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Abstract

Magnesium (Mg) is a promising biodegradable metallic material for applications in cellular/tissue engineering and
biomedical implants/devices. To advance clinical translation of Mg-based biomaterials, we investigated the effects and
mechanisms of Mg degradation on the proliferation and pluripotency of human embryonic stem cells (hESCs). We used
hESCs as the in vitro model system to study cellular responses to Mg degradation because they are sensitive to toxicants
and capable of differentiating into any cell types of interest for regenerative medicine. In a previous study when hESCs were
cultured in vitro with either polished metallic Mg (99.9% purity) or pre-degraded Mg, cell death was observed within the
first 30 hours of culture. Excess Mg ions and hydroxide ions induced by Mg degradation may have been the causes for the
observed cell death; hence, their respective effects on hESCs were investigated for the first time to reveal the potential
mechanisms. For this purpose, the mTeSRH1 hESC culture media was either modified to an alkaline pH of 8.1 or
supplemented with 0.4–40 mM of Mg ions. We showed that the initial increase of media pH to 8.1 had no adverse effect on
hESC proliferation. At all tested Mg ion dosages, the hESCs grew to confluency and retained pluripotency as indicated by
the expression of OCT4, SSEA3, and SOX2. When the supplemental Mg ion dosages increased to greater than 10 mM,
however, hESC colony morphology changed and cell counts decreased. These results suggest that Mg-based implants or
scaffolds are promising in combination with hESCs for regenerative medicine applications, providing their degradation rate
is moderate. Additionally, the hESC culture system could serve as a standard model for cytocompatibility studies of Mg
in vitro, and an identified 10 mM critical dosage of Mg ions could serve as a design guideline for safe degradation of Mg-
based implants/scaffolds.
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Introduction

Various biomaterials have been explored with different stem cell

types for enhanced tissue regeneration [1,2,3,4]; however,

integration of magnesium (Mg) scaffolds with human pluripotent

stem cells remains unexplored despite its great potential. Mg

combines the inherent mechanical strength and conductivity of

metals with biodegradability and biocompatibility in the human

body, making it promising for the use in biomedical implants and

scaffolds. For instance, Mg is currently being explored for bone

implants because it has a high strength-to-mass ratio and an elastic

modulus of 45 GPa that is similar to bone [5]. Furthermore, Mg’s

conductivity makes it promising for neural implant applications

[6,7], since studies have shown that the conductive properties of

neural implants play a key role in supporting neuronal growth and

reducing glial scar tissue formation [8]. As a biodegradable

implant material, Mg eliminates the necessity of secondary

surgeries for implant removal. Moreover, Mg ions, one of the

degradation products of Mg, alleviate pathological conditions

associated with imbalance of Mg ion levels [9]. Clinically, Mg

sulfate solution has been administered intravenously for treating

aneurysmal subarachnoid hemorrhage and eclampsia [10,11]. In

short, Mg-based metals can provide biomedical implants and

scaffolds with beneficial properties for improved clinical outcomes.

One of the main challenges in using Mg-based biomaterials is its

rapid degradation, which causes adverse effects on the local

physiological environment due to high Mg ion concentrations,

alkaline pH conditions, and release of hydrogen gas. Mg degrades

by reacting with water through the following overall reaction:

Mg(s)z2H2O(l)?Mg2zz2OH{zH2(g) ðReaction1Þ

Previous studies have shown that degradation of Mg was

initially rapid as indicated by acute pH increase during the first 24

hours, but slowed down after 24 hours because a degradation layer

forms on the surface [12,13]. Therefore, to compare with polished

metallic Mg, Mg samples that were pre-degraded in the cell

culture for 24 hours were investigated as a possible means to

alleviate the effects induced by initial acute degradation.

(Reaction 1)
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Literature reports on the cytocompatibility of Mg-based

materials are inconsistent due to lack of standardized protocols

[14]. Because the cell types, material processing parameters, and

sample surface preparation procedures vary, it is difficult to

directly compare the results of these studies [5,13,15,16].

Furthermore, studies in current literature did not distinguish the

role of each factor among all contributing factors (e.g. Mg alloy

design and processing, elevated Mg ion concentrations, and

increased pH) on the observed cell responses. Therefore, we

developed an in vitro model to investigate the combined and

individual factors of Mg degradation on cell behavior in this study.

The knowledge on the cellular functions in response to the

respective Mg degradation products (i.e., hydroxide ions and Mg

ions) will provide a useful design guideline for Mg-based implants/

scaffolds prior to in vivo studies and clinical translation.

We attempted the use of human embryonic stem cells (hESCs)

as our screening model due to their high sensitivity to chemicals

and toxicants, their capability of prolonged proliferation, and their

ability to differentiate into three germ layers for regenerative

medicine [17]. ESCs provide a sensitive in vitro model to assess the

possible adverse effect of Mg alloys in the early stages of the

implant or scaffold development to minimize the potential risk in

animal and clinical studies later. The validated embryonic stem

cell test (EST) utilizes mouse embryonic stem cells as a predictor

for embryo toxic compounds because embryos and fetuses are

more sensitive to environmental toxicants than adults are [18].

However, this mouse-based EST often does not faithfully correlate

to cellular responses in human [19]. Thus, to eliminate the

concerns on the differences of species, the human ESC model was

used for this in vitro study. Moreover, previous studies confirmed

the greater sensitivity of hESC model in detecting subtle cytotoxic

effects [20,21]. Specifically, Cipriano et al. investigated the effects

of four different Mg-Zn-Sr alloy compositions on their degradation

properties and determined their cytocompatibility using the hESC

model [20,21]. Although Cipriano et al. demonstrated the efficacy

and sensitivity of the hESC model in screening Mg alloys, the

exact mechanisms of observed hESC death remained elusive. In

an effort to elucidate the possible causes for hESC death, we not

only compared the in vitro hESC responses to pure Mg and pre-

degraded Mg, but also extensively investigated the combined and

individual effects of Mg degradation products released to hESC

culture. For the purpose of mechanistic studies, commercially pure

Mg was selected to eliminate additional variables induced by

different alloying compositions and processing parameters. Pre-

liminary results showed that induction of pure Mg samples to

hESC culture led to cell death after 30 hours of culture [22]. In

this study, we further investigated the proliferation and pluripo-

tency of hESCs in response to Mg and its degradation products to

reveal underlying mechanisms and to understand the respective

effects of pH and Mg ions on hESC behavior.

