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Abstract

Relating expression signatures from different sources such as cell lines, in vitro cultures from primary cells and
biopsy material is an important task in drug development and translational medicine as well as for tracking of cell fate
and disease progression. Especially the comparison of large scale gene expression changes to tissue or cell type
specific signatures is of high interest for the tracking of cell fate in (trans-) differentiation experiments and for cancer
research, which increasingly focuses on shared processes and the involvement of the microenvironment. These
signature relation approaches require robust statistical methods to account for the high biological heterogeneity in
clinical data and must cope with small sample sizes in lab experiments and common patterns of co-expression in
ubiquitous cellular processes. We describe a novel method, called PhysioSpace, to position dynamics of time series
data derived from cellular differentiation and disease progression in a genome-wide expression space. The
PhysioSpace is defined by a compendium of publicly available gene expression signatures representing a large set
of biological phenotypes. The mapping of gene expression changes onto the PhysioSpace leads to a robust ranking
of physiologically relevant signatures, as rigorously evaluated via sample-label permutations. A spherical
transformation of the data improves the performance, leading to stable results even in case of small sample sizes.
Using PhysioSpace with clinical cancer datasets reveals that such data exhibits large heterogeneity in the number of
significant signature associations. This behavior was closely associated with the classification endpoint and cancer
type under consideration, indicating shared biological functionalities in disease associated processes. Even though
the time series data of cell line differentiation exhibited responses in larger clusters covering several biologically
related patterns, top scoring patterns were highly consistent with a priory known biological information and separated
from the rest of response patterns.
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Introduction

In many biological and medical research fields, such as stem
cell research, drug development or analysis of disease status,
it is important to integrate data from different sources, such as
cell lines, in vitro cultures from primary cells or clinical biopsies.
Data integration has the possibility to combine the knowledge
derived from different experiments, providing a bigger picture

surrounding the new data and improving the interpretation of
results [1]. However, biological heterogeneity in clinical
samples, lab dependent effects as well as technical noise
challenge the direct integration of data from heterogeneous
sources. Furthermore, the typical low number of replicates in
lab experiments, especially for time series analyses,
complicates the statistical significance analysis.
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Data integration approaches have been implemented on
different levels using gene expression data. The classical
analyses started with the integration on a single gene level,
e.g. by interpreting differential gene expression in newly
performed experiments using knowledge from gene annotation
databases. These analyses were then extended to sets of
genes, corresponding to specific biological functionalities,
pathways or genomic locations [2-4]. The gene set analysis
summarizes the information of several genes, providing a
broader view on the gene expression changes with better
interpretability in terms of intracellular pathways and
functionalities. A further step into this direction is a whole
genome based comparison of phenotypical changes, linking
the gene expression changes in the newly performed
experiments to gene expression patterns that are associated
with specific tissues, clinical parameters, or changes in the
cellular environment [5-7].

This last step has been implemented by extension of gene
set enrichment analyses to include signatures derived from
high-throughput experiments [3], explicitly focusing on
oncogenic or immunologic phenotypes as well as by signature
association approaches relating experiments in drug response
databases [8] with the goal to identify biologically meaningful
connections between observed phenotypes [5,9].

The present article, in contrast, focuses on the relation of
gene expression changes to various tissue or cell type specific
expression patterns. This specific focus becomes increasingly
relevant as outlined by the following two examples. First,
differentiation of pluripotent stem cells towards neural cells or
cardiomyocytes, for instance, is anticipated to bear enormous
potential for drug screening and regenerative medicine [10]. In
order to properly characterize these in vitro differentiated cells
and their differentiation dynamics, it is essential to compare
them to the respective primary tissue on a whole genome gene
expression level [6,7,11]. Second, different disease stages in
cancer have been linked to stem cell signatures [12-14],
suggesting an earlier developmental state of cancer cells
compared to normal cells [15]. However, it is important to
evaluate such signature associations properly in order to avoid
misinterpretations. Counterintuitively, microarray analysis of
Breast cancer data have revealed [16,17] that diverse gene
sets and signatures do possess largely the same predictive
quality and that variation in the predictive performance can be
explained by variation in the contribution of a single passenger
proliferation signature. Moreover, the focus of cancer research
has shifted from a narrow focus on the genetic and molecular
properties of the primary cancer cell line to the integration of
the surrounding tumor environment [18].

Global analyses of gene expression patterns across diverse
tissues and cell lines are typically performed in an
unsupervised way, e.g. based on principal components
analysis (PCA) [19,20]. PCA identifies orthogonal directions of
highest variance in the data. While principal components are
often associated with known phenotypes, uncovering these
associations requires additional efforts since this is not
explicitly built into the algorithm.

The presented PhysioSpace method serves as an
exploratory research tool that allows getting a large scale

overview of the data in terms of defined physiological
coordinates. PhysioSpace complements single gene based
analyses, gene set and pathway methods and unsupervised
global methods like PCA.

The PhysioSpace algorithm defines directions (signatures) in
a supervised way based on retrospective microarray data.
These directions are directly associated with specific
phenotypes defined by data postprocessing.

The directions are derived by comparing samples of a
specific tissue with a reference via a t-test (Figure 1, Materials
and Methods). In this article, the reference is computationally
determined as the mean over a large set of samples from
various tissues and cell lines. This is similar to centering in
principal components analysis and makes it easier to compare
the diverse set of conditions discussed later. Experiment
specific references can be used for more narrow applications.

The differential expression between samples from a specific
tissue and this reference is then used as a signature
representing the characteristic expression pattern of this tissue.
Due to the apparent similarity of different tissues, e.g. neural
tissues from different regions of the brain or different tissues
related to the immune system, some PhysioSpace signatures
are highly correlated (Figure S1 in File S1). Besides these
obvious correlations between tissues with similar functions,
there are also some dependencies of tissues or cell lines due
to more general shared processes like proliferation. The large
amount of correlations between diverse tissues (Figure S1 in
File S1) reflects the low dimensionality of large scale gene
expression as observed in principal components analysis of a
huge dataset [19] and in the ability to reprogram cells from a
somatic to a pluripotent state with only a few reprogramming
factors [21]. Furthermore, tissues are usually mixtures of
different cell types and some cell types, fibroblasts for instance,
are present in many different tissues.

The task of mapping gene expression changes into the
PhysioSpace can be defined in the light of high dimensional
gene expression spaces as follows: A phenotype is interpreted
as a point or cloud in an expression space and phenotypical
change is a vector connecting the centers of different clouds in
the same expression space (Figure 2 A). In microarray
experiments this vector can in most cases be identified with the
vector of fold-changes. Mapping of a differential expression
vector in an experiment to the PhyisoSpace is a comparison of
the vector of fold changes in the experiment to differential
expression vectors associated with known phenotypes
spanning the PhysioSpace. In this interpretation, the
PhysioSpace method reduces to the robust identification of
vectors that point in similar directions within the gene
expression space.

