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Background:Membrane vesicles (MVs) released from various cells are associated with human diseases.
Results:MVs isolated from human serum induce the formation of mineralo-organic nanoparticles in culture.
Conclusion: MVs represent a nucleating factor that promotes the formation of mineralo-organic nanoparticles and the pre-
cipitation of mineral deposits in body fluids.
Significance:The ectopic precipitation of carbonate apatite deposits in body fluids and tissues may be initiated in part byMVs.

Recent studies indicate that membrane vesicles (MVs)
secreted by various cells are associated with human diseases,
including arthritis, atherosclerosis, cancer, and chronic kidney
disease. The possibility that MVs may induce the formation of
mineralo-organic nanoparticles (NPs) and ectopic calcification
has not been investigated so far. Here, we isolated MVs ranging
in size between 20 and 400 nm from human serum and FBS
using ultracentrifugation and sucrose gradient centrifugation.
TheMV preparations consisted of phospholipid-bound vesicles
containing the serum proteins albumin, fetuin-A, and apolipo-
protein A1; the mineralization-associated enzyme alkaline
phosphatase; and the exosome proteins TNFR1 and CD63.
Notably, we observed that MVs induced mineral precipitation
following inoculation and incubation in cell culture medium.
The mineral precipitates consisted of round, mineralo-organic
NPs containing carbonate hydroxyapatite, similar to previous
descriptions of the so-callednanobacteria.AnnexinV-immuno-
gold staining revealed that the calcium-binding lipid phosphati-
dylserine (PS) was exposed on the external surface of serum
MVs. Treatment of MVs with an anti-PS antibody significantly
decreased theirmineral seeding activity, suggesting that PSmay
provide nucleating sites for calcium phosphate deposition on
the vesicles. These results indicate that MVs may represent
nucleating agents that induce the formation of mineral NPs in
body fluids. Given that mineralo-organic NPs represent precur-
sors of calcification in vivo, our results suggest that MVs may
initiate ectopic calcification in the human body.

Recent studies indicate that variousNPs3 present in the envi-
ronment constantly interact with the human body and may be
associated with disease conditions. For instance, the inhalation
of asbestos nanofibers derived from fireproof materials is asso-
ciated with the development of lung cancer and fibrotic lung
damage known as asbestosis (1). Similarly, titanium dioxide
NPs, which are widely used as whitening agents in commercial
products, induce acute toxicity to various organs in laboratory
animals (2). Given that NPs show unexpected size-dependent
properties and increased access to various body compartments,
the potential toxicity of such nanomaterials represents an
important safety concern and is now a major research focus in
the fields of nanomedicine and nanotoxicology (3).
Mineralized NPs called NB were initially described as the

smallest living microorganisms on earth (4) and as the possible
causative agent of various humandiseases, includingAlzheimer
disease, atherosclerosis, cancer, chronic kidney disease, kidney
stones, and prostatitis (5–7). However, recent studies per-
formed by us (8–17) and others (18–22) have shown that the
so-called NB actually represent non-living mineralo-organic
NPs that possess biomimetic properties, including the ability to
increase in size andnumber in culture. Although the hypothesis
that NB represent living microorganisms has been discarded,
several studies have indicated that mineral NPs similar to NB
do form in the growing bones and teeth of vertebrates (23–25).
Mineralo-organic NPs have also been observed in undesired,
ectopic calcification associated with various human and animal
conditions (26–30). As such, these mineral NPs may represent
calcification precursors found in both physiological and patho-
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Human body fluids have been shown to contain membrane
vesicles (MVs) in the form of small lipid-bound vesicles
released from various cells (31). These vesicles have been
broadly categorized as exosomes, microvesicles, and apoptotic
bodies (32). Exosomes represent 30–100-nm vesicles released
from cellular endosomes and are thought to be involved in cell-
to-cell signaling (32–34). Microvesicles are amore heterogene-
ous group of 100–1,000 nm vesicles released from the plasma
membrane of various cells; they have been implicated in inter-
cellular communication, homeostasis, and cellular waste dis-
posal (32, 35). Apoptotic bodies represent particles ranging
from 50 nm to 5 �m, which are released by apoptotic cells and
removed through phagocytosis bymacrophages (32, 34). Given
that the level of MVs is elevated in the body fluids of humans
afflicted with various ailments, some authors have proposed
that these vesicles may play a role in disease conditions that
include arthritis, atherosclerosis, cancer, and chronic kidney
disease (31, 36, 37). On the other hand, it remains unclear
whetherMVs represent a consequence of the disease process or
whether they play an active role in pathogenesis.
Matrix vesicles represent a different type of extracellular