Last but not the least, hESCs provide an attractive therapeutic

option for cell replacement therapy and regenerative medicine

considering their ability to proliferate and differentiate into

different cell types, such as neurons, osteoblasts, or fibroblasts,

for the targeted tissue regeneration. The effects of Mg ions of

various concentrations on the pluripotency of hESCs were

examined for the first time in this study to determine the feasibility

of Mg-based biodegradable scaffolds for maintaining hESC

pluripotency for potential stem cell therapies. Rather than isolating

relevant adult cells from animals or human tissues that have

limited expansion capacity, hESCs have greater capacity for

proliferation, thus reducing the number of animals and donors

needed for tissue and cell harvests. Moreover, hESC model

provides an in vitro system for studying genetic and degenerative

diseases; and this disease-in-a-dish model is useful for understand-

ing cellular responses to Mg-based implants or scaffolds in patients

with specific diseases. Additionally, magnesium sulfate (MgSO4) is

used clinically to treat pregnant women with eclampsia, but its

safety and mechanism are still unknown [23]; and this study

elucidates the possible embryo toxicity of elevated Mg ion

concentrations.

Materials and Methods

Preparation and Characterization of Mg Samples
As-rolled 99.9% pure Mg sheets (Good Fellow, Coraopolis, PA)

were grinded using 600, 800, and 1200 grit silicon carbide abrasive

papers (PACE Technologies, Tucson, AZ) to remove the oxide

layer and expose the metallic Mg on the surface. The Mg with the

metallic surface was referred to as M-Mg in this study. The M-Mg

sheets had a thickness of 250 mm and were cut into 565 mm

squares for surface characterization and hESC culture. Mg

samples were individually weighed before the stem cell culture.

The M-Mg surface was then disinfected with 100% ethyl alcohol

(VWR, Radnor, PA) followed by ultraviolet (UV) radiation in a

class II biosafety cabinet for 12 hours on each side. The surface

microstructure and elemental composition of the M-Mg before cell

culture were characterized previously using an XL30 FEG

scanning electron microscope (SEM, Phillips, North Billerica,

MA) with the attached detector for energy-dispersive X-ray

spectroscopy (EDS; EDAX, Mahwah, NJ) [22].

Human Embryonic Stem Cell Culture Experiments
1. Preparation of the hESCs and culture media. H9

hESCs (WiCell, Madison, WI) were stably transfected with an

OCT4-GFP reporter plasmid as previously described [24]. H9-

OCT4 hESCs were maintained with mTeSRH1 media (STEM-

CELL Technologies, Vancouver, BC, V5Z 1B3, Canada) in T-25

flasks coated with GeltrexH (Invitrogen, Grand Island, NY) and

Dulbecco’s Modified Eagle Medium (DMEM) (Invitrogen

11965092) (1:50).

A solution of alkaline mTeSRH1 media was prepared to study

the effects of alkaline pH condition on hESC behaviors.

Specifically, mTeSRH1 media was adjusted to pH 8.1 using

0.1 M NaOH, as this pH 8.1 was the average pH of media

cultured with the Mg samples for 24 hours.

A 4 M of Mg ion stock solution was prepared by dissolving

0.837 g of MgCl2N6H2O into 1 mL DI water and sterilized by

filtering through a 0.20 micron filter (Sartorius Stedim, Bohemia,

NY). This 4 M of Mg ion stock solution was sterilely mixed with

mTeSRH1 media in a ratio of 1:100, 3:400, 1:200, 1:400, 1:1000,

and 1:10000 to obtain the mTeSRH1 media supplemented with

40, 30, 20, 10, 4, and 0.4 mM Mg ions, respectively. The baseline

Mg ion concentration in mTeSRH1 media was 0.56 mM [25].

2. Preparation and characterization of pre-degraded Mg

samples. Upon reaching 80–90% confluency, the H9-OCT4

hESCs were passaged and split at a ratio of 1:5. Accutase

(Innovative Cell Technologies, San Diego, CA), and glass beads

were used to detach the cells from the flask surface. These

detached cells were then centrifuged at 800 rpm for 3 minutes,

resuspended in mTeSRH1 media and incubated in the GeltrexH-

coated wells of a tissue-culture-treated 12-well plate under

standard cell culture conditions (that is, a sterile, 37uC with 5%

CO2/95% air, humidified environment). After 24 hours of

incubation for cell attachment, the mTeSRH1 media were

replenished, and four M-Mg samples were placed in the transwellH
inserts (Corning, Union City, CA) and inserted into the wells

where H9-OCT4 hESCs were cultured. After 24 hours of

Mg Degradation on Human Embryonic Stems Cells
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incubation, the Mg samples were collected, dried in a vacuum

oven at room temperature for 24 hours, and weighed under sterile

conditions. These samples were pre-degraded in the cell culture

and referred to as D-Mg. The pH and Mg ion concentration of the

post-culture media were measured, and these values were used as

the basis for selecting the alkaline pH conditions and supplemental

Mg ion dosages.

The surface microstructure and elemental composition of the D-

Mg sample were characterized by SEM and EDS respectively, at

an accelerating voltage of 15 kV. The insoluble precipitates and

degradation products were kept intact on the surface to gain a

better understanding of the biodegradation process. EDS analysis

was performed at a magnification of 2000X so that a substantial

portion of the sample surface would be analyzed.