Considering that the PhysioSpace method should be able to
compare data from heterogenous sources, derived from cell
lines, in vitro cultures from primary cells, or primary patient
biopsies, it is important to use robust and statistically sound
techniques. In this article we follow practices from gene set
analysis [3,22,23], namely, focusing on informative genes, and
using rank based statistical methods in order to achieve
robustness. A spherical transformation of the data [24] is
applied as preprocessing step in order to reduce the non-
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phenotype specific variation and to facilitate proper statistical
assessment via sample label permutation. Two gene sets of
up- and down-regulated genes are defined and used for

Figure 1.  Main steps of the PhysioSpace generation and
mapping algorithms.  
doi: 10.1371/journal.pone.0077627.g001

enrichment analysis of the PhysioSpace signatures via the
Wilcoxon rank-sum test [22] (Figure 1, Figure 2 A, Materials
and Methods). The signed log10 p-values from the Wilcoxon
test, termed PhysioScores, are then used for visualization
purposes. If there are at least 9 samples in each group,
sample-label permutation is performed to assess the
significance of the PhysioScores.

Figure 2.  Overview over the PhysioSpace algorithm.  (A)
Data from a new experiment is transformed to remove ellipticity
and the resulting fold-change vector is compared to a
compendium of signatures from prior experiments using a
robust, rank-based scoring method. Graphical displays and the
statistical validation allow to evaluate the position of the new
experiment in the global PhysioSpace. (B, C) Illustration of the
influence of non-sphericity on sample permutations. (B) In the
presence of a strong ellipticity, sample permutation does not
randomize directions in contrast to more spherically distributed
samples as obtained through the spherical transformation
approach (C).
doi: 10.1371/journal.pone.0077627.g002
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The algorithm used in this article is similar to classical gene
set enrichment algorithms. However, the usage of signatures
instead of gene sets allows to perform the enrichment
calculation in a backward direction, defining the gene sets on
the new data and calculating the enrichment on the tissue
specific signatures. This backward direction provides a different
view on the data as evaluated and discussed below. A similar
backward approach has been used previously [5,25].
Compared to these implementations, the main innovation of
our algorithm is the usage of a spherical transformation,
improving the results especially in the case of high
heterogeneity in the data.

We evaluate the performance of the PhysioSpace method
and discuss the effect of the spherical transformation by
analysis of simulated mixtures of embryonic stem cells (ESCs)
with different tissues. We then apply the method to analyze
tumor development comparing different breast cancer grades
and prostate Gleason scores, as well as to investigate the
effect of smoking on gene expression of lung cancer tissues.
These examples show three principally different outcomes of
the PhysioSpace method that are used to exemplify possible
interpretations. Furthermore, the cancer data are utilized to
investigate the relationship between PhysioScores and
permutation p-values, providing useful information for the
applicability of PhysioSpace in the case of low numbers of
replicates. The PhysioSpace method is then applied on
tracking of induced pluripotent stem cell (iPSC) differentiation
experiments towards neural cells, cardiomyocytes and
trophoblast lineages in a physiological context. It detects the
direction and dynamics of differentiation, uncovering interesting
information from data with very small numbers of replicates,
and matches well to biological expectations. The comparison to
a classical forward enrichment algorithm is performed on the
cancer, differentiation, and simulated data, with overall slightly
better results for the implemented algorithm. The robustness of
the proposed method is demonstrated by the use of different
PhysioSpaces (table 1) and datasets across microarray
platforms.

Table 1. Datasets for the PhysioSpace generation.

Accession Usage Description

GSE7307 PhysioSpace 1
677 samples corresponding to 93 different tissues
or cell lines

GSE23402 PhysioSpace 1
17 ESC samples (the 25 hiPSC and Fibroblast
samples are not used)

GSE2361 PhysioSpace 2 36 samples, each from a different tissue

E-MTAB-62 PhysioSpace 3
5372 samples divided into 369 different groups as
annotated in [18]

doi: 10.1371/journal.pone.0077627.t001

Results

A spherical transformation improves the PhysioSpace
performance

Clinical datasets often suffer from large, non-phenotype
associated variation, affecting the determination of fold change
vectors. This can lead to spurious associations, especially in
the case of relatively small sample sizes and large
heterogeneities in the data. The spherical transformation
(Figure 1, Materials and Methods) results in a homogenization
of the data, reducing the effect of very large non-phenotype
associated variations. Thus, it leads to increased sensitivity
and specificity in the case of high non-phenotype associated
variation and comparably low signal strength.

In the opposite case, i.e. when the heterogeneity in the data
is considerably lower than the effect of interest, the sample
permutation approach does not generate a meaningful null
distribution. Random re-sampling of sample labels generates
new vectors connecting the centroids of the two sampled
groups. In the case of elliptical data distributions the sampled
vectors are highly correlated, resulting in a decreased
significance (Figure 2 B). The spherical transformation
diminishes this effect, resulting in a null distribution of vectors
resembling an approximately spherical distribution within the
lower dimensional space spanned by the data (Figure 2 C).

In order to investigate the two described effects of the
spherical transformation, two datasets of embryonic stem cells
(GSE33789) and cancerous and normal lung tissues
(GSE19804) were downloaded, normalized and merged (table
2). Dataset GSE33789 contains 10 embryonic stem cell (ESC)
samples, which were used as a homogenous dataset, i.e. with
relatively low amounts of variability and confounding effects.
Dataset GSE19804 is more heterogeneous, consisting of 60
lung cancer samples and 60 samples of adjacent normal lung
tissue.

Two different types of simulated data were produced for
investigation of the above described effects. First, 40 samples
were randomly drawn from the lung dataset GSE19804. No
distinction of normal and cancerous lung tissue was made.
Cancerogenicity was rather interpreted as an unknown
confounding effect, increasing the heterogeneity of the dataset.
The first 20 of these samples were subjected to a
computational modification, simulating a mixing of lung tissue
with ESCs with mixing factor λ=0,0.01,…,0.05 (Materials and
Methods). For each value ofλ, the mixed samples were then

Table 2. Datasets used for simulations.

Accession Usage Description

GSE33789 All simulations
10 ESC samples (2 Fibroblast samples are
not used)

GSE19804
Effect of spherical
transformation

60 lung cancer and 60 adjacent normal
lung samples

GSE18676 Mixture simulations
24 samples from 22 different tissues and 2
cell lines

doi: 10.1371/journal.pone.0077627.t002
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compared to the remaining 20 lung samples via the
PhysioSpace method with and without spherical
transformation. The analysis results with spherical
transformation show less confounding effects, i.e. a more
specific increase of the ESC score (Figure 3A, Figure S2 in File
S1). Furthermore, the spherical transformation increases the
sensitivity, having already a relatively high ESC score for a
mixing fraction of 2% ESCs (PhysioScore of 41.3), while the
ESC score without transformation has a value of 19.3 for
λ=0.02 and 48.7 forλ=0.03. The permutation p-values confirm
the higher sensitivity of the analysis with spherical
transformation showing significant test results for the ESC
score with 4% and 5% ESC in the mixtures, while the analyses
without transformation show no significant result.

