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Summary

Natural epigenetic variation provides a source for the generation of phenotypic diversity, but to 

understand its contribution to phenotypic diversity, its interaction with genetic variation requires 

further investigation. Here, we report population-wide DNA sequencing of genomes, 

transcriptomes, and methylomes of wild Arabidopsis thaliana accessions. Single cytosine 

methylation polymorphisms are unlinked to genotype. However, the rate of linkage disequilibrium 

decay amongst differentially methylated regions targeted by RNA-directed DNA methylation is 

similar to the rate for single nucleotide polymorphisms. Association analyses of these RNA-

directed DNA methylation regions with genetic variants identified thousands of methylQTL, 

which revealed the first population estimate of genetically dependent methylation variation. 

Analysis of invariably methylated transposons and genes across this population indicates that loci 

targeted by RNA-directed DNA methylation are epigenetically activated in pollen and seeds, 

which facilitates proper development of these structures.
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Introduction

DNA methylation is a covalent base modification of plant nuclear genomes that is accurately 

inherited through both mitotic and meiotic1 cell divisions. However, similar to spontaneous 

mutations in DNA, errors in the maintenance of methylation states result in the 

accumulation of single methylation polymorphisms (SMPs) over an evolutionary 

timescale2,3. The rates of SMP formation are orders of magnitude greater than spontaneous 

mutations, which are in part, likely due to the fidelity of maintenance DNA 

methyltransferases and accompanying silencing machinery2,3,4,5. Epiallele formation in the 

absence of genetic variation can result in phenotypic variation, which is most evident in the 

plant kingdom as exemplified by the peloric and colorless non-ripening variants from 

Linaria vulgaris and Solanum lycopersicum, respectively6,7. Although rates of spontaneous 

variation in DNA methylation and mutation can be decoupled in the laboratory8,9,10,11, in 

natural settings, these two features of genomes co-evolve to create phenotypic diversity 

upon which natural selection can act. In plant genomes, DNA methylation is present in the 

symmetrical CG and CHG contexts (where H = A, C, or T ) as well as the asymmetrical 

CHH context. CG gene-body methylation is a common feature of animal and plant 

genomes12,13. Regions of plant genomes that contain methylation in the CG, CHG and CHH 

contexts are indicative of loci that are under control of RNA-directed DNA methylation 

(RdDM)14.

Similar to the limited examples of pure epialleles (methylation variants that form 

independent of genetic variation), few examples of DNA methylation variants linked to 

genetic variants are known15,16,17. Previous studies between two accessions of Arabidopsis 

thaliana or Zea mays revealed genome-wide natural variation in DNA methylation18,19,20,21, 

but the dependence of these methylation variants on genetic variants at the population level 

remains unaddressed. To understand the types and extent of natural DNA methylation 

variants in Arabidopsis thaliana, epigenomes for genotypically distinct, wild accessions, 

isolated from throughout the northern hemisphere were determined using MethylC-seq18, 

(152 methylomes, Supplementary Table 1), RNA-seq (144 transcriptomes, Supplementary 

Table 2) and gDNA-seq (217 genomes, Supplementary Table 3)18. Integration of genomic 

and epigenomic data allowed investigation into variable methylation states of both CG gene-

body methylation and loci targeted by RdDM along with their interactions with genetic 

variants at the population level.

Population-wide patterns of SMPs

Recent reports of SMPs in a population of essentially isogenic plants indicated that they are 

major contributors to epigenomic variation2,3. Therefore, we assessed SMP diversity to 

understand their frequency and patterns throughout a population of genetically distinct 

accessions. A median of 390,255 SMPs ranging from 92,646 to 527,393 (Supplementary 

Table 4) were found in the sequenced accessions when compared to the Col-0 reference 

methylome. On average, CG-, CHG-, and CHH-SMPs accounted for 23%, 13%, and 64% of 

all SMPs, respectively. These newly identified SMPs were used to construct an epigenome-

based phylogeny and then were compared to a genome-based (SNP) phylogeny 

(Supplementary Fig. 1–4). A high correlation in the tree structures was specifically observed 
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between CG-SMPs and SNPs as compared to CHG-SMPs or CHH-SMPs and SNPs 

(Supplementary Table 5).

To determine patterns of SMP diversity, chromosome-wide conservation of methylation 

states at each SMP was examined by computing a conservation score (Fig. 1a and 

Supplementary Fig. 5). The methylation state of SMPs in the CG and CHG contexts is 

biased toward the methylated form at the pericentromere and biased toward the 

unmethylated form in gene-rich regions (Fig. 1a and Supplementary Fig. 5). Next, the 

distribution of conservation scores across different features and methylation contexts were 

plotted genome-wide (Fig. 1b–d). Like the pericentromeric regions, CG- and CHG-SMPs in 

transposable elements tend to be faithfully methylated throughout this population; whereas, 

CHH-SMPs are largely unmethylated. Unlike CHG and CHH-SMPs, CG-SMPs have a 

significantly larger amount of methylation at single-copy genes (Fig. 1b–d). Because CG 

gene-body methylation is associated with moderately expressed genes19, we postulated that 

these genes are more active because of the lack of other genes redundant in function. We 

tested this hypothesis by examining RNA-seq data for 144 of these accessions at these loci, 

which revealed the fraction of transcripts where expression was detected (i.e., FPKMs 

(Fragments Per Kilobase of exon per Million fragments mapped) > 0) was higher in single-

copy genes than non-single-copy genes (85% vs. 71.8%). Moreover, the median expression 

level of single-copy genes was also significantly greater (361,814.50 FPKMs of single-copy 

genes vs. 56,107.85 FPKMs of non-single copy genes) supporting the finding that single-

copy genes across the population are more transcriptionally active.

