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Abstract
Background—Mathematical models of disease transmission and vaccination typically assume
that protective vaccine efficacy (i.e. the relative reduction in the transmission rate among
vaccinated individuals) is equivalent to direct effectiveness of vaccine. This assumption has not
been evaluated.

Methods—We used dynamic epidemiological models of influenza and measles vaccines to
evaluate the common measures of vaccine effectiveness in terms of both the protection of
individuals and disease control within populations. We determined how vaccine-mediated
reductions in attack rates translate into vaccine efficacy as well as into the common population
measures of ‘direct’, ‘indirect’, ‘total’, and ‘overall’ effects of vaccination with examples of
compartmental models of influenza and measles vaccination.

Results—We found that the typical parameterization of vaccine efficacy using direct
effectiveness of vaccine can lead to the underestimation of the impact of vaccine. Such
underestimation occurs when the vaccine is assumed to offer partial protection to every vaccinated
person, and becomes worse when the level of vaccine coverage is low. Nevertheless, estimates of
‘total’, ‘indirect’ and ‘overall’ effectiveness increase with vaccination coverage in the population.
Furthermore, we show how the measures of vaccine efficacy and vaccine effectiveness can be
correctly calculated.

Conclusions—Typical parameterization of vaccine efficacy in mathematical models may
underestimate the actual protective effect of the vaccine, resulting in discordance between the
actual effects of vaccination at the population level and predictions made by models. This work
shows how models can be correctly parameterized from clinical trial data.
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1. Introduction
Vaccination programs provide both direct and indirect protection against infectious diseases.
Direct protection occurs by lowering the probability of vaccine recipients to become
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infected or by reducing the infectiousness of vaccinated individuals when breakthrough
infections occur [1]. Indirect protection arises by reducing transmission within the
population, thereby lowering the transmission rate for both vaccinated and unvaccinated
individuals.

The interchangeable use of terms used to measure and parameterize vaccine efficacy and
effectiveness can lead to inaccurate parameterization of epidemiological models and needs
to be made explicit. Vaccine efficacy measures the protective effects of vaccination by the
reduction in the infection risk of a vaccinated individual relative to that of a susceptible,
unvaccinated individual [2]. In contrast, depending upon the study design of clinical trials,
population-level vaccine effectiveness can be further categorized into the ‘direct’, ‘indirect’,
‘total’ and ‘overall’ impact of the vaccine [2–4] (Figure 1). Halloran et al. presented a
seminal framework relating the different vaccination effects relevant study designs [5].
Direct effects compares the direct risk of a randomly selected individual with and without
the vaccination program [1]. Indirect effects can be estimated from the difference in the
degree of protection that unvaccinated individuals receive in the presence versus the absence
of a vaccine program. ‘Total’ effectiveness measures the relative infection risk in vaccinated
individuals compared to the infection risk in unvaccinated individuals before a vaccination
program is launched [6]. Thus, ‘total’ effectiveness of vaccination is the effect of the
vaccination program combined with the effect of the person having been vaccinated [5].
However, ‘total’ effectiveness does not take into account indirect protection of unvaccinated
individuals in partially vaccinated population. ‘Overall’ effectiveness of a vaccination
program is defined as the reduction in the transmission rate for an average individual in a
population with a vaccination program at a given level of coverage compared to an average
individual in a comparable population with no vaccination program [5, 6]. Thus, the
‘overall’ effectiveness takes into account benefits accrued by both vaccinated and
unvaccinated individuals, and it is the measure most commonly used to evaluate the impact
of a mass vaccination program at the population level [7, 8].