In the second simulation, the low-heterogeneity ESC dataset
was analyzed, where 10 samples were simulated as mixtures
of ESC and adjacent normal lung tissue (Materials and
Methods) and compared to unmodified ESC samples. In order
to simulate a rather strong signal, the fraction of lung tissues in
the mixture was set to 0.1, 0.2,…, 1. For the analysis without
spherical transformation, the negative effect of increasing
ellipticity in the data can be observed from Figure 3B, showing
a non-meaningful increase of the p-value associated with the
lung signature for increasing fractions of lung tissue in the
mixtures. In contrast, for the analysis with spherical
transformation, the corresponding p-value stays at the lowest
possible value that can be achieved with 1000 permutations
(Figure 3B).

Evaluating PhysioSpace performance using simulated
mixtures

In order to evaluate the ability of the PhysioSpace method to
detect changes in tissue composition, the analysis of simulated
mixtures was extended to several different tissues. For this
purpose, the dataset GSE18676 was considered, consisting of
22 different tissues and 2 cell lines. Each tissue or cell line is
represented by a single sample only. The 24 samples were
computationally mixed with one ESC sample from dataset
GSE33789 with a mixture proportion of 97% ESC and 3% of
the tissue sample and compared to the remaining 9 ESC
samples (Figure 3 D). This analysis again reveals the
correlations that are present between PhysioSpace signatures,
most prominently between signatures corresponding to the
diverse brain regions. Furthermore, the absolute values differ
between the 22 tissue samples, being relatively low for
Pancreas or Prostate, for instance, and highest for Testes.
However, the ranking of PhysioSpace signatures is highly
concordant with the known biological information. In 18 out of
22 cases (excluding the 2 cell lines), the top-ranking signature
exactly matches the tissue used to simulate the mixture. The 4
exceptions are Cortex, Fetal Brain, Pancreas, and Spinal Cord.
For Cortex, there is no PhysioSpace signature with an exact
matching name, but the top ranked scores are biologically
plausible. The highest PhysioScore corresponds to Frontal
Lobe followed by further signatures associated with specific
regions of the brain. For Pancreas, the top-ranked signature
corresponds to Small intestine (PhysioScore of 14.49), directly
followed by Pancreas (13.78) and separated from the other

scores starting with Colon (5.76). The top-ranked scores for the
Spinal Cord mixture, i.e. Medulla (28.99), Spinal Cord (28.87),
and Substantia Nigra (28.19), are also biologically plausible.
Only the fetal brain mixture partially leads to unexpected
results. The top-ranked scores correspond to adult brain
regions and the fetal brain signature has rank 6 only. A
possible reason for this result may be different gestational ages
of the fetal brain sample used to develop the signature and the
fetal brain sample used for the mixture analysis. It has been
reported [26] that the gene expression of neural tissues
changes strongly during fetal development and global gene
expression patterns of late fetal brain lie between those of
neural tissue from earlier gestational ages and from postnatal
brain. Detailed information about the gestational ages of the
fetal brain samples is not available.

Overall, these results reflect the simulated changes very
well, indicating high robustness of the PhysioSpace method
even in cases where data from different studies were combined
as well as high sensitivity and specificity for detecting mixtures
with mixture fractions of only 3%. Following an advice of a
referee, we set out to test the dependence of the matching on
the mixing fraction lambda and compared the results to those
using a typical gene set enrichment algorithm as implemented
in the geneSetTest method of the limma package [27] in R. The
geneSetTest algorithm takes a gene set and a differential
expression vector as input and performs a competitive
enrichment test, evaluating whether the genes in the specified
set are more differentially expressed than randomly selected
genes. Here, we use the 5% highest ranked genes in the
PhysioSpace signatures as gene set and the fold change as
measure of differential expression. This is an example of a
classical forward GSEA approach in contrast to the presented
backward approach.

For the performance assessment, two matching scores were
calculated, a tissue matching score and an ESC matching
score. They are defined as the ratio of the expected
PhysioScore, i.e. of the matching tissue (or the ESCs), and the
highest (or lowest) PhysioScore. For example, for the mixing of
the bone marrow sample with the ESC sample, the tissue
matching score is the ratio between the bone marrow
PhysioScore and the highest PhysioScore. This matching
score is 1 in case of a perfect match, e.g. if the bone marrow
score has the highest value itself, and gradually decreases with
the distance of the expected score to the actual highest
(lowest) score. We truncated the score at zero to avoid
negative values. In Figure 3 C, the mean matching score of the
21 tissues, having a corresponding PhysioSpace signature, is
plotted over 1-lambda in the range from 0.005 to 0.05 in steps
of 0.005. The tissue matching score is nearly constant for a
mixing fraction larger than 0.015, while the ESC matching
score is increasing for a relatively wide range of lambda. The
performance of the two alternative mapping algorithms (GSEA
and our method) is comparable, with an advantage of GSEA in
the tissue matching score for low mixture fractions and some
advantages for our method in the other cases (Figure 3 C).

PhysioSpace
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Figure 3.  Performance evaluations with simulated data.  (A) In the case of relatively high heterogeneity and comparably low
signal strength, the spherical transformation increases sensitivity and specificity of the simulated effect, i.e. results in a strong and
specific increase of the ESC score (left part). The results without spherical transformation (right part) are more heterogeneous. (B)
The null-distribution obtained from re-sampling without spherical transformation is not meaningful in cases of high signal strength
and low heterogeneity, leading to increasing p-values for increasing signal strength in simulated data. This effect does not occur
when the spherical transformation is applied. Depicted are permutation p-values for the lung signature with (red dots) and without
(black dots) spherical transformation. (C) The mean matching score of 21 simulated mixtures is compared between the
implemented PhysioSpace algorithm and a classical GSEA based method. The matching score is defined as the quotient of the
respective tissue (or ESC) score and the highest (lowest) score. It is truncated at a minimum of zero, avoiding negative values.
While there are some differences between the two methods, especially for very low mixture values, the overall performance does
not generally favor one or the other algorithm. (D) The PhysioScores of simulated mixtures of 97% ESCs with 3% of different tissues
are visualized as an exemplary case, showing a very nice agreement with biological expectations. Correlations between different
signatures are represented by the dendrogram on the left hand side as well as by simultaneous increasing PhysioScores in the
columns of the heatmap-like representation.
doi: 10.1371/journal.pone.0077627.g003
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Application to cancer data
Cancer is a highly heterogeneous disease consisting of

different subtypes traditionally defined by specific histological
markers like grade in breast cancer or Gleason score in
prostate cancer [18]. In recent years, attempts to define
different cancer subtypes based on gene expression patterns
were realized in order to improve medical treatment in the
framework of personalized medicine or to refine prediction of
therapy outcome. Due to some functional similarities of cancer
cells to normal stem cells, stem cell signatures have been
proposed for several cancer types, including breast and
prostate cancer, to define subtypes with different prognosis
[12-14,28]. However, for the case of breast cancer, it has been
argued that most random signatures are significantly
associated with outcome [16], dominated by a proliferation
signature involving a large number of genes. Therefore, it is
important to complement statistical evaluation of prediction
accuracy by methods comparing diverse biologically realistic
patterns in a global perspective before drawing conclusions on
possible mechanisms or therapeutic directions.