Population-wide variation of DMRs

Spontaneous formation of SMPs represents one form of natural epigenetic variation, but 

variation also exists in the form of differentially methylated regions (DMRs)2,3. Therefore, 

we scanned this population for DMRs in the CG context (CG-DMRs) typically found in 

gene-bodies or in the CG, CHG and CHH contexts (C-DMRs) typical of regions targeted by 

RdDM. Hierarchical clustering of accessions based on weighted methylation levels20 

(Supplementary Information), referred to as methylation levels throughout the rest of the 

paper, of CG-DMRs or C-DMRs revealed patterns across the population that were 

coincident with certain genomic features (Fig. 2a and b). For example, CG-DMRs are 

enriched in gene bodies and are present in both unmethylated and methylated states equally 

throughout the population (Fig. 2a), whereas C-DMRs occur in both gene bodies and 

transposons (Fig. 2b). Additionally, the C-DMRs in genes are largely unmethylated, which 

contrast to the heavy methylation levels that occur in transposons (Fig. 2b). In total, 40,269 

CG-DMRs (Supplementary Table 6), with an average size of 321 bp, (Supplementary Fig. 6) 

were identified across the population that were enriched in gene bodies and depleted in 

transposons (Fig. 2a, Supplementary Figure 7 and Supplementary Table 7); whereas, 13,485 

C-DMRs (Supplementary Table 8), with an average size of 221 bp (Supplementary Fig. 6) 

were identified that show enrichment in transposons and depletion in genes (Fig. 2b, 

Supplementary Figure 7 and Supplementary Table 7). The distribution of both CG- and C-

DMRs reflects the distribution of genes and transposons along each chromosome and the 

type of DNA methylation primarily associated with these features, CG gene-body 

methylation versus RdDM. Furthermore, the distribution of methylation levels of CG-DMRs 
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is skewed towards lower levels when the CG-DMR overlaps a gene and higher levels when 

it overlaps a transposon (Fig. 2c and d). The distribution of methylation levels in CG-DMRs 

resembles the patterns of CG-SMPs for genes versus transposons as the transposon 

sequences often contained highly methylated sites or DMRs when compared to genes, 

supporting the observation that these regions are faithfully repressed by methylation across 

the population. A comparison of the distribution of methylation levels of the C-DMRs 

revealed that genes are infrequently methylated at high levels in the population when 

compared to C-DMRs overlapping transposons (Fig. 2c and d). In this regard, C-DMRs 

overlapping genes are rare variants in the population; whereas, most transposon sequences 

are almost invariably methylated. Clustering these accessions based on their methylation 

levels of C-DMRs revealed that accessions that are geographically separated are less likely 

to cluster together indicating the potential for underlying genetic structure (Fig. 2e and f). 

Alternatively, these results could also be obtained for methylation variants that are not 

dependent on genetic variants if they are stable. Most likely, this result is due to a 

combination of both of these scenarios.

For a subset of accessions examined, methylation data were produced for two tissue types: 

leaf and mixed-stage inflorescence. Regardless of the tissue used for methylome analysis, 

when hierarchical clustering was performed using methylation levels of either CG-DMRs 

(Fig. 2g) or C-DMRs (Fig. 2h), these accessions grouped by their genotype not their tissue 

type. When the same analysis was applied to RNA-seq data from the same tissues of six 

accessions, samples clustered based on their tissue type not their genotype (Fig. 2i). 

Collectively, these data indicate that DNA methylation is less dynamic than gene expression 

patterns in plants and only plays a role during specific stages of development or cell 

types1,21,22. Although DNA methylation is more static than transcription, it varies 

appreciably over an evolutionary timescale, significantly affecting the transcriptional output 

of specific genes (Fig. 2j and k). Using CG-DMRs that overlap with genes, a positive 

correlation (Spearman correlation; P value < 2.2e−16) between their methylation levels and 

gene expression levels were found (Fig. 2j); whereas, the opposite was true for C-DMRs that 

overlapped genes, supporting a role for RdDM in transcriptionally silencing these loci 

(Spearman correlation; P value < 2.2e−16, Fig. 2k and Supplementary Fig. 8 and 9 and 

Supplementary Information). Although the role of CG gene-body methylation is still 

unclear, these data indicate that CG-DMRs that are heavily methylated are associated with 

higher gene expression levels and can possibly give rise to transcriptional variation.

Linking genetic and methylation variants

Genome sequencing was performed for 217 individuals of which 152 had a matching 

sequenced DNA methylome. We used the SHORE analysis pipeline23 to identify SNPs 

between each accession and the Col-0 genome (Supplementary Information). The 

identification of SMPs and SNPs that were variable between at least two accessions was 

used to determine the population-level frequency of these variants, which revealed 

approximately 70% of CG-SMPs and 41% of SNPs are present at <1% allele frequency 

(Supplementary Table 9). These results indicate that a large fraction of SMPs and SNPs are 

rare variants similar to the results observed for C-DMRs and further indicate that the high 

epimutation rate for SMPs results in greater numbers of rare alleles. Therefore, even though 
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the spontaneous epimutation rate is at least four orders of magnitude greater than SNPs, the 

reversible nature of certain SMPs governs their accumulation within populations2,3,5.