We use a model of transmission dynamics to derive the expressions for the four protective
effects of a vaccine (i.e. direct and indirect effects, and ‘total’ and ‘overall’ effectiveness)
and to analyse the underlying dynamics of vaccine effectiveness regarding the control of an
outbreak. We apply our analysis to two mechanisms of vaccine action, ‘all-or-nothing’ and
‘leaky’ vaccines [9]. An ‘all-or-nothing’ vaccine offers complete protection to a subset of
the vaccinated individuals but does not take in the remainder of vaccinated individuals,
whereas a ‘leaky’ vaccine offers partial protection to every vaccinated individual. We show
potential discordance between the actual effects of vaccination at the population level and
predictions made by mathematical models for ‘leaky’ vaccines, which often arises from
incorrect parameterization of vaccine efficacy. We demonstrate how the vaccine efficacy as
well as the four common measures of vaccine effectiveness ([2]) can be correctly estimated
from typical attack rate data for influenza and measles, and determine the threshold vaccine
coverage required to attain a specific level of effectiveness for each measure.

2. Materials and Methods
We use a simple population dynamic model of an acute directly transmitted disease to take
into account indirect effects of mass vaccination. We assume that the transmission occurs
from person to person based on random mixing. The population is divided into vaccinated
and unvaccinated groups. We assume that NU, NV, and N denote the number of
unvaccinated individuals, the number of vaccinated individuals, and the total population (i.e.
N = NU + NV), where U and V represent unvaccinated and vaccinated groups, respectively.
Each group is further divided into three subgroups based on their infection status:
susceptible individuals who have not been infected (S), infectious individuals who have
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been infected and are currently infectious (I), and immune individuals who have recovered
from the infection and developed resistance to further infection (R). We assume no latency
period. Our model also assumes a closed homogeneous population where there are no births,
deaths, or migration.

We assume that an unvaccinated, susceptible individual is infected at a rate proportional to
β, the transmission rate among susceptible individuals. Upon infection, individuals are
divided into two groups, IU(t) and IV(t) ; IU(t) represents the number of unvaccinated,
infected individuals, and IV(t) represents the number of vaccinated, infected individuals. We
define σ as the reduction of infectiousness among vaccinated people who become infected,
τ1 and τ2 as the average length of infected period in unvaccinated and vaccinated
individuals, respectively (τ1 ≥ τ2), and RU(t) and RV(t) as the numbers of unvaccinated and
vaccinated individuals who have recovered from infections. The time from the beginning of
the epidemic is denoted t.

For ‘leaky’ vaccines, we assume that vaccination reduces the probability of infection. We
also assumed that if individuals who received a ‘leaky’ vaccine are infected, their
infectiousness will be reduced (see [10–15] for examples). Thus, vaccinated individuals (SV)
are assumed to be partially susceptible to infection. Here we define α as the vaccine efficacy
for susceptibility, i.e. the relative reduction in the transmission rate among vaccinated
individuals. On the other hand, for ‘all-or-nothing’ vaccines, we assume that a fraction α
(vaccine efficacy) of the vaccinated individuals becomes immune and the remaining
fraction, 1−α, is susceptible (see [15–21] for examples). We define σ as the vaccine efficacy
for infectiousness for both ‘leaky’ and ‘all-or-nothing’ vaccines.

Using the definition of variables above, the flow of unvaccinated individuals between the
different epidemiological classes in the presence of ‘leaky’ vaccination can be described by
the following set of coupled, ordinary differential equations:

Eq. 1

Eq. 2

Eq. 3

Eq. 4

The initial conditions for Eqs (1)–(4) are SU(0) = NU − ε, IU(0) = ε, and RU(0) = 0 where
ε>0 is small. The differential equations for the vaccinated group are as follows:

Eq. 5

Eq. 6

Eq. 7

Eq. 8
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The initial conditions for Eqs (5)–(8) are SV(0) = NV − ε, IV(0) = ε, and RV(0) = 0 where
ε>0 is small. The effective reproductive ratio of this model (Eq. 1–8) is RC = (1−f)βτ1+
f(1−α)(1−σ)βτ2, which is reduced to R0 = βτ1 in the absence of vaccination. By solving
RC=1 and assuming τ1=τ2, we can define the threshold vaccine coverage to prevent a
disease outbreak, fC = (1−1/R0){1/(1−(1−α)(1−σ))}. The basic reproductive ratio (R0)
represents the number of new infectious cases by an index case introduced to a completely
susceptible population.