In this context, the PhysioSpace method was applied to
investigate differences in global gene expression between
breast cancer grades. A dataset with 189 breast cancer
samples (GSE2990) was analyzed, incorporating 64 breast
cancers of grade 1, 48 of grade 2, 55 of grade 3, and 22 with
missing information on breast cancer grade. The vectors of
differential expression of grade 1 to that of grade 2 and grade 3
cancers were compared to the signatures in the PhysioSpace,
resulting in a large number of significantly associated reference
signatures (Figure 4 A). The dominating PhysioScores
correspond to signatures of immune and bone marrow derived
cells as well as to the breast cancer cell line MDA-Mb231 and
the hepatic cancer derived cell line HepG. Further significant
scores include embryonic stem cell (ESC), HUVEC cell line,
and fetal liver signatures. The large number of significant
scores (see also Figures S5, S6, and S7 in File S1)
corresponding to rather different phenotypes suggests that the
gene expression shift does not only represent cell type specific
processes. There seems to be a common underlying
mechanism that is shared by most of the significant
phenotypes, most probably corresponding to proliferation
[16,29].

In contrast to the breast cancer results, the influence of
smoking on gene expression seems to be more phenotype
specific. A comparison of the gene expression of (normal and
cancerous) lung tissues from 31 never to 36 former, and 40
current smokers (dataset GSE10072, table 3) revealed a
significant increase in immune signatures for current smokers
(Figure 4 B, Figure 5). This is in accordance with the known
increase of immune cells, especially macrophages, in the lung
caused by cigarette smoke [30] and with previous gene
expression analyses of lung adenocarcinomas [31]. The results
shown in the present article were obtained using cancerous
and adjacent normal lung tissues together in a single analysis.
The increased heterogeneity in the data due to the joint use of
cancerous and normal tissues is, as in the simulation example
above, not critical for the performance of the PhysioSpace
method. The results using only cancerous or only normal

tissues are fairly similar (data not shown), showing the
robustness of our method due to the spherical transformation.

The third analyzed dataset consists of prostate tumors with
differing Gleason scores. Dataset GSE21034 consists of
primary prostate tumors, metastases, and prostate cancer cell
lines. In order to concentrate on the differences associated with
Gleason score, only primary tumor samples were considered
for the analysis. The highest scoring PhysioScores are fetal
liver and pancreas, increasing with Gleason score, as well as
prostate, decreasing with Gleason score (Figure 5). Statistical
validation via sample label permutation, however, reveals that
there are likely no detectable significant signatures present in
the dataset analyzed by us, with the lowest adjusted p-value
(Benjamini-Hochberg [32]) being 0.57. This example shows the
importance of rigorous statistical validation in order to avoid
false positive results as frequently obtained through gene label
permutation [33]. A first hint on the non-significant results may
have been obtained by the observable lower PhysioScores,
compared to the previous analyses (Figure 5). However, it is
generally not possible to define a rigorous significance
threshold for the PhysioScores, since their absolute value
depends on the size and correlation structure of the gene sets
[33].

We applied the PhysioSpace method additionally to compare
metastases and primary tumors in dataset GSE21034. The
result of this analysis is dominated by a strongly negative
prostate-signature (Figure S3 in File S1). This is reasonable,
since metastases are not located in or close to the prostate, in
contrast to primary prostate tumors. The positive associations
are dominated by immune and cell line scores including a
rather weak, but significant association with the ESC-signature
(PhysioScore of 12.6, adjusted p-value of 0.024).

Furthermore, we analyzed dataset GSE16560, in order to
investigate whether differences in prostate cancer samples of
different Gleason scores have any physiological interpretation.
In this analysis, a weak association between Gleason score
and cell line signatures, including the ESC signature, can be
found (Figure S3 in File S1). The corresponding adjusted
permutation p-values for the ESC signature show a trend
towards higher Gleason scores (p = 0.22, 0.11, 0.32, and 0.21
for Gleason scores 6 vs 7, 8, 9, and 10, respectively).

Markert et al. [12] describe an association between Gleason
score and an ESC signature for datasets GSE16560 and
GSE21034. We were not able to confirm this association with
our method. One explanation for the apparent disagreement
may be the fact that Markert et al. used not only primary
tumors, but also metastases for their analysis of dataset
GSE21034 [12]. We also found a significant association of our
ESC signature with the differential expression between
metastatic and primary tumors. Another explanation might be
that Markert et al. use a rather small gene set. PhysioSpace
and gene sets therefore may provide complementary insights
into the same experimental data.

In summary, the three presented application examples show
three qualitatively differing outcomes of the PhysioSpace
method. Breast cancer grade is significantly associated with
many signatures corresponding to various cellular phenotypes,
suggesting a common underlying mechanism. The effect of

PhysioSpace
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smoking on lung cancer is more specific, showing primarily an
increase in immune signatures. Finally, Gleason scores in
prostate cancer show no significant associations for dataset
GSE21034.

In order to investigate the effect of the spherical
transformation with real data, the permutation p-values were
compared to the PhysioScores for all cancer data, with and
without spherical transformation (Figure S4 in File S1). From
this analysis it is evident that the spherical transformation leads

Figure 4.  Details of results from cancer progression.  Ranking of PhysioScores comparing breast cancer samples of grade 1 to
grade 2 or 3 (A) and lung samples from never smokers to former or current smokers (B). Apparently, grading differences in breast
cancer are associated with more signatures from the PhysioSpace than differences in gene expression of smokers and non-
smokers. Blue (red) colors depict negative (positive) PhysioScores. Filled bars indicate significant scores according to a sample-
permutation FDR (Benjamini-Hochberg) cutoff of 0.1.
doi: 10.1371/journal.pone.0077627.g004
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to an almost linear relation between the PhysioScore and the
logarithmic permutation p-values. Without spherical
transformation, the two scores are less comparable, with
strongest deviations for signatures with highest evidence
(Figure S4 in File S1). The sensitivity is also slightly better
using the spherical transformation as evaluated by the
increased number of signatures with significant association.
The results of the GSEA-based implementation are similar to
the results without spherical transformation, reflecting a
superiority of the presented method (Figure S4 in File S1).