3. The hESC culture with the Mg samples and the

experimental media conditions. Three 12-well plates were

prepared similarly as described above for in vitro stem cell

experiments with the M-Mg and D-Mg samples, alkaline pH

condition, and supplemental Mg ion dosages. Briefly, H9-OCT4

hESCs were seeded into the GeltrexH-coated wells with 1 mL of

resuspended cells and incubated under standard cell culture

conditions for 24 hours. For plate one, mTeSRH1 media were

replenished and the M-Mg and D-Mg samples were introduced

through transwellH inserts after 24 hours of incubation. For plate

two, the mTeSRH1 media were removed and replaced with the

alkaline mTesRH1 after 24 hours. For plate three, the media were

replaced with the mTeSRH1 media supplemented with 0.4, 4, 10,

20, 30, 40 mM Mg ion solutions. In each of these plates, the wells

without any Mg samples or the experimental media conditions

were included as the control. These three plates were placed into

an incubator with a live cell imaging system (Nikon BioStation

CT, Melville, NY) and maintained under standard cell culture

conditions. Two points in each well were set for time-lapse phase

contrast and fluorescence images every 6 hours for 72 hours. After

the images were taken at 24, 48, and 72 hours, the post-culture

media were collected for analysis. The media were replenished

every 24 hours with the corresponding fresh mTeSRH1 media,

alkaline mTeSRH1 media, or Mg ion supplemented mTeSRH1

media. All experimental conditions were carried out in triplicate.

Sample Characterization and Media Analysis after Cell
Culture

Mg samples were taken out from the media after 72 hours of

culture, dried at room temperature in vacuum, and weighed for

final mass. The pH of the media collected at 24, 48, and 72 hours

from all experimental conditions was measured using a pre-

calibrated pH meter (VWR, Model SB70P, Radnor, PA). Mg ion

concentrations in the collected post-culture media were deter-

mined using inductively coupled plasma - atomic emission

spectroscopy (ICP-AES; Perkin Elmer Inc., Optima 2000 DV,

Wellesley, MA). A standard curve was generated by running the

solutions containing 250, 125, 62.5, 31.25, and 15.63 mg/L

(10.29, 5.14, 2.57, 1.29, 0.64 mM) of MgCl2?6H2O. The samples

were diluted with deionized water accordingly to ensure the

measured values were within the range of the standard curve. The

ICP-AES measurements of the samples and the standards were all

carried out on the same day under the same conditions.

Immunocytochemistry and Fluorescence Imaging
After 72 hours of culture, the hESCs were washed three times

with 1X phosphate buffered saline (PBS) and fixed with 4%

paraformaldehyde for 10 minutes. After fixation, the cells were

washed 3 times with PBS, and blocked for 1 hour with an antibody

staining solution consists of PBS, 1% donkey serum (Sigma, St.

Louis, MO), and 0.1% Triton X-100 (Sigma). The cells were

incubated with the following antibodies overnight at 4uC: anti-

Sox2 (1:200, R&D systems, Minneapolis, MN), anti-SSEA3 (1:40,

Millipore, Billerica, MA), and anti-OCT4 (1:200, Santa Cruz

Biotechnology, Dallas, TX). These cells were then washed 3 times

with PBS, incubated with Alexa FluorH 488 or Alexa FluorH 594

secondary antibodies (Life Technologies) at room temperature for

one hour, and mounted in the VECTASHIELDH mounting

medium with DAPI (Vector Laboratories, Burlingame, CA).

Fluorescence images were taken using an inverted fluorescence

microscope (Nikon, Eclipse Ti, Melville, NY).

Cell Proliferation Analysis
Fluorescence images from immunostaining were used to

quantify the number of cells expressing pluripotency markers at

the endpoint of 72-hour culture. Specifically, SOX2 and DAPI

stained cells were counted in six randomly selected regions using

ImageJ software to calculate the average cell density (cells per unit

area) and standard deviation. The time-lapse phase contrast and

fluorescence images recorded by the Biostation CT were used to

quantify the coverage area of viable H9-OCT4 hESC colonies.

ImageJ software was used to manually outline the coverage area of

viable cell colonies expressing GFP driven by the OCT4 promoter.

The percentage of area covered by viable cell colonies was

calculated using the outlined area divided by the total image area,

multiplied by 100. Viable cell colonies were quantified based on

phase contrast images because the tightly packed colonies of

hESCs had well-defined external boundaries and morphologies,

and the hESCs had a high nucleus to cytoplasm ratio [26].

Since each experimental condition was tested in triplicate wells

with the time-lapse images at two different areas in each well, 6

images were analyzed and averaged for each test condition.

Furthermore, the coverage area of viable cell colonies was

normalized over the first recorded time point for each respective

condition. These image based methods were used for cell viability

and proliferation studies instead of the commonly used tetrazolium

based assays (e.g. MTT assay) because Mg ions converts

tetrazolium salts to formazan and thus interferes with the results

[27]. That is, MTT assay yields greater cell viability values than

the actual in the presence of Mg ions, which is misleading [27].

RNA Extraction and Analysis with Quantitative
Polymerase Chain Reaction

H9-OCT4 cells were collected at the endpoint of 72-hour

culture. The total RNA was extracted for each group of cells using

the ZR RNA MicroPrep Kit (Zymo Research, R1061, Irvine,

CA). The RNA concentrations were quantified using a multi-

volume multi-sample spectrophotometer system with Gen5

software (BioTek EpochTM, Winooski, VT). RNA from the

sample extraction was reverse-transcribed with iScript cDNA

synthesis kit (BioRad, Hercules, CA) on a thermal cycler (BioRad,

MyCycler). cDNA was subjected to the real-time quantitative

polymerase chain reaction (qPCR) analysis using TaqMan probes

(Life Technologies) on a CFX384 instrument (BioRad, CFX384).