To calculate the attack rate in both unvaccinated and vaccinated groups, we substitute Eq. 3
and Eq. 7 into Eq. 1:

Eq. 9

Because the population size and the length of the infectious period is finite, there exists a
time T at which no new infections can occur and IU(T) = IV(T) = 0. Integrating Eq. 9 from 0
to T yields

Similarly,

Using RU(T) = NU(T) − SU(T) and RV(T) = NV(T)−SV(T), and dividing by NU or NV,
respectively, yields

We define the attack rate (cumulative incidence) in the unvaccinated and vaccinated groups

as  and  , respectively. Using the vaccine coverage ( ),
gives

Eq. 10

Eq. 11

Similarly, the expected attack rate in the pre-vaccine era, ΩB0, is expressed in the following
implicit equation: ΩB0 = 1− exp[−β τ1 ΩB0] (see [22] for more generalized arguments).

We can use the attack rates in the presence of vaccination among the unvaccinated and the
vaccinated to define the direct effectiveness for a ‘leaky’ vaccine (VEI,1):

Eq. 12

Thus, it is clear that the resulting direct effectiveness is not equivalent to vaccine efficacy
(α) as has typically been assumed. Instead, one can set a direct effectiveness of vaccine
(VE1,1) in Eq. 12, solve for ΩA0,1 (or ΩA1,1), and substitute it into Eqs. 10 and 11, which
gives implicit equations for α and ΩA0,1 (or ΩA1,1). This substitution will correctly
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parameterize protective vaccine efficacy (α) from the direct effectiveness of vaccine
(VE1,1).

The focus of clinical trials has been direct effectiveness of vaccine, which estimates how
well vaccinated individuals are protected. The parameterization of vaccine efficacy in
mathematical models of disease transmission has often been based on the assumption that
vaccine efficacy is equivalent to direct effectiveness, resulting in incorrect estimation of the
impact of mass vaccination (Figure 2). For instance, if we parameterize vaccine efficacy (α)
with 0.625, the resulting direct effectiveness is predicted to range from 0.11 to 0.32 (not
shown), depending on vaccine coverage and relative infectiousness of the vaccinated
individuals when τ1 = τ2 = 4 days, and R0 = 3.2.

Based on our mathematical model, we distinguish the different measures of vaccine
effectiveness (Eqs. 1–8), and extend previous works ([2–5]) to present numerical
simulations of the common measures of vaccine effectiveness. Furthermore, we identify
potential sources for underestimation of the impact of vaccination at the population level,
and demonstrate how to correct this underestimation. The indirect vaccine effectiveness
(VEIIA,1) refers to the relative decrease in cumulative incidence among unvaccinated
individuals in the presence of vaccination programs, compared to that in a comparable
population with no vaccination program. By contrast, the ‘total’ effectiveness (VEIIB,1) is
the relative reduction in cumulative incidence among the vaccinated, compared to that in a
comparable population with no vaccination program. The ‘overall’ effectiveness of a
vaccination strategy (VEIII,1) is the weighted average of the outcomes in the vaccinated and
the unvaccinated people.

Accordingly, the common estimation of vaccine effectiveness are presented as one minus
the respective measure of relative risk (Table 1) [5]:

Therefore, the typical parameterization of the efficacy of ‘leaky’ vaccines often leads to
misestimating the actual protective effect of the vaccine. By implicit differentiation of Eqs
(10) and (11), it is noteworthy that ∂ΩA0,1/∂f and ∂ΩA1,1/∂f are non-positive as their
denominators can be expressed as the secondary attack size when a fraction f of the
population is vaccinated. Thus, the attack size among unvaccinated individuals decreases
with higher vaccine coverage due to herd immunity.

