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Abstract

Probabilistic methods have the potential to generate multiple and complex white matter fiber tracts in diffusion
tensor imaging (DTI). Here, a method based on dynamic programming (DP) is introduced to reconstruct fibers
pathways whose complex anatomical structures cannot be resolved beyond the resolution of standard DTI
data. DP is based on optimizing a sequentially additive cost function derived from a Gaussian diffusion model
whose covariance is defined by the diffusion tensor. DP is used to determine the optimal path between initial
and terminal nodes by efficiently searching over all paths, connecting the nodes, and choosing the path in
which the total probability is maximized. An ex vivo high-resolution scan of a macaque hemi-brain is used to dem-
onstrate the advantages and limitations of DP. DP can generate fiber bundles between distant cortical areas (su-
perior longitudinal fasciculi, arcuate fasciculus, uncinate fasciculus, and fronto-occipital fasciculus), neighboring
cortical areas (dorsal and ventral banks of the principal sulcus), as well as cortical projections to the hippocampal
formation (cingulum bundle), neostriatum (motor cortical projections to the putamen), thalamus (subcortical bun-
dle), and hippocampal formation projections to the mammillary bodies via the fornix. Validation is established
either by comparison with in vivo intracellular transport of horseradish peroxidase in another macaque monkey
or by comparison with atlases. DP is able to generate known pathways, including crossing and kissing tracts.
Thus, DP has the potential to enhance neuroimaging studies of cortical connectivity.

Key words: anatomic connectivity; fiber tracking; structural connectivity

Introduction

The advent of diffusion tensor imaging (DTI) technology
is enabling clinicians and neuroscientists to examine nor-

mal and impaired connectivity in the mammalian brain
(Basser et al., 2000; Conturo et al., 1999; Mori et al., 1999;
Pace and Pierpaoli, 1963; Parker et al., 2002a; Poupon et al.,
2000). DTI encapsulates the directionality of water diffusion
along fibers constituting tracts or bundles between these
structures (Basser et al., 1994a; Le Bihan et al., 1989; Pierpaoli
et al., 1996; Xue et al., 1999). The diffusion tensor, D, is a 3 · 3
tensor, that is, a symmetric matrix whose eigenvectors and ei-
genvalues define an ellipsoid that can describe the diffusive
characteristics of water at each voxel in the image despite

being at a lower resolution than that of the individual
axons in the tracts (Basser et al., 1994a; Beaulieu, 2002). The
principal eigenvector associated with the largest eigenvalue
represents the direction of fastest diffusion of water in the vol-
ume. Application of these essential properties of water diffu-
sion have led to the development of a wide range of methods
for elucidating connectivity of gray matter structures and seg-
mentation of white matter (WM) in the past decade (Basser
and Jones, 2002; Johansen-Berg and Rushworth, 2009; Le
Bihan et al., 2001; Mori and van Zijl, 2002; Ramnani et al.,
2004; Tournier et al., 2011).

Fiber tracking methods can be generally classified as either
deterministic (Basser et al., 2000; Conturo et al., 1999; Hage-
man et al., 2009; Mori et al., 1999; Poupon et al., 2000) or
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probabilistic (Acar and Yörük, 2009; Behrens et al., 2003; Fri-
man and Westin, 2005; Jbabdi et al., 2007; Jonasson et al.,
2005; Sherbondy et al., 2008). However, both approaches
have limitations such as inability to discriminate crossing fi-
bers, low signal-to-noise ratio (SNR), and poor tracking in re-
gions of low anisotropy ( Jbabdi and Johansen-Berg, 2011;
Lazar and Alexander, 2003; Le Bihan et al., 2006; Moldrich
et al., 2010; Mukherjee et al., 2008; Tournier et al., 2002). In
particular, deterministic methods rely on tracking the princi-
pal eigenvector and thus do not continue tracking into re-
gions in which anisotropy is typically low, and the
principal eigenvector is a less reliable indication of fiber orien-
tation. More recently, a new class of probabilistic methods
has emerged that can overcome some of these shortcomings.
Posing the problem as an optimization problem enables com-
putation of a ‘‘shortest path’’ between chosen initial and ter-
minal points that globally minimizes a sequentially additive
energy constraint defined by the tensor in the spirit of the
classical Djikstra’s algorithm (Everts et al., 2009; Fout et al.,
2005; Iturria-Medina et al., 2007; Lal, 2004; Lifshits et al.,
2009; Merhof et al., 2006a, 2006b; Poynton et al., 2005; Zale-
sky, 2008; Zalesky and Fornito, 2009). These assign a proba-
bility distribution to the local orientation of fibers at each
voxel, and use path finding methods to compute the optimal
path between two regions.

This article focuses on the use of dynamic programming
(DP) as the optimization procedure by implementing the
algorithm originally developed by Lal (2004) and Poynton
et al. (2005) in the widely used MRIStudio software ( Jiang
et al., 2006). In particular, the probabilistic law for diffusion
in the Lal algorithm is modified to ensure that optimal paths
through isotropic tensors are not affected by the magnitude
of the tensor and then, a modification of cost per unit length
as a connectivity metric, originally proposed by Poynton
et al. (2005), is introduced to facilitate pruning of fibers
that are not anatomically valid. An ex vivo macaque hemi-
brain is used for validation, and the advantages of this
approach as an alternative to using phantom data are
discussed.