Analysis of gene families that contained the highest number of major effect mutations 

(Supplementary Information, NBS-LRR – defense response, F-box – protein degradation 

and MADS-box transcription factor - development) is consistent with previous studies24,25, 

and these gene families also contained the highest frequency of C-DMRs (Fig. 3a). 

Furthermore, gene ontology analysis for genes overlapping with C-DMRs identified terms 

enriched in protein degradation and immune response functions indicating that these three 

genes families are equally prone to hypervariable genetic and epigenetic states 

(hypermutable) (Supplementary Table 10). Although the frequency of major effect 

mutations and C-DMRs was similar for these hypermutable families, the remaining gene 

families tested revealed no such co-occurrence of genetic and methylation variation as the 

frequency of C-DMRs approached zero; whereas, the frequency of major effect mutations 

reached a background rate (Fig. 3a). Aside from the hypermutable families discussed above, 

there is little relationship between major effect mutations and frequency of C-DMRs. 

Furthermore, there is no correlation between methylation level and mutation rate in genes 

containing C-DMRs (Supplementary Table 11). Therefore, the majority of genes targeted by 

RdDM are functional and silencing by this pathway may limit their expression to specific 

stages of development similar to observations made for transposons26 and/or limit their 

expression until released from silencing by bacterial infection27, possibly explaining the 

high frequency of C-DMRs in members of the NBS-LRR family.

To determine the extent to which variation in both DNA methylation and genotype are 

linked, diversity estimates were calculated for SNPs, all forms of SMPs and C-DMRs (Fig. 

3b and Supplementary Fig. 10). A known selective sweep on chromosome I26 was identified 

(Fig. 3b). However, no corresponding depletion was observed for either CG-SMPs or C-

DMRs. At this resolution, no correlation between genotype and epigenotype was detected 

(Supplementary Table 12). Therefore, to understand the relationship and possible 

dependence of methylation variants on genotype, a higher resolution positional association 

and linkage disequilibrium (LD) decay analysis was performed using SNPs, CG-SMPs, 

CHG-SMPs, CHH-SMPs, CG-DMRs and C-DMRs (Fig. 3c and d). Similar to past reports 

for SNPs, LD decays within 10 kb reaching 50% of its initial value at ~2 kb25,28 (Fig. 3c). 

This value is similar to the rate of decay for the association amongst C-DMRs (~10 kb), 

which reaches 50% of its initial value at ~1 kb (Fig. 3c). Surprisingly, the rate of decay for 

association amongst methylation variants such as CG-SMPs and CG-DMRs occurs rapidly, 

within 100 bp, which is especially true for genes when compared to transposons (Fig. 3d and 

Supplementary Fig. 11 and 12). Collectively, these data indicate that SMPs and CG-DMRs 

are truly epigenetic in nature as they occur largely independent of genetic variation. In 

contrast, although spontaneous C-DMR formation can occur independent of genetic 

variation2,3, the LD and association decay analysis revealed that the presence of C-DMRs 

may be due, in part, to local genetic variants.
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Association mapping methylation variants

Although there are many mechanisms that can give rise to DNA methylation 

variation2,3,15,29, the extent to which each plays a role in the formation of the observable 

methylation variation is unknown. We noted that some sites of known transposition events 

possessed C-DMRs and posited that these structural variants could be responsible for these 

differences (Supplementary Fig. 13). To experimentally determine the proportion of C-

DMRs with a local structural variant, regions surrounding 92 C-DMRs were PCR amplified 

and sequenced. Most of these C-DMRs failed to overlap with structural variants; however, 

structural variations were detected at ~17% (16 / 92) of the C-DMRs assayed (Fig. 4a, 

Supplementary Table 13). To better inspect any direct relationship between genetic variants 

and C-DMRs and to identify potential methylQTL (mQTL)30, we utilized a genome-wide 

association technique, EMMAX, as this methodology was successfully used in another 

similarly sized Arabidopsis population28,31 (Supplementary Information). Furthermore, we 

employed two different methodologies to control for false discoveries and found them 

highly concordant (Supplementary Information). To minimize the number of false positives, 

we used SNPs that were significant in both methodologies. Application of EMMAX to the 

152 accessions with SNP and C-DMR data uncovered C-DMRs that associated with local 

(Fig. 4b) and distant genetic variants (Fig. 4c) and identified the well-characterized PAI 

epialleles (Supplementary Fig. 14)15. In total, 2,739 significant mQTL were associated with 

1,045 of the 3,023 tested C-DMRs (~35%) (Supplementary Fig. 15–24).