The almost monotonic association between PhysioScores
and permutation p-values suggests that the PhysioScore is a
valid measure to rank the signatures according to their
significance, even though it is not possible to determine a
rigorous significance threshold. This result is very important for
applications were the number of replications is too low for
sample label permutation.

Tracking differentiation time series
In vitro differentiation of pluripotent stem cells into diverse

somatic cell types is increasingly studied in order to obtain a
molecular understanding of embryogenesis, to build disease
specific in vitro models, and to develop new options for
regenerative medicine and drug development [34-36]. An
important task in this context is the detailed characterization of
cell identity and differentiation dynamics. The molecular
changes during differentiation are usually monitored based on
the expression of a few cell type specific marker genes. The
PhysioSpace method in contrast is capable of characterizing
the phenotypic changes in the context of large scale gene
expression patterns, thus complementing the routinely
performed marker gene based analyses.

We mapped the dynamic changes of three in vitro
differentiation time series (table 4) into the PhysioSpace. A
neural differentiation (GSE9940) with expression data of H9
embryonic stem cells (ESCs, day 0), embryoid bodies (EBs) at
day 6 of differentiation as well as primitive neural epithelial cells
at days 10 and 17 of differentiation. A cardiac differentiation
(GSE28191) with six time points (day 0, 2, 5, 7, 9, and 11) and

Table 3. Cancer datasets.

Accession Usage Description

GSE2990
Breast
grade

Breast cancer samples of grade 1 (64), 2 (48), or 3
(55); the 22 samples with missing information on breast
cancer grade are not used

GSE10072
Lung
smoker

107 samples from cancerous or adjacent normal lung
tissue from never (31), former (36), or current (40)
smokers

GSE21034
Prostate
Gleason

131 primary prostate cancer samples with a Gleason
score of 5 (1) 6 (77), 7 (42), 8 (7), or 9 (4); 19
metastases; normal prostate samples and cell lines are
not used

GSE16560
Prostate
Gleason

281 primary prostate cancer samples with a Gleason
score of 6 (83), 7 (117), 8 (27), 9 (49), or 10 (5).

doi: 10.1371/journal.pone.0077627.t003

a trophoblast differentiation time series (GSE30915)
incorporating seven time points (day 0, 2, 4, 6, 8, 10, and 12).
In all cases, the gene expression of differentiating cells was
compared to the starting undifferentiated ESCs. A rigorous
statistical validation is not possible, due to the small number of
sample replicates in each time step. However, according to the
previous results, the PhysioScores provide valuable
information, that can be derived from a ranking of PhysioSpace
signatures.

In a global perspective, the a priori expected signatures
dominate over time (Figure 5). The ESC PhysioScore gradually
decreases, i.e. becomes more negative with continuing
differentiation, while the lineage-specific PhysioScores, i.e.
fetal brain, placenta, and heart increase for the neural,
trophoblast, and cardiomyocyte differentiations, respectively
(Figure 5 and Figure 6 A-C). The sole exception is day 12 in
the trophoblast differentiation, showing a sharply decreasing
placenta-score compared to day 10 (Figure 6 A, C). In the
publication going along with the trophoblast differentiation
dataset [37] microarray data are only described up to day 10 of
differentiation. In order to investigate the sharp decrease in the
placenta score from day 10 to day 12, several trophoblast
related genes that were identified to be strongly upregulated
from day 0 to day 10 of differentiation [37] were analyzed. We
identified several genes that show a similarly sharp decrease
from day 10 to day 12 of differentiation, including PGF, GCM1,
GATA2, GATA3, MFAP5, KRT7, KRT8, MUC15, and HSD3B1,
which were all described to be trophoblast related [37] (Figure
S8 in File S1). Other trophoblast related genes do not show
such a sharp decrease, including CGA, CGB, and ID2. These
results indicate that the PhysioScore captures a real biological
phenomenon which would not have been detected in single
marker analysis of CGA, CGB, or ID2 genes.

For the neural differentiation, a consistently increasing
PhysioScore was observed for the whole cluster of neural
tissues (Figure 5). However, the Fetal Brain score is clearly
dominating, indicating that the differentiated neural epithelial
cells are more similar to fetal brain than to adult brain. Another
interesting observation is the rather high fetal brain score and
the negligible decrease in the ESC score for the differential
expression between ESCs (day 0) and EBs (day 6) (Figure 6 A,
C). This could be interpreted in such a way that, although a
neural transcriptional program is strongly induced in ESC under
neural differentiation conditions after 6 days, a significant
amount of residual pluripotent stem cells remain in the culture
at day 6 and still have to differentiate in order to render the
neuralized cells safe, e.g. for cell therapy purposes.

Looking closer into the cardiomyocyte differentiation, a
striking increase of the heart score can be observed from day 7
to day 9 of differentiation (Figure 6 A-C). Up to day 7, the heart
score is fairly similar to other scores representing
cardiovascular tissues, like the Coronary artery or vena cava
(Figure 6 B). The sharp increase from day 7 to day 9,
suggestive of cells passing a sharp decision point, clearly
distinguishes the heart score from the others (Figure 6 B).
Therefore, it would be interesting to analyze the differentiation
around day 7 more closely in future studies in order to detect
the molecular mechanisms behind this striking change.
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In Figure 6 C the dynamical changes of the pluripotency
(ESC) score and the lineage score (fetal brain, placenta, or

heart) are depicted. Comparing the three differentiation time
series to each other, a difference in the dynamics was

Figure 5.  Heatmap of PhysioScores combining selected signatures from three PhysioSpaces.  The PhysioScores for all six
investigated datasets are visualized in context for selected signatures. In order to evaluate the stability of the method, the signatures
were derived from three different physiological databases resulting in PhysioSpaces 1-3. The results are depicted in a heatmap-like
representation. The color scheme differs between datasets but is the same for the PhysioSpaces 1-3, ranging from negative values
in blue and green to positive values in orange and red. The dendrogram represents a hierarchical clustering of the signatures
according to a Pearson-correlation distance. Values within clusters are usually similar, e.g clusters of neural or immune signatures.
The results corresponding to PhysioSpaces 1-3 show similar dynamics and consistent dominating signatures, while the absolute
values are only approximately comparable.
doi: 10.1371/journal.pone.0077627.g005
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detected. The neural and trophoblast differentiations show an
increase in the lineage score and a fairly constant ESC score
up to day 6 of differentiation. The ESC score decreases mainly
after day 6. For the cardiomyocyte differentiation, in contrast, a
sharp decrease of the ESC score can already be observed in
early differentiation steps, and the lineage score has its
strongest increase after day 7.