Methods

Probabilistic labeling of paths

By defining a node as the voxel center and a path as an ini-
tial node x0 and a set of direction vectors fv0, v1, � � � , vN� 1g
connecting nodes fx1, . . . , xNg, a probability distribution
can be induced on fiber tract orientation at each node, en-
abling the computation of the probability of a path as the
product of the probabilities of the transitions between subse-
quent nodes along the path. A voxel j is in the neighborhood
of voxel i if j is immediately adjacent to i in the 26-connected
sense. There is a direct transition from node xi to node xj, rep-
resenting the centers of voxels i and j, respectively, if and only
if j is in the neighborhood of i. The state space of all nodes
should be defined by appropriate thresholds on scalar quan-
tities such as fractional anisotropy, ignoring voxels below a
specified value. DP can then be used to compute the maximal
probability path linking two nodes in the state space and the
basic algorithm extended to compute K nonintersecting paths
between a set of initial and terminal nodes.

Since evidence suggests that the directionality of the diffu-
sion depends on the orientation of axonal fibers, it is reason-

able to assume that the orientation of fibers follows the same
Gaussian distribution as that of the diffusion of water mole-
cules (Alexander et al., 2000). With this assumption, the prob-
lem of tracking fibers is reduced to the problem of computing
the path between two nodes in a graph that minimizes a cost
function determined by the eigenvalues of the covariance rep-
resentation of the quadratic form in a sequentially additive
quadratic cost. More sophisticated probability models charac-
terizing diffusion have recently been developed (Friman and
Westin, 2005; Sherbondy et al., 2008; Tuch, 2004) and can be
incorporated into this method as long as the probability dis-
tribution for the diffusion at a particular voxel remains locally
defined.

It is essential that the probability of Gaussian diffusion
over unit time be the same for isotropic diffusion; so, the dif-
fusion tensor at voxel i, Di, is normalized by its trace Tr(Di),
that is, �Di = Di=Tr(Di) (Frandsen et al., 2007). Let (ki
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We need to define the probability associated with a transi-
tion between connected nodes xi and xi + 1 to have a Gaussian
distribution with covariance matrix �Di. Then, the probability
of an N-length path pN(x0, xN) is given by the product of the
quadratic form of the individual directional vectors dj be-
tween nodes along the path as
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that implicitly assumes diffusion between any adjacent voxel
irrespective of length in a fixed time of s = 0.5 (Alexander
et al., 2000).

By considering logarithms, the maximum probability N-
length path p* (x0, xN) is given by the minimization of the neg-
ative log likelihood
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where �dj = dj=jjdjjj is the unit directional vector, and P(x0, xN) is
the set of all paths between nodes x0 and xN; see Lal (2004) for
proof. Note that the constant term is retained to ensure that the
transition cost is positive. The path p� = fx0, x1, . . . , xNg that
minimizes this function is the optimal path.

Dynamic programming

The problem of determining the optimal path reduces to
one of computing the minimum energy path linking initial
and terminal nodes in the state space. Let S be the finite col-
lection of nodes of size jjSjj = M and define ck(i, j) as the cost
of the transition from i 2 S to j 2 S at time k. If the cost is ad-
ditive over the length of the path, and the optimal path be-
tween two points is assumed to pass through no more than
N nodes, then there may be as many as MN paths linking
two nodes, assuming the most complex case in which all
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nodes are connected to each other, that is, have a valency of
M. Carrying out a brute force search would require consider-
ing the cost associated with each of these paths, and such an
approach would very quickly become computationally im-
practical as N and M become large. DP overcomes this prob-
lem, as it reduces the complexity of the search to order of NM2

by taking advantage of the fact that the cost function being
minimized is sequentially additive. Note that while most
practical implementations simplify the graph such that the
connectedness or valency (V) of each node is less than M,
for example, 6 or 26, the brute force search’s performance
will be in the order of MVN, which is still computationally im-
practical as N gets large.

There are many ways of implementing DP. The present
implementation is described in Algorithm 1 next. Let Hx be
the set of nodes {n} such that a direct transition between x
and n exists, the cost ck(xi, xj) for xj 2 Hxi

following the prob-
abilistic model described by Equation (2), and ck(xi, xj) = N for
xj =2Hxi

. The optimal N-length cost J0 (s) from s to t is given by
the final step of the algorithm evaluated at i = s. Note that the
algorithm permits the degenerate move from a node i to itself
with cost ck(i, i) = 0 for all i, thus allowing paths with length
less than N to be included.

Algorithm 1. Initialize: Jk (i) = N ist, Jk (t) = 0 for all k; SN = {t};
For every k = N�1 to 0,
Sk = fiji 2 Hj, j 2 Skþ 1g;
set ck (i, j) from Equation (2), i 2 Sk and j 2 Skþ 1.
set Jk(i) = min

j2fSkþ 1\Hig
fck(i, j)þ Jkþ 1(j)g, i 2 Sk

end

Here, the state space Sk is defined as the subset of nodes
that can be reached from the initial node in k steps with a fi-
nite cost. This further optimizes the search pattern by only
considering the restricted state spaces Sk� S at each iteration.
Thus, many of the M2 paths at each iteration can be ignored
without compromising the condition of optimality.

It follows that if the cost of the optimal k length paths from
the initial node to all nodes in the state space is known, then
the optimal k + 1 length paths to all nodes in the state space
can be found by examining at most M2 paths. So, since k is it-
erated from 0 to N�1, DP computes the optimal path by con-
sidering NM2 or fewer paths; instead of the MN paths, a brute
force search would be required.

Computing a single optimal path between two regions has
little practical use, as any two brain structures are linked by a
bundle comprising multiple fibers. Thus, there is a need to
find a most probable set of distinct fibers connecting the
two regions. This is achieved by altering the state space as fol-
lows. Given an initial set of nodes S and a terminal set of
nodes T, introduce two ‘‘dummy nodes’’ s and t into the
state space, such that there is a transition from s to every
node in S in the first time step with cost 0, and there is a tran-
sition from every node in T to node t with cost 0, at all time
steps. Hence, c0(s, n) = 0, 8n 2 S, and ck(n, t) = 0, 8n 2 T, 8k.