Of the tested C-DMRs, 377 (~12%) overlap with a genomic locus with which they associate, 

which is a similar proportion to the number of experimentally determined local variants. We 

grouped significant mQTL into blocks and plotted the position of these blocks and the 

corresponding C-DMR in Fig. 4d (Supplementary Information). An enrichment of local 

mQTL is visible in particular at the pericentromeric regions (Fig. 4d). When corrected for 

the genome space in which local events can occur, local mQTL account for a larger fraction 

of the overall results; although, the raw number of distant mQTL exceeds the number of 

local mQTL (Fig. 4f). Furthermore, 61.3% of the local mQTL occur within 30 kb of the C-

DMR (Fig. 4e). These association-mapping results also indicated that there were more than 

twice as many mQTL than C-DMRs. To address whether or not many of the C-DMRs are 

being controlled in a polygenic manner, we applied the tool MLMM32 to the 1,045 C-DMRs 

with at least one mQTL. Roughly half of the significant C-DMRs reported as polygenic by 

EMMAX were also reported as polygenic by MLMM (Supplementary Fig. 25). Given these 

results, there are polygenic C-DMRs, although it remains to be determined what types of 

mechanisms lead to the methylation variation of these C-DMRs. Lastly, applying EMMAX 

to CG-DMRs resulted in a much lower detection rate of mQTL (Supplementary Table 14 

and Supplementary Fig. 26). Together, the above data demonstrate that a considerable 

fraction of C-DMRs and to a much lesser extent CG-DMRs exist as a result of genetic 

variation.

All C-DMRs randomly selected for Fig. 4a are rare in the population and had been filtered 

out prior to association mapping. Consequently, to determine potential causal variants that 

are associated with the methylation variants, we PCR amplified 96 C-DMRs associated with 

a local mQTL. Of these tested loci, 86 successfully amplified and revealed 16 structural 
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variants (Supplementary Table 15), which are similar to the results from the randomly 

selected C-DMRs (16/92 versus 16/86). Alternative to structural variation, distant mQTL 

may result from SNPs as reported for the VIM1 variant in the Bor-4 accession33. Analysis of 

components with known involvements in DNA methylation within these distant mQTL 

regions (Supplementary Table 16) revealed VIM3 and AGO2 as possible causal loci. 

Potential causal variants for the remaining local and distant mQTL likely involve a 

combination of either SNPs or structural variations that will undoubtedly be uncovered with 

future whole-genome assemblies.

RdDM targets are activated in pollen

The mQTL identified revealed that there is an association among some genetic variants and 

DNA methylation variants, especially for C-DMRs. It is well established that other genetic 

features, such as repeats, are important for guiding RdDM to target loci. For example, the 

intergenic sub-telomeric repeats 3′ to the MEDEA locus and the repeated SINE elements and 

tandem repeats around the transcription start site of FWA are key regulatory sequences for 

controlling gene expression of these loci34,35. Although these loci are under transcriptional 

control by genetic elements, these specific elements are present and invariably methylated in 

every accession examined. Therefore, to understand the role of regions of the epigenome 

that are less prone to natural epigenetic variation we searched for loci that contained 

methylated alleles (methylation level ≥ 10%) in >90% of the accessions and identified 283 

genes and 255 transposons. The expression of these loci was specifically activated in pollen 

(Fig. 5a and b). A previous study demonstrated that transposons are activated in the pollen 

vegetative nucleus, providing a substrate to generate mobile small RNAs, which can be 

transmitted to the sperm cells (germ line)26. This mechanism is not restricted to transposons 

as we identified protein-coding genes that are under control of RdDM and invariably 

methylated across this population are also activated in pollen (Fig. 5b). This activation is not 

a general feature of pollen, as a control set of genes that are not targeted by RdDM are not 

activated in pollen (Fig. 5c). A closer examination of these invariably methylated genes with 

gene ontology revealed a significant enrichment for two major categories, cell wall biology 

and translation (Supplementary Table 17), both related to major functions of pollen 

development.

Although these invariably methylated loci are under similar epigenetic control as 

transposons (Fig. 5a and b), it is likely that all RdDM-targeted loci are under control of this 

mechanism regardless of their variability within this population. In fact, Col-0 genes 

targeted by RdDM and their corresponding expression levels are positively correlated 

(Spearman correlation; P Value 5.81e−27) in pollen and seed development (Fig. 5d); 

whereas, all 55 other tissues tested revealed either a negative correlation or no correlation 

(Fig. 5d, Supplementary Table 18). Furthermore, categories of genes with positive 

correlations are stronger for loci that overlap transposon sequences (Fig. 5d). These data 

indicate that these loci have likely come under control of sequences that are evolutionarily 

silenced, which acts to restrict their expression to these specific stages of development (Fig. 

5d – see expanded section and discussion).
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Conclusion

Natural epigenomic variation is widespread within Arabidopsis thaliana and the population-

based epigenomics presented here has uncovered features of the DNA methylome that are 

unlinked to underlying genetic variation such as all forms of SMPs and CG-DMRs. 

However, C-DMRs have positional association decay patterns similar to LD decay patterns 

for SNPs and in some cases are associated with genetic variants, but the majority of C-

DMRs were not tested by association mapping due to low allele frequencies and could result 

from rare sequence variants. Our combined analyses of genetic and methylation variation 

did not uncover a correlation between major effect mutations and genes silenced by RdDM 

suggesting that this pathway may target these genes for another purpose. This purpose could 

be to restrict expression from vegetative tissues similar to transposons. Another possible 

purpose of being targeted by RdDM could be to coordinate expression specifically in pollen 

and in seed to ensure proper gametophytic and embryonic development. Animals also use 

small RNA-directed DNA methylation and heterochromatin formation mechanisms to 

maintain the epigenome of the germ line through the use of Piwi-interacting RNAs36. In 

both plants and animals these small RNAs are derived from the genome of companion cells, 

which are terminal in nature and can afford widespread reactivation of transposon and repeat 

sequences as they are not passed on to the next generation. Our study provides evidence that 

RdDM-targeted genes may have co-opted this transposon silencing mechanism to maintain 

their silenced state in vegetative tissues and transgenerationally as well as to ensure proper 

expression important for pollen, seed, and germ line development.