The gene-specific probes tested and housekeeping genes were

listed in Table 1. Housekeeping genes were used as endogenous

controls to normalize gene expression. The qPCR cycling

temperatures and times were set initially at 95uC for 5 min,

followed by 40 cycles at 95uC for 1 min, 60uC for 1 min, and

72uC for 1 min, and the last extension step was set at 72uC for 5

minutes. Each reaction was performed in triplicate.

Mg Degradation on Human Embryonic Stems Cells
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Statistical Analysis
A script was written in the program R for the Shapiro-Wilk

normality test, the F test, and the standard analysis of variance

(ANOVA) test. Standard post-hoc analysis with the Holm-

Bonferroni correction was used on the ANOVA test results.

Values of p,0.05 for the Shapiro-Wilk test and F tests were used

to verify the normality and the variance of the data. Values of

p,0.05 were considered statistically significant.

Results

Surface Characterization of the Mg Samples and the
hESC Responses

The scanning electron microscopic (SEM) image and energy

dispersive X-ray spectroscopy (EDS) analysis of the D-Mg surface

in Figure 1 confirmed the presence of a degradation layer on the

pre-degraded Mg samples. While M-Mg surface has previously

been shown to be smooth with traces of polishing marks and a

composition that mainly consists of Mg [22], the D-Mg surface in

this present study showed corrosion cracks around the grain

boundaries and a composition that consisted of 27 at.% Mg, 50

at.% oxygen (O), 19 at.% carbon (C), 3 at.% phosphorous (P), 1

at.% calcium (Ca), and 1 at.% sodium (Na). These components of

the degradation layer after 24 hours of culture with hESCs likely

resulted from the degradation products of Mg, precipitation of

inorganic salts from the culture media, and the interactions among

Mg, its degradation products, and the media components [13].

Previous study on Mg cultured with mesenchymal stem cells in

Dulbecco’s Modified Eagle Medium (DMEM) for 24 hours

showed the presence of similar elements (Mg, O, P, Ca, and

Na), with the exception of C on the surface [12]. In this study, we

detected the presence of C on the surface, possibly from the

proteins and lipids in the mTeSRH1 media [25]. The ionic

compositions of the mTeSRH1 media and DMEM were listed in

Table 2 in comparison with human blood plasma [25,28].

Although we speculated that the media composition and ionic

strength might affect Mg degradation process, rate, and compo-

sition of the degradation layer on the surface [28], the exact

mechanism is still uncertain. The ionic strength of the mTeSRH1

media used in this study were less than that of DMEM and human

blood plasma, as shown in Table 2. Human blood plasma

represents the typical physiological environment that Mg-based

implants or scaffolds are exposed to in the human body.

A preliminary study on the cytocompatibility of M-Mg and D-

Mg samples showed rapid hESC death within the first 30 hours of

culture [22]. A closer look at the phase contrast images of hESCs

revealed that the hESCs cultured with the M-Mg and D-Mg

showed a more dispersed morphology as compared with the blank

control without Mg samples at 12 and 18 hours, as shown in

Figure 2. This change of colony morphology correlated with the

initial increase of coverage area of viable hESC colonies at 12 and

18 hours as reported in the preliminary study [22].

Table 1. Genes screened by Q-PCR to determine
pluripotency of hESCs.

Gene Type Genes

Housekeeping 18S, ACTB, GAPDH

Human ES POU51 (OCT4), SOX2, NANOG, KLF4,
ZFP42 (REX1), cMYC

Endoderm SOX17, PRDM1 (BLIMP1)

Mesoderm GOOSECOID

Neuroectoderm PAX6

doi:10.1371/journal.pone.0076547.t001

Figure 1. Surface morphology and composition of D-Mg. (A) SEM image and (B) EDS analysis of the D-Mg sample, showing the presence of a
degradation layer on the surface. Accelerating voltage: 15 kV. Original Magnification: 2000x. Scale bar = 20 mm.
doi:10.1371/journal.pone.0076547.g001

Table 2. The ion concentrations of inorganic salts in the
culture media in comparison with human blood plasma
[25,28].

Concentration (mM)

Ions mTeSRH1 DMEM Human Blood Plasma

Na+ 113.74 155.31 142

K+ 3.26 5.33 5

Li+ 0.98 – –

Mg2+ 0.56 0.81 1.5

Ca2+ 0.82 1.80 2.5

Fe3+ – 0.0002 –

Cl2 100.96 119.27 103

HCO3
2 18.00 44.05 27

NO3
2 – 0.0007 –

H2PO4
2 0.36 0.92 –

HPO4
22 0.39 – 1

SO4
22 0.32 0.81 0.5

Ionic
Strength

0.12 0.17 0.15

doi:10.1371/journal.pone.0076547.t002

Mg Degradation on Human Embryonic Stems Cells
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The results of the post-culture media analysis in Figure 3

showed that the media pH and Mg ion concentrations for the

culture with both Mg samples significantly increased as compared

with the control without Mg samples. This increase in media

alkalinity and Mg ion concentrations was expected as a result of

Mg degradation as described in Reaction 1 in the Introduction.

Specifically, the media pH increased from the initial value of 7.55

to a range of values from 8.1 to 8.3 as shown in Figure 3A, while

the average Mg ion concentrations increased from 1.2 mM to

values that ranged from 23 mM to 33 mM as shown in Figure 3B.

A general trend of gradual decrease in average pH and Mg ion

concentrations over time was observed for both Mg samples. A

statistically significant difference in post-culture media pH was

detected between the M-Mg and D-Mg samples at 24 and 72

hours, indicating slightly lower pH for the media cultured with D-

Mg. No statistically significant difference in Mg ion concentrations

was detected between the M-Mg and D-Mg samples at all the time

points. In addition, the mass measurements showed that the

percentages of average mass loss for the M-Mg and D-Mg samples

at the end of 72 hours of culture were 24% and 23%, respectively,

with no statistically significant difference.

The hESC Response to the Alkaline Media Condition
The specific effect of alkaline media on the hESC response was

investigated because the elevated media pH was caused by

hydroxide ions, one of the degradation products of Mg samples.