The path formed by removing the first and last arcs from
the optimal path between nodes s and t is the optimal path be-
tween the sets of nodes S and T; see Lal (2004) for proof. So,
the introduction of the ‘‘dummy nodes’’ into the state space
allows for the computation of the optimal path between an
initial set of nodes and a terminal set of nodes. So, to extend
the search process to find K distinct paths between two sets of

nodes, the DP algorithm is performed via a modification in
the search space described in Algorithm 2 next.

One iteration of the DP algorithm gives the optimal path
p� = fs = x� 1, x0, � � � , xN� 1, xN = tg. Let Hx represent the neigh-
borhood of node x. For all nodes xi, 0 £ i £ N�1 along the op-
timal path p*, set Hxi

= Ø. This step cuts off all the connections
from the nodes along the path to all its neighboring nodes, ef-
fectively removing the nodes from the search space. The next
iteration of the DP algorithm directly follows, which will find
the most probable path in the modified search space, a path
that is completely distinct from the previous paths found.

Algorithm 2. Determine the optimal path from every node
in S to xN , and let the optimal path from x�1 to xN be p1. Let
F be a list of paths, initially empty.
Initialize p = p1, k¢ = 1 and F[1] = p.
While an alternative to p exists and k¢ £ K
For every x 2 fx0, � � � , xN� 1g
update Hxi

= Ø
end
set p equal to the optimal path from x�1 to xN, k¢ = k¢ + 1 and
F[k¢] = p.
end

The number of fibers K is a free parameter that can be em-
pirically used. This can be done by generating a large number
of fibers and selecting the first K generated fibers based on
when the fibers begin to deviate from the bundle’s true geom-
etry and location. Unfortunately, this information may not be
known a priori. If one chooses K sufficiently small, it is much
less likely that a fiber generated will deviate to a great extent
from the most optimal fiber in the bundle.

Connectivity metric

Following Lal (2004), Poynton et al. (2005) proposed a mea-
sure of the fiber bundle containing K fibers via
1
K +K

k¢ = 1J(F[k¢])=Nf , where J(F[k¢]) is the cost of a fiber, F[k¢],
computed from Equation (2) and Nf is the number of nodes
along F[k¢]. However, a more meaningful measure can be
obtained from J(F[k¢])/L(F[k¢]), where L(F[k¢]) is the length
of the fiber, that can be construed as a connectivity metric
( Jackowski et al., 2004; Marigonda and Orlandi, 2011; Merhof
et al., 2006b; Parker et al., 2002b; Pichon et al., 2005).

Data acquisition and processing via MRIStudio

Following Oishi et al. (2011), one rhesus monkey (Macaca
mulatta) brain was perfusion fixed using 4% paraformalde-
hyde and scanned using a 4.7T Bruker scanner. A three-
dimensional multiple spin-echo diffusion tensor sequence
was used to acquire a set of diffusion-weighted images in
seven linearly independent directions (Zhang et al., 2003).
Parameters were as follows: echo time (TE) = 32.5 ms, TR = 0.7
sec, field of views (FOV) = 80 · 58 · 60 mm (zero-filled to a
data matrix = 186 · 256 · 192 with nominal resolution 0.312 ·
0.312 · 0.312 mm3), and b = 1000 sec/mm2. Co-registered T2-
weighted images with the same FOV were also acquired
with the fast spin-echo sequence via TE = 15 ms and TR = 1 sec
(Huang et al., 2006). A left-sided hemi-brain volume was then
created with the data resampled to 0.2 · 0.2 · 0.2 mm3 and
zero-filled matrix size 240 · 480 · 320. The dataset was trans-
ferred to a workstation and processed using MRIStudio
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( Jiang et al., 2006). After inspection, the six independent ele-
ments of the 3 · 3 diffusion tensor were calculated for each
pixel by using the multivariate linear-fitting method. After di-
agonalization, three eigenvalues and three eigenvectors were
obtained (Basser et al., 1994b) and used to calculate the frac-
tional anisotropy. DP was implemented in MRIStudio to take
advantage of the editing features such as Boolean operations
developed for fibers generated by the Fiber Assignment by
Continuous Tracking (FACT) algorithm. Three-dimensional
screenshots of fibers were taken in CAWorks (www.cis.
jhu.edu/software/caworks).

Anatomical regions of interest

Anatomical regions of interest (ROIs) were manually seg-
mented in the T2 volume using the Schmahmann and Pandya
(SP) atlas (Schmahmann and Pandya, 2006). The T2 modality
was chosen, as it had a similar contrast as the atlas. It should
be noted that electrophysiologic stimulation was not used to
confirm anatomical correspondence and that with the excep-
tion of the putamen, it was necessary to include WM subja-
cent to the gray matter structure.

(1) Walker’s area 46 encompasses the WM lying subjacent
to the principal sulcal cortex (area 46) along its entire
rostro-caudal extent.

(2) Dorsal Cingulum Bundle (CB) consists of the CB at the
level of the cingulate motor area just rostral to the in-
tersection of the central sulcus with the medial face of
the hemisphere. The CB at this level is surrounded by
the cortex of area 23, 30, and 29 medially and by cor-
tical WM laterally.

(3) Ventral CB is situated in the WM protrusion that un-
derlies the most caudal portion of the presubiculum
and the transitional cortices (areas 29 and 30) forming
the caudomedial lobule of Goldman–Rakic et al. (1984).

(4) Mediodorsal Thalamus is located in the ventral portion
of the subcortical bundle (SB) just caudal to the decus-
sation of the anterior commissure. This portion of SB
forms a portion of the boundary between the rostral
globus pallidus and the body of the caudate nucleus.