Materials and Methods

Plant material

Leaf and mixed stage inflorescence tissue were flash frozen in liquid nitrogen, and then the 

tissue was ground to a fine powder with a mortar and pestle. Leaf tissue was used for 

genomic and RNA-Seq, and the tissues used for each MethylC-Seq experiment is listed in 

Supplementary Table 1. DNA was isolated using a Qiagen Plant DNeasy kit (Qiagen, 

Valencia, CA) following the manufacturer’s recommendations. RNA was isolated using the 

Qiagen Plant RNeasy kit (Qiagen) following the manufacturer’s instructions.

Genomic DNA sequencing library construction

Approximately two micrograms of genomic DNA was sonicated to ~250 bp using the 

Covaris S2 System using the following parameters: cycle number = 2, duty cycle = 10%, 

intensity = 4, cycles/burst = 200 and time = 40 seconds. Sonicated DNA was purified with a 

PCR Purification Minielute column according to the manufacturer’s instructions (Qiagen). 

Purified DNA was end repaired at room temperature for 45 minutes using the End-It Repair 

Kit (Epicentre, Madison, WI) and purified with a minielute column (Qiagen). Purified 

samples were then A-tailed with dATP and Klenow 3′ – 5′ exo minus (New England 

Biolabs, Ipswich, MA) for 30 minutes at 37C and then purified with a minielute column 

(Qiagen). Purified DNA was then used for an overnight ligation to TruSeq barcoded 

adapters (Illumina, San Diego, CA) with T4 DNA ligase at 16C (New England Biolabs). 

Ligated fragments were purified twice using Ampure XP purification beads (Beckman, 
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Brea, CA) at 1.3X ratio of beads to sample and then PCR amplified for 15 cycles using 

Phusion High Fidelity DNA Polymerase (New England Bioloabs).

MethylC-Seq library construction

Approximately one to three micrograms of genomic DNA was sonicated to ~100 bp using 

the Covaris S2 System using the following parameters: cycle number = 6, duty cycle = 20%, 

intensity = 5, cycles/burst = 200 and time = 60 seconds. Sonicated DNA was purified using 

Qiagen DNeasy minielute columns (Qiagen). Each sequencing library was constructed 

similar to genomic DNA libraries except the ligation was performed with methylated 

adapters provided by Illumina. Ligation products were purified with AMPure XP beads 

(Beckman) at a ratio of 1.8X of beads to sample. Up to 450 ng of ligated DNA was bisulfite 

treated using the MethylCode Kit (Invitrogen, Carlsbad, CA) following the manufacturer’s 

guidelines and then PCR amplified using Pfu Cx Turbo (Agilent, Santa Clara, CA) using the 

following PCR conditions (2 minutes at 95C, 4 cycles of 15 seconds at 98C, 30 seconds at 

60C, 4 minutes at 72C and 10 minutes at 72C).

RNA-Seq library construction

RNA-Seq libraries were prepared according to the described methods in38 except for data 

collected for Fig. 2i. These libraries were prepared using a TruSeq RNA Sample Kit v2 

(Illumina, CA).

Sequencing

Paired-end genomic DNA and single-end MethylC-Seq libraries were sequenced using the 

Illumina GAIIx (Illumina) as per manufacturer’s instructions. Sequencing of genomic DNA 

and MethylC-Seq libraries was performed up to 101 and 85 cycles, respectively. Image 

analysis and base calling were performed with the standard Illumina pipeline. Sequencing of 

RNA-Seq libraries was performed on the SOLiD4 platform (Life Technologies) for 50 bp 

according to the manufacturer’s instructions.

Variant identification

The SHORE package was used to call variants for all of our accessions23. The following is a 

list of each submodule and arguments that we ran for the strains: shore import -v Fastq -e 

Shore -a genomic -x <forward reads> -y <reverse reads>-o<output directory> -n 200, shore 

mapflowcell -i <TAIR10 Reference> -f <output directory> -v bwa -n 5% -g 3 -c 7 -b 

500000, shore correct4pe –l <input directory> -x 250 -e 1001, shore merge -p <input 

directory> -d <output directory>, shore consensus -n <accession_name> -f <TAIR10 

Reference> -o <output directory> -i <input directory> -g 4 -q 7 -a <Arabidopsis default 

scoring matrix> -b 0.51 -v –r. Any variant with a quality score of 25 or above was deemed 

significant. These variants were then substituted into the TAIR10 reference genome to create 

sample specific references (also referred to as SNP-substituted references) for the mapping 

of other data sets. In the case of the MethylC-seq mapping, we were able to map, on 

average, an additional 943,182 reads and allowed us to call an additional 225,894 

methylated cytosines (Supplementary Table 19).
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MethylC-Seq sequencing analysis

Fastq files were aligned to SNP-substituted reference genomes for each accession using 

Bowtie39, and custom algorithms were used for identification of mC sites as described 

previously40.