The pH of mTeSRH1 media was specifically adjusted to 8.1 before

pipetting into the culture wells, because this pH value represented

the average media pH when the polished metallic Mg was pre-

degraded in hESC cell culture for 24 hours. The H9-OCT4

hESCs cultured with the alkaline media still proliferated and grew

into confluency, with the normal undifferentiated morphology

similar to that of the control wells throughout the 72 hours of

culture (image not shown). Moreover, as shown in Figure 4A, the

normalized coverage area of viable cell colonies increased under

alkaline media condition as compared to the control at each time

point of 6–30 hours, with statistically significant differences

(p,0.05) detected. Specifically, after 30 hours of culture, the

viable colony coverage quadrupled under alkaline media condi-

tions, and only tripled for the control, as compared with the initial

value at time zero. This greater coverage area of viable cell

colonies under the alkaline media condition indicated that the

initial increase of media pH did not cause adverse effects on hESC

proliferation. Therefore, the initial increase of media pH to 8.1

might not be the direct cause of cell death observed in the cultures

with the Mg samples.

Figure 4B shows that the post-culture media had higher pH

values for all of the time points under alkaline media condition as

compared with the control, with statistically significant difference

detected at time zero, 24 and 72 hours. Furthermore, the pH of all

the post-culture media decreased over time and dropped to ,7

after 48 hours, possibly due to the regular metabolic processes of

the hESCs that released acidic metabolites.

The hESC Response to the Supplemental Mg Ion Dosages
The specific hESC response to excess Mg ions in the media was

investigated because Mg ion was one of the major degradation

products released during Mg degradation. The H9-OCT4 hESCs

proliferated and grew to confluency in the mTeSRH1 media

supplemented with 0.4–40 mM of Mg ion dosages, as shown in

Figure 5. The time-lapse images revealed that the hESCs

maintained their tightly packed colony morphologies throughout

the culture period in the media supplemented with 0.4–4 mM Mg

ions, similar to the control wells, as shown in Figure 5. The images

for 0.4 mM media condition were not shown as they were very

similar to the control. When the supplemental dosages of Mg ions

increased to a range of 10–40 mM, however, the hESCs lost their

tightly packed morphology, with a decrease in cell-to-cell

adhesion, as shown in Figure 5. Evidently, the hESCs became

more dispersed with greater cellular extensions, and thus appeared

Figure 2. Phase contrast optical images of hESC colonies cultured with M-Mg and D-Mg. As compared with the control, the H9-OCT4
hESCs exposed to the M-Mg and D-Mg showed increased dispersion at 12 and 18 hours of culture, and thus greater coverage area of cell colonies.
Scale bar = 100 mm.
doi:10.1371/journal.pone.0076547.g002
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to have greater coverage area at the Mg ion dosages of 10 mM

and greater.

The analysis on the coverage area of viable cell colonies, as

shown in Figure 6A, revealed two distinct groups: one group

composed of the control, 0.4 and 4 mM that showed lower

coverage area (referred to as L-group), and the other group of 10,

20, 30, 40 mM that showed higher coverage area(referred to as H-

group). The normalized coverage area of viable hESC colonies

showed no statistically significant differences (p.0.05) within the

L-group or within the H-group at every time point. The

normalized coverage area of viable hESC colonies in the H-group

were greater than the control, with statistically significant

differences (p,0.05) at all the time points. The increased coverage

areas of viable hESC colonies were most likely due to the changes

of hESCs from tightly packed to loosely dispersed morphologies in

the media supplemented with Mg ion dosages above 10 mM,

without an actual increase in the cell number as indicated in

Figure 6B. In other words, at the end of 72 hours of culture, the

average number of hESCs per 0.5 mm2 decreased as the

supplemental Mg dosages increased, as shown in Figure 6B.

Generally, all the DAPI-stained cells expressed the pluripotency

marker SOX2 as verified by overlaying the fluorescence images of

DAPI and SOX2 stains. The cultures supplemented with 0.4 and

4 mM Mg ions showed similar cell counts as the control. In

contrast, the cultures supplemented with 10–40 mM Mg ions

showed less cell counts than the control; and the statistically

significant difference (p,0.05) was detected.

Figure 7A shows the pH values of the post-culture media at

every 24 hours over a 72-hour period. For all the test conditions

and the control, the pH values decreased at the 48 and 72 hours as

Figure 3. Media pH and Mg ion concentrations in the media collected at every 24 hours after hESCs were cultured with M-Mg and
D-Mg for 72 hours. (A) The average pH and (B) the average magnesium ion concentrations (**p,0.05 compared to M-Mg). Values are mean 6
standard deviation: n = 3. The average pH and Mg ion concentrations for the culture with both Mg samples significantly increased as compared with
the control without Mg samples. The statistically significant lower pH of the post-culture media with D-Mg was detected in comparison with M-Mg.
Furthermore, after 24 hours, a general trend of gradual decrease in average pH and magnesium ion concentrations over time was observed for both
Mg samples. (**p,0.05 compared to M-Mg). Values are mean 6 standard deviation: n = 3.
doi:10.1371/journal.pone.0076547.g003
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compared with that at 0 and 24 hours. This increased acidity at

the later stages possibly resulted from the release of acidic

metabolites into the media during cell proliferation. No statically

significant difference was detected among all the test conditions

and the control at the 24 hours. At 48 and 72 hours, the media

supplemented with 0.4–20 mM Mg ions maintained a pH

comparable to that of the control (with the exception of the

media supplemented with 4 mM Mg ions at 48 hours). In contrast,

the media supplemented with 30 mM and 40 mM Mg ions had

significantly higher pH values when compared with the control at

48 and 72 hours, respectively.