(5) Principal Sulcus Dorsal Bank is located in the cortex lin-
ing the dorsal bank of the principal sulcus (area 46),
encompassing the middle third of the rostral-caudal ex-
tent of area 46 and stretching from the dorsal border
with area 9 along the bank of the sulcus approximately
two-third the distance to the depth of the sulcus.

(6) Principal Sulcus Ventral Bank is situated in the middle
third of the rostrocaudal extent of the principal sulcal
cortex (area 46) and stretches from the ventral lip of
the sulcus to approximately two-third the distance to
the depth of the sulcus.

(7) Frontal Superior Longitudinal Fasciculus II-Version
A (SLFII-FrontalA) begins midway along the rostro-
caudal extent of the principal sulcus and includes the
cortex of the dorsal bank of the principal sulcus (area
46) and cortex on the lateral two-third of the superior
frontal gyrus (area 9d). More caudally, the ROI extends
into the cortex surrounding the superior spur of the ar-
cuate sulcus (8Ad) and onto the adjacent cortex on the
dorsal convexity (6d). Far caudally, this ROI is limited
to the depths and medial bank of the superior arcuate
sulcus (6d).

(8) Parietal Superior Longitudinal Fasciculus II-Version A
(SLFII-ParietalA) is located in the cortex, forming the
caudal half of the lateral bank of the intraparietal sulcus
(area POa) and adjacent ventral convexity (areas PG
and Opt).

(9) Frontal Superior Longitudinal Fasciculus II-Version B
(SLFII-FrontalB) includes the nearly the entire dorsal
bank of the principal sulcus (area 46), excluding only
the rostral quarter. The ROI encroaches onto the adjoin-
ing dorsal convexity (area 9d), but only slightly. More
caudally situated cortices (8Ad and 6d) were not in-
cluded in order to generate kissing or crossing fibers
with the arcuate fasciculus (AF; see below).

(10) Parietal Superior Longitudinal Fasciculus II-Version B
(SLFII-ParietalB) includes nearly the entire lateral
bank of the intraparietal sulcus (area POa), with only
the rostral quarter not included, and the most caudal re-
gion of the cortex on the inferior parietal lobule (areas
PG and Opt). Near the caudal tip of the lateral fissure,
there is marginal encroachment of the ROI onto the cor-
tex of the convexity (PFG). This ROI was intentionally
made larger than that of SLFII-ParietalA to try to gen-
erate kissing or crossing fibers.

(11) Frontal Superior Longitudinal Fasciculus III (SLFIII-
Frontal) is situated in the cortex forming the ventral
bank of the inferior spur of the arcuate sulcus (areas
44, 6v) and in the caudal extension of premotor area
6v on the precentral gyrus.

(12) Parietal Superior Longitudinal Fasciculus III (SLFIII-
Parietal) is located in the rostral parietal cortex just
ventral to the rostral tip of the intraparietal sulcus
(area PF) and encompassing the cortex between the
intraparietal sulcus and the lateral fissure (areas
PFG and PFop).

(13) Frontal Arcuate Fasciculus (AF-Frontal) consists of
the cortex forming the ventral (area 8A) and dorsal
banks (area 6d) of the superior spur of the arcuate
sulcus. Note that the area 46/9 components of this
ROI were intentionally excluded to generate kissing
or crossing fibers.

(14) Temporal Arcuate Fasciculus (AF-Temporal) includes
the cortex lining the dorsal bank of the superior tempo-
ral sulcus (area TPO) and caudal portions of the supe-
rior temporal gyrus (area Tpt) adjacent to TPO.

(15) Frontal Occipital Fasciculus (FOF-Frontal) extends ros-
trally from the approximate midpoint of the principal
sulcus, where the ROI occupies the dorsal bank of the
principal sulcus (46d). It extends onto the adjacent dor-
sal convexity (9d), encroaching on the adjacent medial
cortex (9m). More caudally, the ROI includes the cortex
surrounding the superior spur of the arcuate sulcus and
bordering convexities (8Ad and 6d), as well as 46d. The
most caudal portion of the ROI is present at the level
where the principal sulcus ends and includes only the
dorsal bank of the superior spur of the arcuate sulcus
(6d).

(16) Frontal Occipital Fasciculus (FOF-PO) is located in the
medial occipital lobe in the cortex lining the medial
bank of the intraparietal sulcus (PO) and extending
through the adjacent WM to include the cortex on the
medial wall of the hemisphere (PGm). The most caudal
origin of the FO (PO) was chosen as the second ROI in
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order to generate the full longitudinal extent of the FOF
(as illustrated by Case 17 of SP).

(17) Fornix-Mammillary Bodies (MMB) includes the MMB
of the thalamus.

(18) Fornix-Fimbria is located in the caudal most portion of
the fimbria near the splenium of the corpus callosum.
The fimbria at this level is situated just medial to the
caudal extent of the lateral ventricle and to the caudal
most, elongated portion of the caudate nucleus.

(19) Frontal Uncinate Fasciculus (UF-Frontal) is limited to a
finger of WM lying subjacent to area 14 of the rostral
orbitofrontal cortex in one coronal section (95) corre-
sponding roughly to Section 20 of SP.

(20) Temporal Uncinate Fasciculus (UF-Temporal) also con-
sists of a slender finger of WM located in the rostral
temporal lobe between the amygdala and the lateral
temporal cortices TE1, TE2 and extending ventrally to
lie just subjacent to areas TL and 35. This ROI is re-
stricted to one coronal section (164) that corresponds
to Section 57 of SP.

(21) SP Motor Case 24 is situated in cortex lining the frontal
operculum, or dorsal lip of the lateral fissure, in the pre-
central gyrus (areas 1 and 2).