RNA-Seq data analysis

Bioscope version 1.3 was used to align .csfasta and .qual files to SNP-substituted reference 

genomes for each accession using default parameters which allows up to 10 locations per 

sequenced read. Cufflinks version 1.1 was used to quantify gene expression values using the 

following parameters: -F 0 –b –N –library-type fr-secondstrand –G TAIR10.gtf.

Identification of SMPs

We identified SMPs by looking for sites that either were called methylated by our pipeline, 

or were covered by at least five reads, which we defined as an unmethylated site. Any other 

site was listed as missing. A SMP was defined as any site with an accession that had a 

methylation state different between at least two accessions but contained the same sequence 

as the Col-0 reference genome.

Dendrogram construction

Throughout this work, we present various clustering results of SMPs, SNPs, and DMRs. In 

the cases where these dendrograms are presented with a heatmap, we used the R function 

heatmap.2 in the gplots package with the default clustering parameters to produce the figure. 

The dendrograms that lack heatmaps were produced by first generating a distance matrix 

with R’s dist function and passing this matrix to the hclust function, both with their default 

parameters.

Clustering comparison

To compare the results of the clustering of SMPs and SNPs, we generated distance matrices 

using R’s dist function with the methylation statuses of SMPs as well as the alleles of the 

SNPs and then compared the spearman correlation coefficients between the SNP distance 

matrix and each of the SMP distance matrices (Supplementary Table 5).

Identification of DMRs

All classes of DMRs were identified as previously reported3. CG-DMRs and C-DMRs are 

not mutually exclusive because C-DMRs are a subset of CG-DMRs. Consequently, for any 

CG-DMR analyses the subset of C-DMRs were removed.

Definition of methylation levels

Throughout this work, we refer to the level of methylation of genomic regions. To compute 

this level for a given region, we summed the number of sequenced C bases across all 

cytosines that were called statistically significantly methylated by our pipeline and divided 

that sum by the number of sequenced bases covering all cytosines in the given region.
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Relationship between DNA methylation and mutation

In an attempt to look at the relationship between mutation and DNA methylation, we 

calculated the weighted average of DNA methylation and mutation rates across all genes. 

Genes were defined as entries in the TAIR10 reference GFF file having the word “gene” in 

the feature column. Methylation levels were calculated as described above, and SNP effects 

were determined using the SNPeff tool (Cingolani, P. “snpEff: Variant effect prediction”, 

http://snpeff.sourceforge.net, 2012.) and its athalianaTair10 reference file. We computed 

two mutation rates, the overall mutation rate and the major effect mutation rate, which we 

obtained by calculating the fraction of mutations in that gene out of the total number of 

mutations that were observed in that gene across all accessions. Major effect mutations were 

defined as mutations that introduced or removed a start or stop codon. The methylation level 

and mutation rates for each locus were normalized to the maximum value observed at that 

locus for each measurement type. This normalization yielded measurements on a scale from 

0 to 1. We performed a correlation test on these measurements to try and detect a 

relationship between methylation level and either of the mutation types. As we had no 

reason to suspect a linear relationship between these variables, we chose to use a Kendall 

statistic to evaluate the correlation. We detected small but statistically significant 

relationships between all three of our measurements. Although these results are statistically 

significant given the small magnitude of the correlation coefficients, we believe that these 

relationships are at least difficult to interpret but probably not biologically meaningful 

(Supplementary Table 11).

Enrichment of DMRs in genes and transposons

To determine if CG- and C-DMRs were enriched or depleted in genes or transposons, we 

performed a binomial test based on these features proportions throughout the genome. The 

results of these tests can be found in Supplementary Table 7.

LD/positional association decay analysis

To determine the rate of decay for C-DMRs and CG-DMRs we computed a Pearson 

correlation coefficient between each pair of DMRs within 10 kb of one another. These 

coefficients were then separated into 1 kb or 200 bp bins based on the distances between the 

midpoints of the DMRs. We took the median correlation coefficient of each bin as the rate 

of decay at a particular distance. In the case of SMPs and SNPs, we utilized the software 

package PLINK to determine the association/LD between all pairs of sites with a minor 

allele frequency of 20% and that were within 10 kb of one another. In the case of DMRs, we 

computed the minor allele frequency by first scoring each accession’s DMR as methylated 

(methylation level >= 10%) or unmethylated (methylation level < 10%). These scores were 

binned as in the case of DMRs, and the median value of each bin was taken as the decay rate 

for a particular distance.

DMR saturation analysis

We estimated how close we are to saturating the discovery of DMRs by randomly subsetting 

our data and calling DMRs on those subsets (Supplementary Fig. 27). For each of the 

sample sizes, five random subsets were drawn from the samples and run using the same 
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DMR calling pipeline previously outlined. Although the discovery of new CHH-DMRs 

seems to be saturated, DMRs in the other contexts remain to be found.

mQTL analysis

Given our small sample size, we made several efforts to control for the number of false 

positives we undoubtedly found. To this end, we only tested DMRs that had at least 75% 

(114 samples) of their observations present and at least 10% of their observations over a 

10% methylation level (i.e., what we defined as a methylated allele). Additionally, we only 

tested phenotypes that had genomic inflation factors (GIFs) between .985 and 1.015. To 

obtain these GIFs, we calculated the 50th percentile of each tested C-DMR’s distribution of 

p-values as well as the 50th percentile of the distribution of p-values generated by randomly 

permuting the phenotypes of 20 randomly chosen C-DMRs 10 times (200 permutations in 

total). These filtering steps left us with 3,023 C-DMRs and 1,877 CG-DMRs to test. We 

then randomly sampled 1% of the p-values tested and input them to the R package Q-

Value41. The p-value corresponding to a 1% false discovery rate was then used as a cutoff to 

determine the significance of each association test (we refer to this methodology as the “Q-

Value method”). The results for significant SNPs are detailed in Supplementary Table 20. 

