisplatin treatment, respectively (ANOVA p,0.01 and fold change 1.1); metabolites without a box
were not detected. Numbers left (cisplatin) and right (control) under boxes indicate the corresponding intensities in MS-data. Results after 4 hours
upper panel) and 8 hours (lower panel) are shown.
doi:10.1371/journal.pone.0076476.g001
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the metabolomics and the connections with affected metabolic

enzymes provide high-confidence data on the metabolic response

of ES cells to genotoxic insult. Interestingly, a number of metabolic

enzymes we find to be transcriptionally modified by cisplatin are

target genes of the key DDR transcriptional regulator, p53. This is

in agreement with our recent finding that p53 is a major DDR

signaling hub in ES cells [12]. Moreover, the integration of

transcriptionally regulated metabolic enzymes and significantly

affected metabolites allows identification of integrated metabolic

networks that are responsive to genotoxic stress. These cluster in

pathways centered on purine/pyrimidine metabolism, SAMe-

related pathways, polyamine synthesis, and the urea cycle.

In a previous study we identified a p53-independent increase in

Wnt signaling as a prosurvival response in ES cells, treated with

cisplatin [12]. Interestingly, Wnt signaling has been shown to

regulate a number of metabolic processes, including glucose, fatty

acid, amino acid and nucleotide metabolism. Wnt-mediated

metabolic changes are important for a switch from ‘‘quiescent’’

to a ‘‘proliferating’’ metabolic state, which is important both for

developmental processes and the pathology of cancer [35]. Thus,

Wnt signaling, which acts as a pro-survival response, may regulate

some of the DNA damage-induced metabolic changes in

pluripotent stem cells. This possibile mode of cross talk warrants

further study.

Figure 2. Differentially regulated metabolic enzymes. (A) Heatmap indicating metabolic enzymes obtained from Cytoscape metabolic
signaling network (Fig. S4, highlighted in blue; Table S2), differentially regulated after 8 h of cisplatin treatment and enriched metabolic pathways
within the dataset. (B) Regulation of metabolic enzymes by the transcription factor p53 obtained with Ingenuity pathway analysis.
doi:10.1371/journal.pone.0076476.g002
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Figure 3. Integrated signaling network. (A) Schematic representation of metabolomics and transcriptomics data integration leading to
identification of common signaling networks related to nucleotide metabolism, SAMe pathways, polyamine pathways and urea cycle, and arginine &
proline metabolism. (B) Integrated signaling network of metabolic enzymes and metabolites obtained with Ingenuity pathway analysis. Clusters of
significantly enriched canonical pathways and related enzymes and metabolites are highlighted. Upregulated enzymes in green, downregulated
enzymes in red. Upregulated metabolites in dark red, downregulated metabolites in blue.
doi:10.1371/journal.pone.0076476.g003
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Changes in Methylation Pathways
Our analysis shows an increase in SAMe-related metabolites in

response to cisplatin treatment. SAMe is formed from methionine

and ATP with the help of methionine adenosyltransferases (MATs)

and functions as a general methyl donor in almost all cellular

methylation reactions [25]. Methylation patterns (especially those

of DNA) change during embryonic development and neoplastic

transformation and can be affected by genotoxic stress [36]. RNA-

methylation has been associated with structural features, RNA

stability and function (e.g. tRNA codon specificity) [37]. Mam-

malian cells lack the necessary kinases to phosphorylate modified

nucleosides into nucleoside triphosphate, which prevents their

recycling and incorporation in mRNA [38]. Instead, modified

nucleosides are excreted. Enhanced urinary levels of modified

RNA nucleosides, including 3-methylcytidine have been suggested

as a potential biomarker for certain cancers [39,40]. We detect

changes in the expression of RNA- but not DNA-methyl

transferases and decreased levels of methylated RNA nucleosides

in response to cisplatin treatment, including 3- and 4-methylcy-

tidine.

Changes in Transsulfuration Pathways and Folate Cycle
After methyl transfer SAMe is converted into S-adenosylhomo-

cysteine (SAH), which in turn is hydrolyzed to form adenosine and

homocysteine. Homocysteine, can be either reduced to cysteine,

which functions as a crucial precursor for glutathione (Transsul-

furation pathway), or be remethylated to methionine (Folate cycle)

[25]. Our integrated metabolic network associated with SAMe

points to changes in these pathways. Glutathione - a cytoprotective

compound - has been reported to chelate cisplatin and to play a

role in copper transporter-mediated cisplatin efflux. Furthermore,

glutathione has a function in cellular redox regulation and can act

as a protective agent against cisplatin-induced oxidative stress

[41,42,43]. In accordance with this, GSTO1, a member of the

highly conserved omega class of glutathione transferases with

dehydroascorbate reductase activity, which has been implicated in

resistance to various genotoxic drugs and irradiation, shows

increased levels after cisplatin treatment [44,45]. In addition,

cisplatin treatment causes changes in the levels of enzymes

associated with folate synthesis and the folate cycle although

altered levels of relevant metabolites are not seen. Expression of

DHFR and FGPS is upregulated whereas MTHFD1L is

decreased, which could provide a connection to the observed

changes in purine metabolism through ATP/ADP-dependent

interconversion of 10-formyl-THF [46]. Interestingly, antifolates,

such as the DHFR interactor methotrexate are used as antineo-

plastic agents [47].