Figure 7B shows the Mg ion concentrations in the post-culture

media as measured by the ICP-AES. Statistically significant

differences were detected when the supplemental Mg ion dosages

increased to 10 mM and greater, as compared with the control,

0.4 mM and 4 mM media conditions. As the supplemental Mg ion

dosage increased in the initial culture media, more Mg ions were

consumed during culture. For example, after culturing hESCs for

24 hours in the media supplemented with 10 mM Mg ions, about

7–8 mM of Mg ions were left in the post-culture media. After

culturing hESCs for 24 hours in the media supplemented with

40 mM Mg ions, approximately 24–25 mM of Mg ions were left

in the post-culture media.

In Figure 8, the immunocytochemistry analysis on the

pluripotency of H9-OCT4 hESCs revealed the expression of

OCT4 and SSEA3 on the hESCs cultured in the media

supplemented with 4–40 mM Mg ions for 72 hours. The images

for 0.4 mM media condition were not shown as they were very

similar to the control. Real-time qPCR analysis showed that the

expressions of several pluripotency-related genes – OCT4, SOX2,

NANOG, KLF, REX1, and cMYC – reduced slightly in the

culture supplemented with 40 mM Mg ions, as shown in Figure 9.

However, no statistically significant difference was detected among

all the testing groups due to the large data deviation. We also

assessed the expressions of early differentiation markers in the cells

for potential lineages, including SOX17 (endoderm), GOOSE-

COID (mesoderm), PAX6 (neuroectoderm) and BLIMP1 (germ

cell). The hESCs cultured in the media with the supplemental Mg

ion dosages did not appear to express any of the differentiation

markers after 72 hours of culture.

Discussion

The objective of this study was to investigate the effects of Mg

and its degradation products (Mg ions and hydroxide ions) on the

viability, proliferation, and pluripotency of hESCs. Test conditions

of the alkaline media and the supplemental Mg ion dosages were

selected based on the measured pH values and Mg ion

concentrations when M-Mg was pre-degraded for 24 hours. Since

it was previously shown that the Mg samples induced cell death

within the first 30 hours of culture [22], we designed additional

testing conditions to determine the potential causes of the cell

death. The alkaline media condition was set to be at the pH of 8.1,

similar to the pH of media containing the metallic Mg, while the

supplemental Mg ion dosages were tested at a range of 0.4 mM to

40 mM, which represented the range of normal physiological to

therapeutic level. For example, the Mg ion dosage used for

treating eclampsia ranges from 16–24 mM (4–6 g intravenously)

[29], and this value is within the tested range of magnesium ion

concentrations in this study. Using the sensitive hESC model, we

are able to assess cytocompatibility of Mg-based implants or

scaffolds, differentiate the specific effects of Mg ions and alkaline

pH on the hESC behavior, and identify possible adverse effects of

Mg at the early stages of development to minimize the potential

risks in animal and clinical studies later.

The Effects of Surface Conditions on Mg Degradation and
Cytocompatibility

Various studies with Mg and its alloys have focused on surface

modifications to delay Mg degradation, since surface conditions

have been shown to play an important role in Mg degradation and

cytocompatibility [12,30,31]. For example, in a study describing

the effects of surface conditions (polished versus oxidized surfaces)

of Mg-yttrium (Y) alloy on their interactions with bone marrow

derived mesenchymal stem cells (MSCs), the samples with polished

surfaces had superior cell adhesion due to their slower degradation

(slower rate of mass loss and lower overall pH increase) [30].

We modified the surface of metallic Mg (M-Mg) with a

degradation layer to form pre-degraded Mg (D-Mg) samples that

Figure 4. Coverage area of viable hESC colonies and pH of
post-culture media under the alkaline or normal media
conditions. (A) The coverage area of viable hESC colonies at 6–30
hours of culture after being normalized over the first time point at 6
hours. Values are mean 6 standard error of the mean: n = 6. The hESCs
cultured under the alkaline media condition proliferated and grew to
confluency, indicating that the initial increase of media pH to 8.1 was
not the direct cause of cell death observed in the cultures with the Mg
samples. (B) The average pH of post-culture media collected at every 24
hours for 72 hours (*p,0.05 compared to the control). Values are mean
6 standard deviation: n = 3.
doi:10.1371/journal.pone.0076547.g004
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Figure 5. Phase contrast optical images of hESCs cultured in the media supplemented with Mg ion dosages. The hESC colonies showed
a tightly packed morphology in the media supplemented with 4 mM Mg ion dosage and in the control media, as highlighted in yellow boxes. The
images for 0.4 mM media condition were not shown as they were very similar to the control. The hESC colonies began to appear more dispersed
rather than tightly packed morphology as the Mg ion dosages increased to 10 mM and greater. Scale bars = 100 mm.
doi:10.1371/journal.pone.0076547.g005
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slightly slowed down the degradation. Although we did not detect

statistically significant differences between the M-Mg and D-Mg

samples at each tested time point in terms of their mass loss and

release of Mg ions, the average Mg ion concentration over time

showed a decreasing trend for both samples. Furthermore, the D-

Mg showed a statistically significant lower pH value in post-culture

media at 24 and 72 hours, indicating slower release of hydroxide

ions than the M-Mg samples. As the degradation layer on the

surface of the D-Mg did not provide sufficient protection for the

sample degradation and the degradation rate did not significantly

decrease, the D-Mg samples still induced cell death within the first

30 hours of culture, similar to the M-Mg samples. At 12 and 18

hours of culture, we observed that the hESC colonies lost their

typical tightly packed undifferentiated morphologies in the

cultures with D-Mg or M-Mg samples, and the cells appeared

more dispersed and elongated. In an attempt to identify the

possible mechanisms that caused the rapid cell death and

morphological change, we tested the pH values of the post-culture

media and Mg ion concentrations to serve as a guideline for the

design of each testing condition.