As further validation to ensure that this methodology was working, we compared it to the 

randomization method outlined in Breitling et al42 (we refer to the following methodology 

as the “randomization method”). To this end, we randomized the labels in our genotype 

matrix (i.e., so every sample now had genotypes from a different, randomly chosen sample) 

and ran EMMAX on the DMRs that had passed our quality control thresholds. Specifically, 

we ran those DMRs that had at least 10% of their DMRs in the “methylated” state, at least 

75% of their observations present, and a GIF between .985 and 1.015. For each DMR tested, 

we attempted to find the largest P-Value that kept the false discovery rate (FDR) under 1%. 

In this case, we defined the FDR of a given P-Value cutoff as the fraction of significant (i.e., 

below the P-Value cutoff in question) hits found in the randomized set out of the total 

number of significant hits found in the randomized and non-randomized sets. The results for 

significant SNPs are detailed in Supplementary Table 21. We found that the methodology 

employing Q-Value discovered fewer mQTL than the randomization method 

(Supplementary Table 22), but both methods found a similar proportion of cis and trans 

mQTL (Supplementary Fig. 28). Furthermore, the Q-Value results are nearly a perfect 

subset of the randomization results (~93% overlap). Consequently, to be conservative, we 

utilized the SNPs that overlapped in both methodologies for the analysis in the paper. We 

grouped these significant SNPs into blocks with the following method. If a significant SNP 

lies within 10kb of another significant SNP combine these two SNPs into a block (i.e., the 

block’s start and end are now the positions of these two SNPs). Using this block as a starting 

point, look for other significant SNPs that are within 10kb of either end of the block. If such 

SNPs exist, add them to the existing block, update the block ends with the new SNP, and 

look for significant SNPs within 10kb of these new block ends. Repeat this procedure until 

no significant SNPs can be found within 10kb of the block ends. These blocks are what we 

refer to as mQTL throughout the paper. To prioritize candidate loci for follow up studies, we 

have listed all genes (i.e., protein-coding genes defined in the file here ftp://

ftp.arabidopsis.org/home/tair/Genes/TAIR10_genome_release/TAIR10_gff3/

TAIR10_GFF3_genes.gff) that fall within the mQTL blocks defined by these significant 
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SNPs, the number of significant SNPs that directly overlap these genes, and whether or not 

they have been implicated in DNA methylation processes (Supplementary Tables 16 and 

23). To better address the validity of mQTL that associated with more than one mQTL, we 

ran the 1,045 C-DMRs with at least one significant mQTL through the MLMM software 

provided in32. When evaluating results from this program, we chose the model that 

minimized the EBIC criterion reported. We used the same P-Value cutoff given by the Q-

Value method above to determine which results were significant and collapsed them in the 

same fashion as mentioned above. We have included the individual results for the significant 

SNPs in Supplementary Table 24.

Expression of genes containing DMRs

The lists of C-DMRs and CG-DMRs were use to find the overlap between them and a list of 

protein coding genes (i.e., genes with the “protein-coding gene” descriptor in the TAIR10 

reference annotation file found here ftp://ftp.arabidopsis.org/home/tair/Genes/

TAIR10_genome_release/TAIR10_gff3/TAIR10_GFF3_genes.gff). We then compared the 

methylation level of these DMRs with the expression levels of the genes they overlapped. 

We created boxplots of the expression levels for various methylation levels (e.g., the 

expression values for all genes with a DMR that had a methylation level greater than 0.2 but 

less than 0.3). All the expression values of a locus were divided by the maximum observed 

value at that locus, so the expression values plotted are the fraction of the maximum 

expression level observed at a given locus. It is interesting to note that genes with no C 

methylation are expressed at a lower level than those that have a methylation level between 

(but excluding) 0 and 0.1. This dip is due to genes that have no gene body (i.e., CG 

methylation) as has been shown in20 and is also apparent in these loci (Supplementary Fig. 

8). Consequently, we plotted these data again excluding those sites without gene body 

methylation (i.e., 0 now represents loci with no CHG or CHH methylation) and saw the 

median expression rise to match the median expression level at the 0 to 0.1 level 

(Supplementary Fig. 9). To make the differences in the medians clearer, we have plotted the 

median values for the boxplots in Figure 2k and 2j along with the bootstrap confidence 

intervals in Supplementary Fig. 29 and 30.

Developmental gene expression profiling

Microarray analysis was previously performed for a broad range of developmental stages 

throughout the plant life cycle37. These data were downloaded from http://

www.weigelworld.org/resources/microarray/AtGenExpress/AtGE_dev_gcRMA.txt.zip/

at_download/file. These lists of loci that are targeted by the RdDM pathway were matched 

against probe IDs and the resulting information was extracted. Triplicate data for each 

developmental time point was average and then row normalized according to the 

developmental time point that displayed the highest expression level and then plotted as a 

heatmap.