Changes in Polyamine Related Pathways
SAMe serves as a precursor for elongation of putrescine to

spermidine and from there to spermine [25]. Both putrescine and

spermine levels are enhanced in cisplatin-treated cells at 4 h. The

increase of putrescine, which can be derived from ornithine, could

also be explained by enhanced expression of ADC, an arginine

decarboxylase that converts arginine to agmatine, a precursor of

putrescine. Spermine is the substrate for SMOX, an enzyme that

is upregulated at 8 h by cisplatin and catalyzes the breakdown of

spermine to spermidine, 3-aminopropanal, and H2O2. Platinum

drugs have already been shown to regulate enzymes involved in

polyamine catabolism, including spermine N1-acetyltransferase

Figure 4. SAMe centered pathways. Upregulated enzymes in green, downregulated enzymes in red. Upregulated metabolites in dark red,
downregulated metabolites in blue.
doi:10.1371/journal.pone.0076476.g004
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(which is not seen in our study) and SMOX [48,49]. Moreover,

SMOX-produced H2O2 is considered a major source of oxidative

stress after induction of polyamine catabolism [49]. Therefore it

appears that the initially increased levels of polyamines could later

be levelled out by oxidation potentially leading to an increased

production of H2O2.

Changes in Proline/Arginine Metabolism and Urea Cycle
We show that cisplatin induces substantial changes in metab-

olites and enzymes related to urea cycle and proline/arginine

metabolism including an apparent increase in arginine catabolism.

Arginine, proline, glutamate and ornithine are all interconvertable

provided that glutamine is available as a precursor of carbamoyl

phosphate. This metabolism is the basis for synthesis of nitrogen-

containing compounds such as ureum, putrescine, agmatine,

creatine and even nitrogen oxide and is furthermore crucial for

pyrimidine synthesis. Interestingly, changes in pyrimidine metab-

olites are seen in response to cisplatin treatment, including an

decrease in the pyrimidine synthesis precursor, UMP [27,50]. The

breakdown of proline by PRODH provides electrons, which can

be used for ATP production, but also for ROS formation

contributing to apoptosis via intrinsic mitochondrial pathways or

Figure 5. Urea cycle and the metabolism of arginine and proline. (A) Upregulated enzymes in green, downregulated enzymes in red.
Upregulated metabolites in dark red, downregulated metabolites in blue. (B) Cell viability after knockdown of GFP (negative control), PRODH, PYCR2
or PARS2 in presence or absence of 5 mM cisplatin.
doi:10.1371/journal.pone.0076476.g005
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the extrinsic death receptor pathway [28].Silencing of the enzymes

implicated in this network enhanced cisplatin sensitivity, suggest-

ing that increased proline metabolism is an adaptive rather than a

toxic response in ES cells.

Effects of Cisplatin on Purine/Pyrimidine/Nucleotide
Metabolism
Cisplatin affects DNA replication and transcription by causing

inter- and intrastrand crosslinks and it can bind free nucleotides.

Our integrated networks indicate that pathways potentially

involved in DNA metabolism, such as purine/pyrimidine and

nucleoside/nucleotide metabolism are significantly increased,

including both de novo synthesis and salvage pathways. Notably,

interpretation of changes in nucleotide metabolism is complicated

by the fact that nucleotides, next to serving as building blocks of

DNA and RNA, are involved in a great number of cellular

signaling functions, as well as energy metabolism [51]. This cluster

may be affected by DNA damage in a p53-dependent manner:

affected polymerases and enzymes involved in DNA synthesis and

repair are regulated by p53.

Notably, although Cavill et al., analyzing the NCI60 panel of

cancer cell lines did not analyze metabolic changes in response to

treatment, they did uncover a strong correlation between platinum

sensitivity and baseline levels of gene transcripts and metabolites

involved in nucleotide metabolism pathways, particularly an

increase in nucleotide synthesis [8].

Possible Cisplatin ROS-related Metabolism
Different studies have reported cisplatin-induced oxidative stress

but the relative contribution of this to cisplatin cytotoxicity is

unclear. Cisplatin can cause oxidative stress by depleting cellular

antioxidant defenses due to its binding to nucleophilic molecules

such as glutathione, methionine or cysteine-rich proteins [11].