The three differentiation time series were also used to
compare the presented algorithm to the GSEA-based
implementation. The matching score, as used in the simulation
results, was calculated for each time point (Figure 6 D, Figure
S9 in File S1), showing a better matching performance of our
algorithm. The main differences can be observed for the ESC
score in the trophoblast differentiation as well as the heart
score in early time points of the cardiomyocyte differentiation.

The robustness of the PhysioSpace method was evaluated
by constructing three different PhysioSpaces. For this, we have
used the same construction approach, yet employed three
different gene expression data collections, which contained
similar biological phenotypes (Materials and Methods). The
embedding of the three differentiation time series and three
cancer datasets into these three separate PhysioSpaces are
depicted in Figures S5, S6, and S7 in File S1, showing
comparable overall results among those three independently
constructed PhysioSpaces. The results for the third
PhysioSpace (Lukk et al, E-MTAB-62) are slightly more
arduous to interpret due to the large size of this particular
PhysioSpace (> 5000 microarrays) which combines several
studies from different laboratories with sometimes inconsistent
annotations. Nevertheless, the dominating scores induced by
the three exemplary differentiation time series are still scores
corresponding to brain, placenta, or heart, consistent with a-
priory expectations and the results of the main PhysioSpace.

For future extensions of the PhysioSpace the possibility to
combine signatures from different microarray platforms is going
to increase the universal applicability and thus utility of the
PhysioSpace approach. In order to be comparable, the
absolute values of the PhysioScores must be in a similar
range. We tested the principal possibility of a combination by
comparing the PhysioScores from the three different

Table 4. Differentiation time series datasets.

Accession Usage Description

GSE9940
Neural
differentiation

18 samples from a differentiation of ESCs towards
neural precursors at day 0 (3), day 6 (3), day 10
(6), or day 17 (6)

GSE30915
Trophoblast
differentiation

21 samples from a differentiation of ESCs towards
trophoblasts at days 0, 2, 4, 6, 8, 10, and 12 with
3 samples per time point

GSE28191
Cardiac
differentiation

12 samples from a differentiation of ESCs towards
cardiomyocytes at days 0, 2, 5, 7, 9, and 11 with 2
samples per time point

GSE10469
Additional
trophoblast
differentiation

2 trophoblast differentiation time series with 4% or
20% O2 at 0, 3, 12, 24, 72, and 120 hours of
differentiation

doi: 10.1371/journal.pone.0077627.t004

PhysioSpace constructions. A linear adjustment according to
the number of matching probes between the signature and the
dataset was applied to approximately account for the resulting
different gene-set sizes (Materials and Methods). A selection of
the most prominent signatures from all three PhysioSpace
constructions is depicted in Figure 5. The color-scheme is kept
constant for all three PhysioSpaces to allow comparison. The
signatures of PhysioSpaces 1 (GSE7307) and 3 (Lukk et al, E-
MTAB-62) are in similar ranges (Figure 6 A), PhysioSpace 2
(GSE2361) has slightly lower absolute values (Figure 5). In
conclusion a combination of different PhysioSpaces is possible,
at least in the case were a compact graphical representation
allows a visual comparison across different spaces.

In order to additionally test the robustness and platform
independence of the PhysioSpace method, we analyzed an
additional trophoblast differentiation time series (GSE10469,
Agilent-014850 Whole Human Genome Microarray 4x44K
G4112F microarray platform). The differentiation was
performed in two settings with either 4% or 20% oxygen. In
both settings, the Placenta-score and ESC-score dominate
(Figure S3 in File S1), supporting the validity of the method for
cross-platform analyses.

Discussion

A robust signature association method was developed that
allows the linkage of data from cellular assays with clinical data
and outcomes. This approach enables the contextual
interpretation of newly performed experiments in a
physiological “space” as represented by signatures generated
from publicly available microarray data sets, allowing “big data”
approaches. The signatures can be interpreted as directions in
a high dimensional gene expression space. Following this
geometrical interpretation, the PhysioSpace represents a low
dimensional subspace of the space spanned by all gene
expression patterns, having all a physiological interpretation.
Differential expression vectors from newly performed
experiments are compared to the reference signatures by
robust methods extending gene set enrichment algorithms to
account for the noise and heterogeneity in the data. The
comparison is performed on differential expression patterns
rather than absolute expression values in order to avoid the
direct comparison of absolute gene expression values from
heterogeneous protocols.

The combined use of gene permutation and sample-label
permutation together with the robust signature ranking ability of
the PhysioScores allows a detailed and valid statistical
interpretation of the results. It is possible to use the
PhysioScore values for ranking purposes in cases were sample
permutation is not feasible, e.g. if a class contains less than 7
samples. In this case the relevance of the high ranking features
has to be supported by other means, such as additional
experiments and analyses, literature, or marker genes. The
Prostate Cancer example shows that the sample-label
permutation approach avoids false positives, helping to decide
on further investigations and possibly saving resources.

A spherical transformation has been shown to improve the
concordance of the PhysioScore with permutation derived
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Figure 6.  Detailed results of the differentiation time series analyses.  (A) Line plots of most relevant PhysioScores for the three
differentiation time series comparing scores from PhysioSpaces 1 and 3. Lines with names ending with “Lukk” correspond to the
third PhysioSpace (Lukk et al. 2010 [18], E-MTAB-62), other lines correspond to the first PhysioSpace (GSE7307). (B) Heart and
ESC increasingly dominate leading PhysioScores in the cardiomyocyte differentiation time series. Depicted are the PhysioScores of
the 5 strongest signatures from cardiomyocyte differentiation. Red (blue) colors correspond to positive (negative) PhysioScores. (C)
Comparison of pluripotency (ESC) and lineage (fetal brain/placenta/heart) scores for the three differentiation time series exhibit
different dynamics in PhysioSpace 1. The lineage score corresponds to the dominant lineage in each differentiation, i.e. fetal brain,
placenta, and heart for the neural, trophoblast, and cardiomyocyte differentiation, respectively. (D) The matching score is used to
compare the implemented PhysioSpace algorithm to a classical GSEA based algorithm, showing relatively strong differences
between the two methods for the trophoblast and cardiomyocyte differentiations. The implemented PhysioSpace algorithm has
generally a higher matching score.
doi: 10.1371/journal.pone.0077627.g006
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significance assessment. Since the PhysioSpace method
compares only directions of vectors rather than their lengths,
sample label permutation for elliptical distributed data creates
many vectors with similar directions and, hence, similar
PhysioScores (Figure 2 B). The spherical transformation
diminishes this effect by reduction of ellipticity in the data
(Figure 2 C). On one hand, the transformation is necessary to
reduce the possibly strong influence of non-phenotype
associated variation on the definition of gene sets in the
analyzed data. On the other hand, it is necessary to create a
meaningful null distribution in the sample-label permutation
approach.