Analysis of local sequence variants at C-DMRs overlapping genes

Primer sets were designed and used for PCR amplification of 92 methylated C-DMRs and 

for amplification of 86 C-DMRs with local mQTL. Individual PCR products were purified 
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with a PCR purification column (Qiagen) and then sequenced with Sanger sequencing 

technology. All primer sets can be found in Supplementary Table 13 and 15.

SMP conservation

To get a global look at the diversity of methylation across each chromosome, we binned 

cytosine positions into 10 kb windows. To examine the conservation of methylation state at 

cytosines throughout the genome, we computed a score for each site. Any cytosine that had 

less than five reads covering it was excluded. We used the following formula to estimate the 

amount of conservation at each site that was missing data from no more than 50 samples: 

(count(methylated accessions) −count(unmethylated accessions)) / (count(methylated 

accessions) + count(unmethylated accessions)). This score reaches its maximum value of 1 

when all accessions are methylated and a minimum of −1 when all accessions are 

unmethylated. We computed this score for each site within a bin (Fig. 1a, Supplementary 

Fig. 5) and then averaged those statistics together. The distributions of these scores are 

plotted across features in Fig. 1b, 1d, and 1e.

Genome-wide running correlation of SMP, SNP, and C-DMR diversity measures

To evaluate how the correlation between the diversity measures calculated for SMPs, SNPs, 

and C-DMRs changed across the genome, we calculated diversity measures in the same way 

as in Figure 3b, but in 100kb windows offset by 20kb instead of 500kb windows offset by 

100kb. We changed the window size and offset in order to generate more points with which 

to perform correlation tests. First, we calculated the percentiles of all the diversity measures. 

Next, we performed a Kendall Tau correlation test on these percentiles for all windows that 

started within 500kb (upstream or downstream) of a genomic coordinate (listed as the 

Window Center in Supplementary Table 25). The coefficients from these tests as well as 

their P-Values are listed in Supplementary Table 25.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Population-wide analyses of SMPs
(a) A plot of the genome-wide distribution of methylation conservation across chromosome 

I. (b–d) The distributions of SMP conservation scores across various genomic features. 

Notches in the boxplots represent bootstrap estimated 95% confidence intervals around the 

medians.
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Fig. 2. Population-wide analyses of DMRs
Heatmaps representing the methylation levels across CG-DMRs (a) and C-DMRs (b) with 

coverage in all 152 accessions. The colored row labels on the left of the heatmap indicate 

what feature a DMR falls in (blue = gene, gold = transposon, red = gene with a transposon 

inserted in an intron, grey = no feature). Rows indicate genomic locus of DMR and columns 

indicate accessions. The density (y-axis) and average methylation levels (x-axis) of CG-

DMRs and C-DMRs in (c) genes and (d) transposons. Asian (e) and North American (f)) 

methylome profiles reflected geographical distribution. Dendrograms from hierarchical 

clustering of CG-DMRs (g), C-DMRs (h) and mRNA levels (i) from accessions that had 

samples from two different tissues. Red stars and blue circles indicate leaf and mixed stage 

inflorescence samples, respectively. (j) Boxplot representation of transcriptional variation 

reveals a positive association with higher levels of methylation levels of CG-DMRs. (k) 

Increasing methylation levels of C-DMRs is negatively associated with gene expression.
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Fig. 3. Population-wide analyses of natural genetic and epigenetic variation
(a) A comparison of genetic and epigenetic variation across gene families that have the 

highest incidence of C-DMRs. The y-axis indicates the gene family and the x-axis represents 

the relative fraction of major effect mutations or fraction of C-DMRs. Fractions were used to 

adjust for the size of the gene families. (b) A plot of SNP, SMP, and C-DMR diversity 

across chromosome I. The shaded pink region indicates the position of the pericentromere. 

(c and d) Linkage disequilibrium/positional association decay plots for genetic and 

epigenetic variants.
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Fig. 4. Association of natural genetic variants and methylation variants
(a) A summary of the type and number of variants (non-SNPs and small indels) discovered 

at 92 C-DMRs. Manhattan plots with examples of (b) local and (c) distant mQTL. (d) 

Distribution of significant mQTL and the C-DMRs with which they associate. Each point 

represents a significant association between a C-DMR and a block of SNPs. The x-axis 

denotes the genomic location of the SNP block, and the y-axis indicates the position of the 

C-DMR. The pericentromeres on each chromosome are shown as grey bars. (e) The 

distribution of distances of mQTL from their C-DMRs normalized for the base space 

covered by each range of distances. (f) The ratio of distant mQTL to local mQTL.
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Fig. 5. Epigenetic reprogramming of genes targeted by the RdDM pathway
(a–c) A heatmap representation of mRNA expression levels throughout a developmental 

time course37 for (a) transposons and (b) genes that overlap with C-DMRs where > 90% of 

the alleles are methylated across the population and (c) genes not overlapping with C-

DMRs. Each row represents a locus with mRNA expression values. Each column represents 

a different developmental stage. mRNA expression values range from low (red) to medium 

(black) to high (green). (d) Correlation test between the nonCG methylation levels and 

microarray gene expression values for genes targeted by RdDM in Col-0. Open rectangles 

are genes that do not overlap transposon sequences; whereas black rectangles represent 

genes overlapping transposons sequences.

Schmitz et al. Page 21

Nature. Author manuscript; available in PMC 2013 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