In analyzing the efficacy of an ‘all-or-nothing’ vaccine - assuming that the vaccine coverage
is denoted by f where f=NV/V and that a fraction α of the vaccinated individuals becomes
immune and the remaining fraction, 1−α, is susceptible - the differential equations for the
unvaccinated group are:

Eq. 13

Eq. 14
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Eq. 15

Eq. 16

The initial conditions for Eqs (13)–(15) are SU(0) = NU − ε, IU(0) = ε, and RU(0) = 0 where
ε>0 is small. The differential equations for the vaccinated group are:

Eq. 17

Eq. 18

Eq. 19

Eq. 20

The initial conditions for Eqs (17)–(19) are SV(0)=(1−α)NV −ε, IV(0)= ε, and RV(0)= αNV.
where ε>0 is small. Here, we assumed that the relative infectiousness of a vaccine failure is
reduced by σ (e.g. pertussis and chickenpox vaccines [23, 24]). The effective reproductive
ratio of this model (Eq. 13–20) is RC = (1−f)βτ1+ f(1−α)(1−σ)βτ2, which is reduced to R0 =
βτ1 in the absence of vaccination. By solving RC =1 and assuming τ1=τ2, we can define the
threshold vaccine coverage to prevent a disease outbreak, fC = (1−1/ R0){1/(1−(1−α)
(1−σ))}. Thus, both the effective reproductive ratio and the basic reproductive ratio for an
‘all-or-nothing’ vaccine are equal to those for a ‘leaky’ vaccine.

It follows from an analysis on an equivalent ‘all-or-nothing’ vaccine similar to the one
performed in Model (1)–(8) that

Eq. 21

Eq. 22

Eq. 23

Here, ΩA0,2 and ΩA1,2 denote the cumulative incidence among the unvaccinated and
vaccinated individuals respectively, in the presence of an immunization program using an
‘all-or-nothing’ vaccine. ΩB0 is defined as the expected cumulative incidence in pre-vaccine
era. From these definitions, it follows that

Consequently, parameterization for protective vaccine efficacy (α) is equivalent to direct
effectiveness of vaccine (VEI,2) when vaccine-induced protection is based on an ‘all-or-
nothing’ mechanism. For ‘all-or-nothing’ vaccines, different measures of vaccine
effectiveness can be defined using cumulative incidence (Eqs. 21–23) in the same way as for
‘leaky’ vaccines (Table 1).

Shim and Galvani Page 6

Vaccine. Author manuscript; available in PMC 2013 October 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Results
Here, we estimated the measures of vaccination effectiveness (Table 1) in models of
influenza and measles vaccination using the cumulative incidence approach. We let AO and
A1 denote the unvaccinated and vaccinated individuals in population A, and BO the
unvaccinated individuals in population B, respectively. Equivalently, population B can be
considered to be population A in pre-vaccine era. As an example, we parameterized our
models for ‘leaky’ vaccine (Eqs 1–8) based on influenza, assuming α=0.7, σ =0.5, τ1 = τ2 =
4 (days), β=0.6, and R0=2.4 [25]. As a baseline parameter set for measles, we assumed α
=0.95, σ =0, τ1 = τ2 = 7 (days), β=2.143, and R0=15 [26–28].

We found that for an influenza vaccination coverage of 20%, the direct effectiveness of
influenza vaccine is estimated at 52% (Fig 2). Thus, resulting direct effectiveness in our
model was found to be much lower than vaccine efficacy, that is, the extent to which the
vaccine reduces transmission (70% or α=0.7), which is often assumed to be equal.