Cytocompatibility of Mg
In this study, we observed rapid cell death, which disagreed with

the results reported in the literature [5,13]. Specifically, Li et al.

reported that murine marrow cells in contact with Mg samples did

not show any signs of morphology change or cellular lysis under

microscopic observation [5]. Yun et al. reported that Mg samples

did not have significant effects on the viability and proliferation of

osteoblasts (ATCC HTB-96 U2OS Osteosarcoma from human

female tibia) [13]. Although the purity of Mg samples was similar

(99.9% pure Mg used in the study of Li et al. and this study, and

99.95% pure Mg used in the study of Yun et al.), the experimental

parameters and cell culture methods reported by Yun et al. and Li

et al. were different. Specifically, Li et al. used Mg samples with a

size of 26262 mm (surface area of 24 mm2), while Yun et al.

exposed the top surface of a 6 mm diameter Mg cylinder(surface

area of 28 mm2) [13]. In contrast, the surface area of Mg samples

used in the cell culture of this study was much greater, that is,

55 mm2 (56560.25 mm Mg sheets exposed in 3D). Another

difference was the cell type used. The hESCs used in this study are

more sensitive to degradation products than immortalized

osteoblasts and murine marrow cells because hESCs are more

Figure 6. Coverage area of viable hESC colonies and the numbers of hESCs when cultured in the media supplemented with Mg ion
dosages. (A) The coverage area of viable hESC colonies after being normalized over the first time point at 0 hour in the cultures with respective
supplemental Mg ion dosages (***p,0.05 when comparing L-group with the H-group). (B) The average numbers of hESCs per 0.5 mm2 after being
cultured for 72 hours and immunostained with DAPI and pluripotency marker-SOX2 (*p,0.05 compared to the control and #p,0.05 compared to
40 mM). Although the normalized coverage area of viable hESC colonies was greater at supplemental Mg ion dosages of 10 mM and greater, the cell
counts per unit area were actually lower. This confirmed that the supplemental Mg ion dosages of 10 mM and greater caused cell dispersion and loss
of tightly packed morphology. Values are mean 6 standard error of the mean: n = 6.
doi:10.1371/journal.pone.0076547.g006
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Figure 7. Media pH and Mg ion concentrations in the post-culture media collected at every 24 hours after hESCs were cultured in
the media supplemented with Mg ion dosages. (A) Average pH and (B) Mg ion concentrations in the post-culture media when the
supplemental Mg ion dosages ranged from 0.4–40 mM (*p,0.05 compared to the control at each time point respectively). Values are mean 6
standard deviation; n = 3. The cell counts in the hESC cultures supplemented with 30 and 40 mM Mg ions were statistically lower than the cultures
with lower Mg ion dosages and the control, and, therefore, less acidic metabolites formed and the pH values were statistically higher. Additionally,
statistically greater Mg ion concentrations were observed in the post-culture media at the critical Mg ion concentration of 10 mM and above, as
compared with the control, 0.4 mM and 4 mM media conditions at each respective time point.
doi:10.1371/journal.pone.0076547.g007

Mg Degradation on Human Embryonic Stems Cells

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e76547



susceptible to the changes in the media conditions than ordinary

human adult cell lines and animal cells. Additionally, the sample

preparation procedures (i.e., polishing, cleaning, and sterilization

methods) and the culture media used were different, which may

affect the cell responses as well. Specifically, Li et al. first abraded

and cleaned Mg samples using 200# waterproof abrasive paper,

ultrasonically cleaned for 10 min in distilled water, and then

sterilized in an autoclave at 373 K for 60 min. Yun et al. polished

the top surface of the mounted Mg samples using diamond slurry,

ultrasonically cleaned in ethanol, and then blown dry with a

stream of nitrogen. Li et al. cultured murine marrow cells and Mg

samples in RPMI-1640 medium supplemented with 15% horse-

serum. Yun et al. used McCoy’s 5A medium supplemented with

5% fetal bovine serum (FBS) and ascorbic acid. It has been

reported previously that the composition of culture media affected

Mg degradation rate [32], which is very likely to influence the cell

responses observed.

Clearly, inconsistencies on cytocompatibility studies of Mg-

based materials are present across literature. In some studies,

direct material exposure methods were utilized [5,13], while in

other studies media extract methods (also called indirect contact

methods) were utilized [33,34]. Specifically, in the direct material

exposure method, the Mg samples were placed directly in the cell

culture environment, while in the media extract method, the

Figure 8. Immunocytochemistry analysis on the hESC expression of OCT4 and SSEA3 after being cultured in the media
supplemented with Mg ion dosages. All H9-OCT4 hESCs cultured in the media supplemented with different dosages of Mg ions expressed
markers for OCT4 and SSEA3. The images for 0.4 mM media condition were not shown as they were very similar to the control. Nuclear localization of
OCT4 is shown in green (left column) and SSEA3 expression on the cell surface is shown in red (middle column). The right column shows merged
images of the OCT4, SSEA3, and DAPI (blue, cell nucleus). Scale bars = 100 mm.
doi:10.1371/journal.pone.0076547.g008
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media extracts harvested from the sample degradation were added

into the cell culture. We used the direct material exposure method

in this study to expose the Mg samples to the hESC culture

through transwellH inserts. Even within each type of methodology,

there were still significant differences in experimental procedures.

The differences in the sample preparation procedures, the sample

surface area exposed, the cells used, and the culture media used,

all affected the in vitro results and made it difficult to directly

compare these results across literature. To address the problems

induced by inconsistent methodology, we investigated the respec-

tive cytocompatibility effects of the key Mg degradation products,

in addition to direct material exposure method.

Effects of Alkaline Media pH on Proliferation and
Morphology of hESCs

The lower-end value for the elevated pH range of post-culture

media was 8.1, when the M-Mg and D-Mg samples were

introduced into the cultures. Yun et al. also reported the same

pH value of 8.1 in the osteoblast cell culture with Mg samples [13].