(22) SP Motor Case 25 is located in the face representation
cortex in the ventral precentral gyrus (area 4).

(23) SP Motor Case 26 is located in the hand motor area of
the precentral gyrus (area 4).

(24) SP Motor Case 27 is situated in the motor trunk repre-
sentation of the precentral gyrus (area 4).

(25) SP Motor Case 28 includes the dorsal portion of the pre-
central gyrus (area 4), corresponding to the foot motor
area.

(26) SP Motor Case 29 is located on the medial surface of the
superior frontal gyrus, just dorsal to the cingulate sul-
cus, in the rostral supplementary motor area associated
with the face representation (area 6m).

(27) Putamen includes the entire rostro-caudal extent of the
putamen. It extends from the rostral-most portion located
ventrolateral to the anterior limb of the internal capsule
(IC) to its most caudal portion lateral to the globus pal-
lidus and dorsal to the tail of the caudate nucleus.

Delineation of fiber tracts with intracellular transport
of horseradish peroxidase

A comparison with postmortem tracing data was per-
formed via visual examination of histologically processed
sections from a different Rhesus macaque monkey. This mon-
key had horseradish peroxidase (HRP) pellets implanted in
the dorsal and ventral banks of the principal sulcus in order
to identify fiber tracts connecting Walker’s area 46 with
other brain regions. Details of the surgical procedure, perfu-
sion, and histological processing have been previously de-
scribed (Selemon and Goldman-Rakic, 1985) (case 14). Eight
HRP pellets were implanted in this monkey, resulting in a
large injection site that encompassed the caudal two-third
of the Walker’s area 46 (Brodmann areas 9, 10) and
encroached caudally on adjacent Brodmann areas 8 and me-
dially on area 6 (see Figs. 8 and 9 in Selemon and Gold-
man–Rakic, 1985). This monkey also received an injection of
tritiated amino acids in the posterior parietal cortex.

Results

Except where stated, the following results were obtained
with a threshold of 0.4 for FA, which is consistent with
Oishi et al. (2011).

Single transition cost

The cost of a transition from one node to seven possible ad-
jacent nodes for different types of diffusion tensors is both
tensor and length dependent (Table 1). This cost assessment
is consistent with the Gaussian diffusion model first formu-
lated by Alexander et al. (2000).

Caveats due to high anisotropy bias, resolution,
and ROI proximity

The number of fibers (K) should be as large as possible to
resolve problems that arise due to fibers with high anisotropy
bias and to closely aligned fiber bundles. These are illustrated
by generation of SLFII using SLFII-FrontalA and SLFII-
ParietalA ROIs with K = 20 (Fig. 1A) in a comparison to gen-
eration of this same fiber bundle with K = 200 (Fig. 1B). When

Table 1. Transition Costs from One Node to Seven Adjacent Nodes via the Black Directional Vector

(Top Row) Based on the Tensor Shape and Orientation at the Start Node (First Column)

1.9353 10.6853 10.4853 11.9353 20.6853 11.9353 21.9353

2.6735 6.2449 11.2449 7.6735 16.2449 12.6735 17.6735

3.1629 4.8296 11.4962 6.4962 14.8296 13.1629 16.4962

3.8363 3.8363 11.6140 6.0585 13.8663 13.8363 16.0585

6.3103 6.3103 10.6853 3.1853 16.3103 16.3103 13.1853

8.1021 8.1021 7.1018 10.3523 8.4723 8.4723 4.5790
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K = 20, three distinct paths are generated: one through the CB,
one along the expected SLFII, and one through the IC and the
SB. The deviant bundles through the CB and IC probably
arise due to the strong projections from both frontal and pa-
rietal cortices to the CB and IC (Selemon and Goldman-
Rakic, 1988). At this voxel resolution, DP is confounded by
the close proximity of these frontal and parietal bundles in
the CB and the IC. It should be noted, however, that the lateral
bundle, that is, the one which courses through the SLFII, has
lower cost (indicated by the lighter color) than the other two.
At larger values of K such as 200 (Fig. 1B), the lower cost or
equivalently higher probability SLFII bundle is partially
masked by the presence of a fourth bundle, not seen with the
fewer fibers, which appears to be a part of the AF and exhibits
higher anisotropy bias than the one through the CB. A strategy
which utilizes the connectivity metric-based color code to iden-

tify fibers for editing and then employs the AND/NOT editing
feature in MRIStudio to prune these anatomically inconsistent
fibers results in a representation of the SLFII that is consistent
with the classic Schmahmann and Pandya (2006) anatomical
tracings (Fig. 1C). Thus, several factors can generate incorrect
fibers: the bias to high anisotropy, the tendency to pass from
one to the other of two closely aligned fiber bundles, and the
tendency to prefer shortest paths. To compensate for these fac-
tors, it is important to generate as many fibers as possible
(K = 200) and to use the color-coded connectivity metric to
prune incorrect fibers.

The need for ‘‘way stations’’ in long association bundles

Some fiber bundles that exhibit a long traverse coupled
with an extreme change of direction may require a ‘‘way

FIG. 1. Parietal Superior Longitudinal Fasciculus II-Version A (SLFII-ParietalA) to Frontal Superior Longitudinal Fasciculus
II-Version A (SLFII-FrontalA): (A) K = 20 fibers; (B) K = 200 fibers; (C) K = 67, after pruning. Central Sulcus (CS), arcuate fascic-
ulus (AF), cingulum bundle (CB) and subcortical bundle (SB) [internal capsule (IC)] are marked as reference points. Coronal
views for 1C shown in last row; see also movie at http://cis.jhu.edu/data.sets/macaque_hemi-brain_fiber_tracking/
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station.’’ This is illustrated by the CB, a fiber bundle that con-
nects many cortical areas with the hippocampal formation.
Only connectivity between the dorsolateral prefrontal cortex
(Walker’s area 46) and the hippocampal formation was exam-
ined. In order to override the tendency for DP to prefer the
shortest path between these two ROIs and thereby avoid
the most caudal portion of the CB that curves around the sple-
nium of the corpus callous, a third ROI, the dorsal CB was
used as a way station (Fig. 2).