Classical gene set enrichment approaches use predefined
gene sets and evaluate the enrichment of these sets on the
differential expression in the data under investigation. In
contrast, the method presented here defines the gene sets
using the new data and calculates the enrichment on the
PhysioSpace signatures, essentially implementing a backward
gene set enrichment approach. This gives a slightly different
perspective on the data since the strict cutoff of genes is
performed on the new data instead of the retrospective data. In
addition, there is also a difference from a statistical point of
view. Many biological studies do not have more than three to
five independent replicates, making sample permutation
infeasible. Especially for time series experiments the relatively
large amounts of replicates (at least seven to nine samples)
needed for the sample permutation approach can become very
cost intensive. Therefore, many studies rely on gene label
permutation, which is not sufficient for rigorous assessment of
statistical significance, bearing the risk of “heading down the
wrong pathway” [33]. The reason for this is the correlation
structure within gene sets, violating the independence
assumption made by most statistical tests. However, while
gene label permutation cannot be used for rigorous
significance assessment, it is valid for ranking of gene sets or
signatures in order of decreasing significance, as long as the
correlation structure and gene set size is similar among gene
sets. The backward direction of gene set enrichment,
implemented in the present article, defines the gene sets based
on the new data. Thus, the gene sets, and consequently their
correlation structures, are identical for the enrichment
calculation of each signature. This results in a valid ranking of
signatures according to their significance, even in the case of
very low sample sizes.

Three different types of cancer data were analyzed in order
to show the performance of the PhysioSpace method. The
results show different kinds of outcome with many, few, or no
significant signature associations for breast, lung and prostate
cancer datasets. It is already known that determination of
biomarkers depends not only on the size of studies but primary
on the clinical phenotype [38,39]. A biomarker may be
developed with nearly any gene expression signature, as in the
case of breast cancer grade [16], or only with a very specific
signature, if at all, as in the case of prostate cancer Gleason
scores [40,41]. The PhysioSpace method allows a stable
ranking of different signatures, indicating which signatures may
be most appropriate for biomarker discovery. The sample-label
permutation approach can then be used to determine the

significance of the association, evaluating whether or not the
results can be replicated with new data drawn from the same
population.

The detailed characterization of human pluripotent stem cells
as well as their differentiation dynamics is important for quality
control and understanding of the mechanisms and dynamics of
cell fate changes. Besides the analysis of single marker genes
and proteins, a whole genome based characterization can
provide more robust information and outcome measures [6,7].
Large scale pattern based characterization of pluripotent stem
cells (iPSC) has been developed [6,42]. However, for in vitro
differentiated cells, large scale gene expression based quality
control is complicated due to the need to compare in vitro
cultivated cells to cells from tissues, showing widely differing
gene expression [19]. The PhysioSpace method allows
determining the direction of differentiation. Thus, it can be
evaluated whether the cells differentiate along the designated
lineage. The determination of directions rather than absolute
locations with the proposed robust statistical methods allows
the application of the PhysioSpace method across microarray
platforms. For absolute localization, in contrast, it is usually
necessary to specify a reference set for each microarray
platform [43,44]. In addition to characterizing differentiated
cells, it is also possible to gain insight into differentiation
dynamics. The analysis of differentiation time series data
allows to unravel time points with unexpected dynamics. For
example, the analysis of the cardiomyocyte differentiation
suggests a potential “breakpoint” in the heart-scores around
day 7 of differentiation (Figure 6 A-C), whereas the dynamics of
the pluripotency-related scores show an almost linear
decrease, indicating the existence of cell-fate decision points
along the differentiation pathway. This insight could be used to
direct further investigations into the differentiation mechanisms
at work around these special time-points which may be critical
for the overall dynamics of the underlying biological process.

The PhysioSpace compendium is derived from publicly
available gene expression data in a straightforward and
resource effective manner. More specific compendia for
specific applications can be derived easily from the large
amount of available datasets.

The robustness of the PhysioSpace method allows using
very small number of replicates, reducing experimental efforts
at the same precision. The high biological relevance of the
results confirm its usefulness for wide ranges of applications in
drug discovery and (trans-) differentiation approaches. It allows
to utilize the tremendously growing repositories of existing data
for interpretation of specific wet-lab experiments on the
background of physiology, possibly establishing a quantitative
link between lab experiments and clinical applications.

RNA-seq and related next-generation technologies have an
enormous potential for high resolution measurements of small
cell populations. Properties of specific measurement
techniques must be considered, when applying the
PhysioSpace method to datasets created by different
measurement techniques. Processing pipelines and
normalization for next-generation sequencing data is an active
field of development and all count based methods introduce
bias through low counts and different transcript lengths [45]
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that cannot be removed by normalization alone, but needs to
be addressed by the statistical method [46]. Methods such as
PhysioSpace, that are designed with a focus on robustness
and rigorous statistical evaluation, can provide a starting point
to integrate results from new data sources and promote
biological insights in future applications.

Materials and Methods

Microarray data acquisition and preprocessing
All datasets were downloaded from Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) [47] or
ArrayExpress (http://www.ebi.ac.uk/arrayexpress) [48]
databases. Either preprocessed data were taken (GSE2361, E-
MTAB-62, GSE2990, GSE10072, GSE10469, GSE16560,
GSE33789, GSE19804, GSE21034 – transcript version) or the
data were preprocessed using the apt-probeset-summarize
method of the Affymetrix Power Tools software package
(Affymetrix Power tools. http://www.affymetrix.com/
partners_programs/programs/developer/tools/powertools.affx.
Accessed 2013 September 16.) with RMA normalization
(GSE7307, GSE23402, GSE9940, GSE30915, GSE28191,
GSE18676).

Probe identifiers of different microarray platforms were
matched using the getBM method of the biomaRt R package
[49].

The breast cancer analyses were performed on the
GSE2990 dataset using all data that have information on
breast cancer grade. No distinction according to estrogen
receptor status was made. Analyses were performed for
comparison of breast cancer grade 1 vs. 2 and grade 1 vs. 3.

Dataset GSE10072 was used for the analysis of lung gene
expression of never vs. former and never vs. current smokers
using all samples from cancerous and adjacent tissues in a
single analysis. For the investigation of prostate cancer all
primary tumors with Gleason-score 6, 7, 8, or 9 from dataset
GSE21034 (transcript version) were used. Comparisons were
made between samples of Gleason score 6 vs. 7, 6 vs. 8, and
6 vs. 9. In a separate analysis, primary tumors were compared
to metastases. Additionally, all data from dataset GSE16560
were used to analyze differences associated with Gleason
scores.