Furthermore, cisplatin-induced (DDR) signaling processes might

cause secondary oxidative stress. The cisplatin-regulated metabolic

pathways discussed above provide a number of links to generation

of oxidative stress. For instance, a generally increased arginine

catabolism may lead to nitrogen oxide formation through NO-

synthase, which has been associated with ROS, while an increase

in SMOX can lead to H2O2 production [49]. Notably, we do not

detect elevated ROS at the timepoints and cisplatin concentrations

used in our study (whereas H2O2 strongly induces ROS, as

expected). This may indicate absence of cisplatin-induced ROS

production or effective scavenging of ROS in ES cells. The

enhanced levels of glutathione, methionine and proline metabo-

lites may point to the latter explanation and indicate that ES cells

cope with cisplatin-induced oxidative stress [43,52]. However, the

fact that the ratio reduced versus oxidized glutathione is slightly

elevated in cisplatin-treated cells, argues against glutathione-

mediated ROS-scavenging.

Conclusions
By integrating metabolomics and transcriptomics analyses of

cisplatin-treated ES cells, we have identified metabolic pathways

that are significantly affected by the treatment with this genotoxic

compound. Part of this metabolic response is mediated by p53, in

agreement with its central role in the DDR. This includes for

Figure 6. Purine metabolism. Upregulated enzymes in green, downregulated enzymes in red. Upregulated metabolites in dark red,
downregulated metabolites in blue.
doi:10.1371/journal.pone.0076476.g006
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instance DNA damage repair-related nucleotide metabolism

enzymes (e.g. RRM2) and amino acid catabolic enzymes (e.g.

PRODH, ALDH4a1, GATM). Changes in individual metabolic

enzymes or metabolites have been reported by others to be

responsive to genotoxic stress and/or associated with sensitivity to

genotoxic therapy in cancer cells. This holds true for instance for

GSTO1, METLL6, PRODH, and SMOX enzymes and metab-

olites such as carnitine, methionine, and glutathione. Our current

study for the first time integrates these events into cisplatin-

regulated metabolic signaling networks.

Supporting Information

Figure S1 Cisplatin does not lead to cell death at 4 h
and 8 h of treatment, but causes cell cycle arrest. (A)
Schematic representation of the experiments. (B) Cell viability

measured by ATPlite in ES cells after treatment with 5 mM and

10 mM cisplatin at 4 h, 8 h and 24 h of treatment. (C) Apoptosis
measured by FACS analysis after 8 h and 24 h of treatment with

5 mM cisplatin. (D) Cell cycle profile after 8 h and 24 h treatment

with PBS or 5 mM cisplatin.

(PDF)

Figure S2 Expanded region between 5.5 and 2.5 ppm of a

1 HNMR spectrum of the apolar extract of HM1 ESC after 8 h of

exposure to cisplatin (blue) and to vehicle (red). Arrows indicate

characteristic phospholipid signals.

(PDF)

Figure S3 PCA of the aligned UHPLC-Orbitrap-MS data
after ANOVA (p,0.01) and false discovery correction
using the Benjamini & Hochberg procedure. 293 out of

21173 mass peaks survive the ANOVA plus false discovery

Figure 7. Pyrimidine metabolism. Upregulated enzymes in green, downregulated enzymes in red. Upregulated metabolites in dark red,
downregulated metabolites in blue.
doi:10.1371/journal.pone.0076476.g007
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correction. Green=Control 4 h; Purple =Control 8 h; Red= -

Cisplatin 4 h; Yellow=Cisplatin 8 h.

(PDF)

Figure S4 Metscape ‘‘gene-compound metabolic net-
work’’. Highlighted in blue and red are compounds and genes

showing a significant regulation after 4 h cisplatin treatment.

Metabolic enzymes were retrieved from this network (Fig. 2A,

Suppl. Table 2). Figure is high resolution – zoom in to view details.

(PDF)

Figure S5 (A) Regulation of (de)methylases. Heatmap

showing regulation of methyltransferases and demethylases after

cisplatin treatment (B) ROS formation is caused by
hydrogen peroxide but not cisplatin treatment. Bar graph
shows normalized fluorescence indicating intracellular ROS levels

measured using 40 mM DCF-DA probe. Cells were preincubated

with DCF-DA for 1 h and exposed to 5 mM cisplatin or 250 mM
H2O2 in the presence or absence of 10 mM of the ROS scavenger

NAC for the indicated times. Bars represent average and SEM of

at least 3 independent experiments.

(PDF)

Table S1 Identified metabolites. Identification of masses

found to be significantly different (p,0.01) between control and

cisplatin-treated samples.

(XLS)

Table S2 Significantly regulated metabolic enzymes.
List of metabolic enzymes identified by Metscape and Ingenuity

pathway analysis from 2269 genes that are differentially regulated

by cisplatin.

(XLS)

Material S1 Orbitrap mass spectrometer settings.

(PDF)
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