Comparison with in vivo tract tracing

Coronal sections through a macaque brain in which HRP
had been placed in the dorsolateral prefrontal cortex
(Walker’s area 46) and anterogradely transported into the
fiber bundles of the CB and SB were compared with DP-
generated fibers (Fig. 3). HRP-labeled fibers were found in
the fiber bundles of the SB in the anterior limb of the IC
(Fig. 3A, B) and in the CB (Fig. 3C, D).

Short- and long-association cortico-cortical bundles

DP-generated fibers based on ROIs in the ventral and dor-
sal banks of the principal sulcus formed a short, U-shaped
association cortico-cortical bundle in the WM beneath the

fundus of the principal sulcus (Fig. 4). Note that no fibers
traversed the geodesic between the two ROIs despite their
proximity.

Long-association bundles for SLFIII and AF were gener-
ated (Fig. 5). In the latter case, it was necessary to use
K = 800 and to prune the inconsistent fibers that either due
to high anisotropy bias or geodesic tendency were ranked
higher; indeed, the highest rank of the fiber in the edited
AF bundle (K = 64) was 302. In addition, two bundles were
generated with the SLFII-FrontalB and AF-Frontal as two sep-
arate start ROIs and the SLFII-ParietalB and AF-Temporal
combined as one end ROI. The two edited bundles (K = 104
and 82, respectively) are seen to merge, that is, cross or kiss
as they approach the SLFII-ParietalB ROI (Fig. 6). In each
case, K = 400 was initially used with some of the fibers similar
to those in Figure 5 edited out.

Association bundles for the UF (Fig. 7), FOF (Fig. 8), and
fornix (Fig. 9) were also generated. The latter two proved to
be challenging for several reasons. Both have relatively
lower FA than adjacent bundles (corpus callosum, CB for
the FOF, and, in addition, the anterior commissure, IC, and
external medullary lamina of the thalamus for the fornix).
So, it was necessary to lower the FA threshold from 0.4 to
0.1, which reflects the fact that FOF carries multiple tracts

FIG. 2. Walker’s area 46 to CB Dorsal with
K = 49 and thence to CB Ventral with K = 68.
CS and the superior temporal gyrus (STG) are
marked as reference points. Coronal views
for Walker’s area 46 to CB Dorsal shown in
middle row and for CB Dorsal to CB Ventral
in bottom row; see also movie at http://cis.jhu
.edu/data.sets/macaque_hemi-brain_fiber_
tracking/
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between different cortices (see Chapter 27 in Schmahmann
and Pandya, 2006). Then, waystations were needed to pre-
vent shunting into adjacent bundles. For the FOF, three
waystations at coronal sections 241, 255, and 270, which re-
spectively corresponded to sections 93, 97, and 105 in the
SP atlas, were used with the four initial values of K = 1000,
400, 200, and 400 reduced to 31, 56, 95, and 349, respectively,
after editing. The result is a bundle that is consistent with Fig-
ure 19-2 of Schmahmann and Pandya (2006). From the PO,
the fibers begin in the SLFI, separate into FOF proper, and
then, become sandwiched between the corpus callosum and
corona radiata while coursing rostrally toward the frontal
lobe; see pages 234–236, 268, 272–276, and chapter 27 in
Schmahmann and Pandya (2006).

For the fornix, which is technically a cortico-SB as
the hippocampus is old cortex, two waystations were
employed as suggested by Concha et al. (2005) and Saun-
ders and Aggleton (2007). The waystations were located
within the fornix in coronal sections 192 and 252 (corre-
sponding to SP sections 69 and 97, respectively) and were
used with the three initial values of K = 200, 200, and 150
reduced to 8, 48, and 40, respectively, after editing. An ad-
ditional difficulty was the proximity of the fornix to the
mid-sagittal plane, which coincided with the boundary of
the image volume.

Cortico-striatal bundles

Motor corticostriatal tracts were generated from six distinct
cortical ROIs defined by SP Motor Cases 24 through 29 to the
putamen (Fig. 10). Some overlapping of fiber bundles was ob-
served, that is, kissing and crossing fibers, as well as a bifur-
cating and reconnecting bundle.

Discussion

A probabilistic method for tracking of fiber bundles that
utilizes DP minimization of a quadratic function based on
the Gaussian form of the full DTI tensor has been developed.
DP has been shown to generate realistic tracts, including
crossing and kissing fibers in DTI images without need for
multiple gradients. DP is computationally less intensive
than other probabilistic tracking methods that have emerged
in recent years due to its focus on generating tracts between
user-specified ROIs and, thus, is hypothesis driven rather
than exploratory (cf. Croxson et al., 2005). DP also uses the
scoring method based on a connectivity metric, such as in
Sherbondy et al. (2008).

The DP approach can be applied to more advanced, high
angular-resolution (HAR) techniques albeit via a different
cost function based on a probabilistic model. Although the
limitations of Gaussian diffusion have been acknowledged,

FIG. 3. Automated fiber tracking of the SB
and CB in comparison to the same tracts
shown via horseradish peroxidase (HRP)
tract tracing. Arrows in (A, B) point to the SB
as it courses through the anterior limb of the
IC. Arrow heads in (C, D) show the CB en-
capsulated by the posterior cingulate cortex.