Consistent with this example of influenza, we found that the resulting direct effectiveness of
measles vaccine is lower than the input parameter of vaccine efficacy. Specifically, when the
level of measles vaccine coverage is 60%, the resulting direct effectiveness is 63%, although
the vaccine reduces the transmission rate by 95% (α=0.95). This direct effectiveness rose to
82% when the level of vaccine coverage was increased to 90%. Therefore, the discrepancy
between the vaccine efficacy (α) and the resulting direct effectiveness fell with increasing
vaccine coverage. These findings indicate that the typical parameterization of vaccine
efficacy using direct effectiveness of vaccine in mathematical models generally leads to
underestimation of the impact of mass vaccination. This underestimation, due to errors in
parameterization of individual vaccine efficacy (α), is worse for the higher e fficacy vaccine
of the more transmissible measles virus than for influenza.

The estimated indirect and ‘total’ effectiveness of vaccination compare the cumulative
disease incidence in population A (with the vaccination program) and that in population B
(without the vaccination program). For an influenza vaccine with coverage of 20%, indirect
effect and ‘total’ effectiveness of vaccine are estimated at 8% and 56%, respectively. In
addition, ‘overall’ effectiveness is estimated at 18%. Thus, the ‘total’ effectiveness of an
influenza vaccine is usually higher than the ‘indirect’ or ‘overall’ effectiveness (Fig 2).
When the vaccine coverage is increased to 40%, the direct effectiveness of the influenza
vaccine is estimated to be 59%. Similarly, ‘total’, indirect and ‘overall’ effectiveness are
estimated to be 71%, 29%, and 48% at the same level of vaccine coverage. In general, three
estimates of indirect, ‘total’, and ‘overall’ effectiveness increase with vaccine coverage
level, as was also shown to be the case for the measles vaccine. Specifically, with 20%
vaccine coverage, the resulting indirect, ‘total’ and ‘overall effectiveness’ of the measles
vaccine were 0%, 51%, and 10%, respectively. However, with 60% vaccine coverage, ‘total’
and ‘overall effectiveness’ increased to 63% and 38%, respectively. Finally, when the
vaccine coverage is increased to 90%, indirect, ‘total’, and ‘overall effectiveness’ rose to
2%, 83%, and 75%, respectively.

We found that when vaccine-induced protection is based on an ‘all-or-nothing’ mechanism,
the parameterization for protective vaccine efficacy (α) is equivalent to direct effectiveness
of vaccine (VEI,2) (Figure 4). In contrast, for ‘leaky’ vaccines, ‘total’ effectiveness is greater
than the direct effectiveness at all levels of vaccine coverage. These differences among the
measures arise because ‘total’ effectiveness measures the relative transmission rate among
the vaccine recipients compared to a comparable population without a vaccination program,
incorporating both the direct and indirect protection provided by vaccination. In addition, as
a vaccine coverage level is increased, the ‘overall’ effectiveness increases faster than the
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indirect effect, because ‘overall’ effectiveness incorporates both the direct and indirect
effects of vaccination.

4. Discussion
In mathematical models, the protective vaccine efficacy is often incorporated as the
reduction in the risk of infection at individual level. To evaluate the population level effects,
the unit of observation becomes the population. In translating the individual-based measure
of vaccine efficacy to population-level measures, mathematical models of infectious
diseases typically assume that protective efficacy of vaccine, the relative reduction in the
transmission rate among vaccinated individuals, is equivalent to direct effectiveness of
vaccine. Our model shows that such parameterization of vaccine efficacy for ‘leaky’
vaccines can underestimate the protective effect of the vaccine computed by the relative
attack rates. Varying vaccine coverage and the reduction of infectiousness among vaccinated
individuals when vaccine breakthrough occurs affect the degree of underestimation.
Specifically, underestimation tends to be greater as vaccine coverage or the reduction of
infectiousness among vaccinated individuals decreases. We show how the common
measures of vaccine effectiveness and vaccine efficacy can be correctly derived from typical
attack rate data obtained in vaccine field studies. We also show how the threshold vaccine
coverage required to attain a specific level of effectiveness for each measure can be
calculated.