For the neural, trophoblast, and cardiomyocyte differentiation
analyses, datasets GSE9940, GSE30915, and GSE28191
were used, respectively. Samples were grouped according to
time of differentiation. No distinction according to treatment
was made for the neural differentiation. An additional
trophoblast differentiation dataset (GSE10469) was analyzed
with separate analyses for the normoxic (20% oxygen) and the
hypoxic (4% oxygen) conditions. In all comparisons,
differentiating cells were compared to the starting pluripotent
stem cell samples.

Simulation of mixed samples
The computational mixing was achieved by a linear

combination of tissue and ESC samples with mixing factor λ

xmixed=λxESC+ 1−λ xtissue

The mixing was performed on non-transformed data, in
contrast to all other calculations that were performed on log2-
transformed data. For the first simulation, xESCrepresents a
dataset with 20 ESC samples, obtained from GSE33789 by
taking each ESC sample twice, and xLungthe first 20 of the 40
randomly drawn lung samples, obtained from GSE19804.
Hence, the data simulate an infiltration of up to 5% ESCs
(λ=0,0.01,…,0.05) into the rather heterogeneous samples from
lung cancer and adjacent lung tissue. In the second simulation,
the first 5 ESC samples from GSE33789, each taken twice,
were mixed with 10 samples of adjacent normal lung tissue
(GSE19804) and compared to the remaining 5 ESC samples.
The tissue fraction in the mixture ranges from 0.1 to 1 in steps
of 0.1, i.e. the fraction of ESCs wasλ=0.9,0.8,...,0. For the third
simulation, a single ESC sample from dataset GSE33789 was
mixed with each of the 22 tissues and 2 cell lines from dataset
GSE18676 and compared to the remaining 9 ESC samples.
The mixing factor was set toλ=0.97.

PhysioSpace generation
The PhysioSpace consists of a compendium of gene

expression signatures, representing vectors of differential
expression. Differential expression is calculated using a
Student’s t-test between samples from a specific tissue or cell
line and a computationally built reference. The reference is
chosen as the vector of mean expression values of all samples
in the dataset, in order to simulate a common reference
showing no tissue-specific expression. The standard error of
the mean expression is used as standard deviation of the
reference for calculation of t-tests. The signed log10-p-values of
the t-tests are used as PhysioSpace signatures.

Three different PhysioSpaces were built for the analyses to
show the robustness of the presented results (table 1). The first
PhysioSpace consists of a total of 94 signatures built from
datasets GSE7307 and the embryonic stem cell (ESC) data
from GSE23402. The assignment of samples to signatures was
done according to the sample annotations. The 94 signatures
were calculated on the 18484 probes that could be associated
with a hgnc-symbol and are present on both the Affymetrix
GeneChip Human Gene 1.0 st and the Affymetrix GeneChip
Human Genome U133 Plus 2.0 arrays.

The second PhysioSpace was built based on the GSE2361
dataset using all available probes. This dataset consists of 36
samples, each representing a different human tissue. Thus, the
second PhysioSpace consists of 36 signatures, each
representing the differential expression of a single sample to
the computationally built common reference.

The 369 signatures of the third PhysioSpace were built
according to the 369 Groups annotated in dataset E-MTAB-62.
Again, all probes of the Affymetrix GeneChip Human Genome
U133A array were used to calculate the signatures.

For visualization purposes the signatures were hierarchically
clustered based on a Pearson-correlation distance using
average-linkage, indicating some common gene expression
features of signatures clustering closely together.
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Mapping of gene expression differences onto the
PhysioSpace

For a comparison of two phenotypes, e.g. different times of
differentiation, or cancer stages, the mapping of the differences
in gene expression onto the PhysioSpace is done by the
following three-step procedure consisting of a spherical
transformation, a data-based definition of gene sets and an
enrichment calculation via a Wilcoxon rank-sum test.

Spherical transformation.  The spherical transformation of
the data is an essential step for the statistical validation. It
allows the meaningful calculation of a null-distribution of the
enrichment score via sample label permutation (Figure 2 B, C,
Figure 3 B).

Starting from a gene-wise standardized (i.e. centered and
scaled) data matrix D a singular value decomposition is
calculated (D=UΣVT). The entries of the diagonal matrix Σ are
then truncated to a maximum of t (Σ˜ i j=min Σi j,t ), what can be
interpreted as a normalization of the principal components. In a
final step, the spherically transformed data are calculated as
D˜ =UΣ˜ VT . The spherical transformation is applied pair-wise,
i.e. for each comparison of two phenotypes. In the application
examples the truncation parameter t was set to 1.

Data based gene set definition.  In the second step of the
mapping procedure two sets of up- and down-regulated genes
are determined, each containing the top 5% of up- and down-
regulated genes, respectively. Genes are ranked
corresponding to their mean fold changes between the two
phenotypes.

The cutoff of 5% up- or down-regulated genes was chosen,
on one hand, to focus on large scale patterns rather than a few
genes and, on the other hand, to exclude genes that are only
driven by noise. In the application examples it turned out that
the results were quite robust with respect to a variation of the
cutoff parameter between 1% and 10% (data not shown).

Rank sum based enrichment score.  In the third step, a
gene set enrichment score is calculated on the PhysioSpace
signatures using the gene-sets of the previous step. The
wilcox.test procedure of the R stats-package [50] is used to
calculate a Wilcoxon rank-sum test between the sets of up- and
down-regulated genes. The final enrichment score (called
PhysioScore) is then defined as the signed log10 p-value of the
Wilcoxon-test.

Statistical validation
A sample-label permutation approach with B=1000

permutations is used to rigorously determine statistically
significant signatures. The permutation p-value is defined as

1+∑b=1
B I sb≥s0
1+B

where s0 is the absolute value of the observed PhysioScore,
sb,b=1,…,B, are the absolute values of the permutation
PhysioScores, and I is the indicator function, being 0 if sb is
smaller than s0 and 1 otherwise. All sample permutation p-
values were adjusted for multiple testing using the Benjamini-
Hochberg correction [32].

Scaling of PhysioScores for inter-platform
comparisons

In Figure 5 and Figure 6 A, PhysioScores corresponding to
gene expression signatures from different microarray platforms
are compared. Due to the different platform designs there exist
some differences in the number of probes between platforms
resulting in different numbers of genes used for the Wilcoxon
test. Assuming independence of platform design and gene
expression differences in the data, i.e. values are missing at
random; the effect of the different sample size on the log10 p-
value is approximately linear in the relevant range (data not
shown). Therefore, the PhysioScore values were linearly
transformed to simulate same number of genes.

Implementation and availability
All analyses were conducted in the R programming language

[50], R version 2.13.0 under Windows. The R codes for the
spherical transformation and the mapping of new data into the
PhysioSpace are available as supplemental material (File S3).
The three PhysioSpaces implemented and discussed in the
manuscript are available upon request. The PhysioScores and
permutation p-values of the differentiation time series and
cancer analyses are available as supplemental excel file (File
S2).
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