482 RATNANATHER ET AL.



it continues to be widely used. This is because of several prac-
tical issues of the HAR approach: the large number of re-
quired diffusion encoding directions and, more importantly,
the large b-values (typically more than 3000 sec/mm2). As
demonstrated by Ben-Amitay et al. (2012), such values
cause much of the MR signal to decay to the noise floor,
resulting in poor SNR. More importantly, the large b-value
leads to higher motion sensitivity and additional eddy cur-
rent distortion, which are difficult to detect and correct be-
cause of low SNR. So, it is likely that research and clinical
studies will continue to use standard DTI scans.

The DP approach is attractive with regard to DTI data; de-
terministic approaches such as those mentioned earlier are
known to generate severe false-negative results, because if
there is a voxel with an incorrect fiber orientation due to
noise or complex anatomy, deviation from the real path oc-
curs. Since the deterministic approaches are usually com-
bined with knowledge-based anatomical constraints such as
at least using at least two ROIs with known connectivity,
the paths that deviate from real ones are eliminated. Like-
wise, the DP approach is driven by anatomical knowledge;
the two locations with known connections are specified and
the most probable path is searched, reducing the chance of
false positives. This approach is more robust against noise,
partial volume effect, and problematic regions with complex
tract anatomy. It is, however, important to examine whether
the reconstructed paths agree with known trajectories be-
tween the two specified locations.

DP falls within a class of computationally efficient path-
finding strategies that are beginning to be useful for tracking
bundles. One is the A* approach (Richter et al., 2013), which
was found to be more efficient than global optimization strat-
egies such as Gibbs tracking (Reisert et al., 2011). In fact, DP

was able to completely traverse the 2D spiral phantom, which
could not be done with Gibbs tracking (see Fig. 3 in Richter
et al., 2013). The strong principle of optimality used in DP
states that all optimal paths comprise optimal sub-paths,
and it is this fact which permits the reduction in complexity
of the problem (Bertsekas, 1987). The cost function assumes
an additive cost that depends locally only on the current
node and path direction, which is equivalent to the strong
principle of optimality. As mentioned earlier, the number of
paths evaluated in a brute force approach would be in the
order of MVN, where V is the connectedness, which in this
case is 26. DP iteratively examines MV optimal sub-paths of
ever-increasing length by assuming the strong principle of
optimality, reducing the complexity to MVN and thereby
making the problem tractable. Reducing V from 26 to 6 will
still yield optimal paths, however at the price of a higher
cost as exemplified by the transition costs for a skewed direc-
tional vector in the last row of Table 1. Since a larger neigh-
borhood of 74 was used in the A* approach, it is possible to
use a larger search space in the current software. However,
the computational efficiency of the A* approach is dependent
on the selection of an appropriate heuristic function. A poor
choice can result in a brute force search. With DP, the reduc-
tion in search complexity is direct and independent of heuris-
tics or other subjective conditions.

It might be argued that the feasibility of DP should be eval-
uated using phantom data such as PISTE (http://cubric
.psych.cf.ac.uk/commondti) or FiberCup (www.lnao.fr/spip
.php?rubrique79). However, it is perhaps more meaningful to
generate tracts between anatomically defined ROIs using real
data. So, a hemi-brain from a macaque was used as a viable
means of understanding the capabilities and limitations of
DP. Data used in this study for comparison or development

FIG. 4. Principal sulcus (PS) from ventral
(v) to dorsal (d) banks (K = 200). Coronal
views shown in bottom row; see also movie at
http://cis.jhu.edu/data.sets/macaque_hemi-
brain_fiber_tracking/
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of more sophisticated algorithms are being made available
at http://cis.jhu.edu/data.sets/macaque_hemi-brain_fiber_
tracking/

Indeed, the macaque brain has been previously used as a
model for testing methods for studying WM tracts. Parker
et al. (2002a) was the first to use the rhesus monkey to evalu-
ate tractography methods, albeit at a low resolution. More re-
cently, Hofer and Frahm (2008) used a 2.9T scanner to study
tracts in a macaque DTI scan that was upsampled to 0.75 mm3

isotropic voxels. Using an FA threshold of 0.15, they used the
FACT algorithm in MRIStudio (Mori et al., 1999) to generate
several tracts. While the ROI seeds they used are different
from those used here, the generated SLFII and somatosensory
U-fibers are similar. Unlike DP, FACT was unable to deal

with kissing and crossing fibers seen with HAR (Wedeen
et al., 2008, 2012, ). Adluru et al. (2012) also used a determin-
istic approach to track several bundles with an FA threshold
of 0.1–0.15 in a template of 0.5 mm3 resolution generated as a
population average from 271 macaques from a 3T scanner.

DP has several limitations. First, there is inherent bias to
high anisotropy and length. As can be seen from Figure 1, it
is important to visualize the tracts for anatomical consistency
as well as ensure that the ROIs are defined appropriately. Per-
haps not surprisingly, due to the cost function, false tracts can
be generated especially in the neighborhood of bundles with
higher anisotropy as in the case of the FOF and the fornix.
This problem is not uncommon even with probabilistic meth-
ods (Croxson et al., 2005). This confound can be addressed in

FIG. 5. Top: SLFIII Frontal to Parietal
(K = 200). Middle: AF Frontal to Temporal
(K = 64). CS and STG are marked as reference
points. Bottom: Coronal views of AF Frontal
to Temporal; see also movie at http://cis.jhu
.edu/data.sets/macaque_hemi-brain_fiber_
tracking/
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one of two ways. One is by using a scoring system based on
connectivity metric to ensure anatomically consistent bundles
are generated; it is quite straightforward to show that the con-
nectivity metric is approximately inversely proportional to
the fractional anisotropy, that is, the lower the cost the higher
the anisotropy. The other way is to exclude adjacent bundles
from the search space as was done for the deterministic ap-

proach by Zhang et al. (2010). For example, generating the
FOF and fornix was resolved by excluding adjacent bundles
and using waystations with a lower FA threshold of 0.1. Sec-
ond, the image resolution is insufficient to deal with fiber
bundles emanating from designated ROIs that come in very
close proximity to each other; hence, the importance of check-
ing the fibers for consistency with known fiber pathways.