To evaluate population effects of a vaccination program, we presented mathematical models
that incorporate the study designs for evaluating various types of vaccine effectiveness
([29]). Based on our model, the protective vaccine efficacy (i.e., the level of reduction in
individual transmission rate) was an input into our mathematical models, from which the
resulting direct, indirect, total, and overall effects of vaccine expected at different
vaccination coverage levels were determined. Herd immunity changes the level of immunity
in the population after vaccination, thereby increasing ‘total’ and ‘overall’ effectiveness of a
vaccine. For both ‘leaky’ and ‘all-or-nothing’ vaccines, ‘total’ effectiveness is higher than
indirect or ‘overall’ effectiveness at all levels of vaccine coverage. This is because ‘overall’
and indirect effect of vaccines account for the partial protection of unvaccinated individuals
through herd immunity, which is often less than the direct protection for the vaccinated.

In conclusion, in this study, we reveal the potential pitfalls in the parameterization of
mathematical models and the resulting underestimation of vaccination effects. The accurate
parameterization of vaccine effectiveness is fundamental to model predictions, including
projections of epidemic trajectories, the optimization of vaccination policies and cost-
effectiveness analyses. The framework proposed here can provide more precise
parameterization of mathematical models used to evaluate the effects of vaccination at
individual and population levels.
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Highlights

• There are two mechanisms of vaccine action, ‘all-or-nothing’ and ‘leaky’
vaccines.

• Typical estimation of ‘leaky’ vaccine efficacy has been incorrect in
mathematical models.

• We demonstrate how the common measures of vaccine can be correctly
estimated.
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Figure 1.
Measures of vaccination effectiveness and study designs for the evaluation of each measure
based on comparison populations. Population A and B are separated in every way relevant to
transmission dynamics. In population A, some but not necessarily all individuals are
vaccinated. In population B, all individuals are unvaccinated (Adapted from [29])
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Figure 2.
Four types of vaccine effectiveness (VEI, VEIIA, VEIIB, and VEIII) produced by a
mathematical model for influenza. Parameters specific to influenza were used: α=0.7, τ1 =
τ2 = 4 (days), β=0.6, and R0=2.4 [25]. The vaccine coverage (f) and the reduction in
infectivity among the vaccine breakthrough cases (σ) compared to unvaccinated infections
were varied. Vaccine effectiveness produced by the model were often much lower than the
protective vaccine efficacy, α. The discrepancy between the value of α and resulting direct
effectiveness (VEI) indicates the potential underestimation in the predicted impact of
vaccination produced by mathematical models arising from common approaches in
parameterization of vaccine efficacy.
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Figure 3.
Four types of vaccine effectiveness (VEI, VEIIA, VEIIB, and VEIII) predicted for measles by
using a mathematical model (Eqs. 1–8). We parameterized our model based on measles
epidemiology and its vaccine: α =0.95, τ1 = τ2 = 7 (days), β=2.143, and R0=15 [26–28]. The
vaccine coverage (f) and the reduction in infectivity among the vaccine breakthrough cases
(σ) compared to unvaccinated infections were varied. In general, the resulting vaccine
effectiveness are lower than the reduction in individual infection risk by vaccination, α.
Such discrepancy was highlighted with lower vaccine coverage or with lower vaccine
efficacy in reducing infectivity among vaccinated individuals when vaccine breakthrough
occurs.
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Figure 4.
Four types of vaccine effectiveness (VEI, VEIIA, VEIIB, and VEIII) predicted for influenza
and ‘all-or-nothing’ vaccine (Eqs. 13–20). We used parameters that are influenza-specific:
α=1, τ1 = τ2 = 4 (days), β=0.6, and R0=2.4 [25].
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Table1

Measurements of vaccination effectiveness

Study Design

I
Direct

IIA
Indirect

IIB
Total

III
Overall
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