Therefore, we adjusted the culture media pH to 8.1 and

investigated the effects of alkaline media on hESC viability and

proliferation. The hESCs cultured under this alkaline media

condition grew to confluency and did not seem to alter the cell and

colony morphologies, indicating that this condition did not directly

cause the hESC cell death observed in the M-Mg and D-Mg

culture studies. In comparison, Grillo et al. reported that an

immediate increase of pH to 8.6–9.1 following Mg particle

immersion decreased UMR-106 rat osteosarcoma cell viability,

suggesting pH of 8.6–9.1 might induce adverse effects on cell

survival [35]. To further elucidate the exact effects of Mg

degradation induced alkaline pH on cytocompatibility, we still

need to continue to investigate the effects of more alkaline media

conditions with a pH value greater than 8.1 and prolonged

alkaline pH conditions on cell functions.

Effects of Supplemental Mg Ions on Proliferation,
Morphology, and Pluripotency of hESCs

In addition to the pH effect of Mg degradation, we examined

the effect of Mg ions on hESC proliferation, morphology, and

pluripotency. The hESCs cultured in the media with the tested

supplemental Mg ion dosages of 0.4–40 mM grew to confluency,

with a change in hESC morphology at dosages above 10 mM.

The hESC morphology changed from tightly packed to a more

dispersed geometries with elongated cellular extensions, and we

observed decreased cell-to-cell adhesion. The hESCs cultured with

the Mg samples showed very similar morphology change at 12 and

18 hours of culture, indicating that the elevated Mg ion

concentrations may have been the contributing factor to changes

in cell morphology. A morphology change in mouse embryo

fibroblasts was also observed in previous studies, when these cells

were cultured with the media supplemented with 250 mM MgSO4

[36].

The change in cell morphology with 10 mM or greater dosages

of supplemental Mg ions correlated with the increase in

normalized coverage area of viable cell colonies. This increase of

hESC coverage area was more likely due to the morphology

change as opposed to increased proliferation, because the

supplemental Mg ion dosages above 10 mM also showed

significantly lower cell numbers than the control at the end of

72-hour culture, as shown in Figure 6. This supplemental Mg ion

dosage level of 10 mM can serve as a critical threshold value for

the design and development of safe Mg based implants and

scaffolds, at which adverse effects on the hESC functions started to

appear. Feyerabend et al. performed cell viability studies on Mg

salts using the MTT assay and showed that the critical Mg ion

concentration was 10 mM [37]. However, another report showed

that MTT assay was inappropriate for evaluating viability and

proliferation of cells cultured with Mg-containing samples because

Mg ions could also convert tetrazolium salts to formazan and skew

the absorption spectra, thus producing false results [27]. Miki et al.

used the Trypan blue exclusion test to determine viability of mouse

embryo fibroblasts, and found that 250 mM was the critical Mg

ion concentration at which a change of cell morphology and a

decrease in cell viability (60%) were first observed [36]. This

critical Mg ion concentration was significantly greater than our

reported value of 10 mM, possibly because the hESC model used

in our study was more sensitive than mouse cells.

The post-culture analysis of media pH and Mg ion concentra-

tions in the Mg ion supplemented cultures supported the results

observed on hESC proliferation. When compared with the control

culture, a statistically significant difference in post-culture Mg ion

concentrations was first observed at the critical Mg ion dosage of

10 mM. Furthermore, the post-culture media pH may also serve

as an indicator for cellular metabolic activity, since a drop in the

Figure 9. Quantitative PCR analysis of pluripotency markers for hESCs after being cultured in the media supplemented with Mg ion
dosages. H9-OCT4 hESCs were cultured for 72 hours and analyzed for expression of the corresponding markers. No statistically significant difference
was detected among any of the groups. Values are mean 6 standard deviation; n = 9.
doi:10.1371/journal.pone.0076547.g009

Mg Degradation on Human Embryonic Stems Cells

PLOS ONE | www.plosone.org 12 October 2013 | Volume 8 | Issue 10 | e76547



pH of the growth media typically indicates increased cellular

metabolism and thus buildup of acidic metabolites. In one possible

metabolic pathway, glucose is broken down into pyruvate via

glycolysis, and pyruvate is converted into lactic acid via lactic acid

fermentation. Since the cell counts in the hESC cultures

supplemented with 30 and 40 mM Mg ions were statistically

lower than that for lower Mg ion dosages as shown in Figure 6B,

fewer cells produced less acidic metabolites, resulting in statistically

higher pH values in cultures with higher Mg ion dosages as shown

in Figure 7A.

Mg has the potential for tissue engineering and regenerative

medicine applications involving stem cells. Our immunocyto-

chemistry and qPCR analysis demonstrated that hESCs remained

pluripotent when cultured with supplemental Mg ion dosages (up

to 40 mM). We established a sensitive in vitro hESC culture system

as a standard model for cytocompatibility studies of Mg-based and

other biodegradable material, and identified a critical Mg ion

dosage of 10 mM that may serve as the design guideline for safe

degradation of Mg-based implants and scaffolds.

Conclusion

We evaluated the cytocompatibility of Mg samples and the

respective Mg degradation products (i.e., Mg ions and hydroxide

ions) using a sensitive hESC in vitro model. The pre-degradation

treatment for Mg did not improve H9-OCT4 hESC viability. The

alkaline media condition (specifically, mTeSRH1 with a pH of 8.1)

and supplemental Mg ion dosages of less than 10 mM had no

adverse effect on cell morphology and did not change the coverage

area of viable cell colonies as compared with the control. When

hESCs were cultured with supplemental Mg ion dosages of

10 mM or greater, the hESC morphology changed from tightly

packed to loosely dispersed, which led to the increase in

normalized coverage area of viable hESC colonies. This critical

dosage (.10 mM) of supplemental Mg ions also caused a decrease

in cell counts at the endpoint of 72-hour culture. Our results

indicated that hESCs continued to express pluripotency markers at

supplemental Mg ion dosages of 0.4–40 mM. To advance Mg-

based metallic materials for medical applications, further studies

are still needed to determine the exact mechanisms of cellular

responses, including not only hESCs but also other human cells.
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