FIG. 6. Two SLFII-FrontalB (light green,
K = 104) and AF-Frontal (light blue, K = 82)
bundles tracked to a combined SLFII-Parie-
talB and AF-Temporal. Contrast with the AF
bundle from Figure 7. CS is marked as a ref-
erence point. Here, the color code for the
connection metric is not used. Coronal views
shown in bottom row; see also movie at
http://cis.jhu.edu/data.sets/macaque_hemi-
brain_fiber_tracking/

FIG. 7. Uncinate fasciculus (UF) temporal
to frontal (K = 131). CS is marked as reference
point. Here, the color code for the connection
metric is not used. Coronal views shown in
bottom row; see also movie at http://cis.jhu
.edu/data.sets/macaque_hemi-brain_fiber_
tracking/
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Third, the method is dependent on high resolution or smooth
data. Due to the nature of the 26-voxel neighborhood, it is
possible for individual paths to turn 35–45� when passing
through noisy or isotropic regions, but these can be masked
by generating multiple fibers. Here, it will be helpful to
know Contrast-to-Noise Ratio or SNR of the image being

studied (Farrell et al., 2007; Kingsley, 2006). In addition, an
option for smoothing fibers via tensioned B-splines was
implemented but it was not used.

Though no direct comparisons with other methods were
made, it is worth noting that Figure 2 could not be replicated
by FACT because of the crossing fibers in the CB. In addition,

FIG. 8. FOF-frontal to FOF-PO via four
different bundles and three waystations.
Here, the color code for the connection metric
is not used. Coronal views shown in bottom
row; see also movie at http://cis.jhu.edu/
data.sets/macaque_hemi-brain_fiber_
tracking/

FIG. 9. Fornix–Fimbria to mammillary
bodies (MMB) via three different bundles and
two waystations. Here, the color code for the
connection metric is not used. Coronal views
shown in bottom row; see also movie at
http://cis.jhu.edu/data.sets/macaque_
hemi-brain_fiber_tracking/

486 RATNANATHER ET AL.



given the FOF-Frontal and FOF-PO ROIs, FACT with a
threshold of 0.1 generated a bundle that was more inferior
to the true FOF going through the middle longitudinal fascic-
ulus and Extreme Capsule (see Figs. 14-2 and 15-1 in Schmah-
mann and Pandya, 2006) similar to those generated by
deterministic approaches (Adluru et al., 2012; Hofer and
Frahm, 2008). This led to the inference of a macaque homo-
logue of the human inferior FOF that does not exist (Catani
et al., 2007; Schmahmann and Pandya, 2007).

Last but not the least, it is critically important to validate
tracts with regard to staining of tracts via histological sections
(Annese, 2012; Dauguet et al., 2006; Seehaus et al., 2013). In
this regard, there was very close correspondence between
tracts generated with DP and in vivo anterograde transport
of HRP in a macaque brain. Generated tracts were also consis-
tent with those from the Schmahmann and Pandya (2006)
atlas. It should be possible to reproduce the tractography
for the right hemisphere, but the focus on the left has been
motivated by an ongoing study of histology and MRI analy-

ses in a macaque model of fetal exposure to radiation in
which only the left hemisphere is available (Ceritoglu et al.,
2010; Selemon et al., 2013). It is worth noting that the vast ma-
jority of published tracer studies have traditionally focused
on one side.

Extensions and modifications of DP are possible in several
ways. First, a larger neighborhood than the 26-voxel one used
here could allow for acute turns (Merhof et al., 2006a, 2006b;
Richter et al., 2013). The approach to modify the DP state
space to control curvature and torsion (Lal, 2004) can be ap-
plied to construct a Markov model in which the transition
cost depends on the previous transition along the path.
Thus, a Markovian approach (Iglesias et al., 2012) could be
used to incorporate bending energy into the cost function
(Poupon et al., 2000) for regularization. Adjusting the state
space and cost function to be based on voxel triples (Collins
et al., 2011) allows for more sophisticated regularization. It
is also possible to incorporate Bayesian priors based on tensor
coherence or dot-product with regard to a neighboring voxel

FIG. 10. Tracts to the putamen from SP
Motor Case 24 (light green, K = 200), Case 25
(light blue, K = 200), Case 26 (pink, K = 161),
Case 27 (green, K = 159), Case 28 (blue,
K = 191), and Case 29 (purple, K = 118). Here,
the color code for the connection metric is not
used. Coronal views shown in bottom row;
see also movie at http://cis.jhu.edu/data
.sets/macaque_hemi-brain_fiber_tracking/
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(Fout et al., 2005; Merhof et al., 2006a, 2006b). Second, for
lower-resolution data such as human DTI data, it may be nec-
essary to subparcellate the initial and end ROIs into m and n
smaller ROIs to generate m · n bundles each with K fibers,
which would be similar to the example of subdividing the
motor cortex to generate cortico-striatal tracts. To minimize
the need for editing fibers or setting K too large, one could
use a WM parcellation atlas such as that developed by
Huang et al. (2006) to exclude regions from the state space
to generate anatomically consistent bundles as suggested ear-
lier. Furthermore, the connectivity metric provides a single
value for each fiber, which could be helpful in studying bun-
dles disrupted by disease and may provide a better alterna-
tive to calculating the average fractional anisotropy in the
bundle. These limitations and extensions will be explored
more fully, particularly in human data in subsequent papers.
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