vesicles implicated in physiological and pathological calcifica-
tion processes in vertebrates (38–40). Matrix vesicles are
20–200-nm vesicles released from mineralizing cells, such as
osteoblasts and odontoblasts, which induce mineralization in
bones and teeth, respectively. During ectopic vascular calcifica-
tion, these vesicles are also released by vascular smooth muscle
cells (VSMCs), which develop into osteoblast-like cells and
induce calcium phosphate precipitation when exposed to
excess phosphate, inflammation, or hyperlipidemia (38–40).
Matrix vesicles are thought to induce mineralization by concen-
trating calcium and phosphate ions in various ways, including via
specific ion transporters; in addition, these vesicles contain
enzymes, such as alkaline phosphatase (ALP), which degrades cal-
cification inhibitors (e.g. pyrophosphate) and releases phosphate
from various organic molecules. Although MVs similar to
matrix vesicles and apoptotic bodies have been repeatedly
described in calcified tissues (30, 41), the possibility that such
vesicles may induce the formation of mineralo-organic NPs in
body fluids has not been investigated.
Phosphatidylserine (PS), a phospholipid usually confined to

the inner lipid layer of the cell membrane (42), has been found
on the surface of various populations of MVs (32, 40). When
present on platelet-derived microvesicles, PS induces blood
coagulation, a phenomenon associatedwith an increased risk of
thrombosis (42, 43). On the surface of apoptotic bodies, PS is
thought to represent a signal that induces phagocytosis and
clearance of the vesicles by macrophages (42). Notably, PS pos-
sesses calcium-binding properties and may provide a nucleat-
ing site for calcium phosphate formation on both matrix vesi-
cles (38–40) and apoptotic bodies (44). Whether PS found on
the surface of MVs may induce the mineralization of MVs in
body fluids remains to be examined.
Several studies have been conducted to identify the factors

that induce formation of the so-called NB and mineralo-or-
ganic NPs. Cisar et al. (18) observed that the cell membrane
lipid phosphatidylinositol produces mineral NPs similar to NB
after inoculation in DMEM and incubation in cell culture con-

ditions. Raoult et al. (22) speculated that fetuin-A, a systemic
calcification inhibitor (45, 46) associated with NB (9, 22), may
initially inhibit NB formation but eventually act as a nucleator
of NB formation following a conformational change similar to
prion conversion. Our own experiments have shown that
serum proteins like albumin and fetuin-A fail to induce NB
formation under the conditions tested, although these proteins
may form seeds for the formation of mineralo-organic NPs
once the concentrations of calcium and phosphate ions exceed
saturation (11). These results suggest that other molecules or
structures, possibly in the form of lipid membranes, may re-
present factors that induce the formation of mineralo-organic
NPs similar to the so-called NB in body fluids.
In the present study, we examined the possibility that min-

eral NP formation may be induced by MVs present in body
fluids. We isolated a population of MVs from human serum
(HS) and FBS and characterized the morphological and bio-
chemical composition of these particles. Our results show that
the isolated serum MVs induce the formation of mineralo-
organic NPs when inoculated and incubated in cell culture
medium, suggesting that MVs may serve as a nucleating agent
of mineral NPs in culture and as a factor that induces ectopic
calcification in human body fluids.

MATERIALS AND METHODS

Isolation of Membrane Vesicles—Blood was collected from
healthy human volunteers using a conventional venipuncture
method. Written informed consents were obtained from the
volunteers, and the use of human samples was approved by the
Institutional Review Board of Chang Gung Memorial Hospital
(Linkou, Taiwan). Whole blood was collected into Vacutainer
tubes without anticoagulant (BD Biosciences). After centrifu-
gation at 1,500 � g for 15 min at room temperature, the super-
natant corresponding toHSwas collected and stored at�20 °C.
HS and commercial FBS (Biological Industries) were filtered
through 0.2-�m pore membranes prior to use.
MVs were isolated as before (47, 48), with minor modifica-

tions. Briefly, 10 ml of HS and FBS was centrifuged at 800 � g
for 15 min at 4 °C to spin down and remove large cell debris.
The resulting supernatant was centrifuged for 30 min at
10,000 � g. The supernatant obtained this way was centrifuged
for 60 min at 15,000 � g (SW27 rotor, Beckman Instruments).
Material present in the supernatant was pelleted by ultracen-
trifugation at 200,000� g for 2 h at 4 °C (SW41 rotor, Beckman
Instruments). The pellet was suspended in 1 ml of HEPES
buffer (20 mM HEPES, 140 mM NaCl, pH 7.4) and is referred in
the present study as “membrane vesicles” (MVs). In some
experiments, sodium azide was added at 0.02% to prevent
microbial contamination.
Dynamic Light Scattering—Oneml of resuspendedMVs was

transferred to disposable plastic cuvettes (Kartell) andmixed by
gentle inversion prior to reading using aDelsaNano Submicron
Particle Analyzer (BeckmanCoulter). Measurements were per-
formed at room temperature at an incident angle of 165°.
Although the relative particle unit used in the y axis of Fig. 1, A
andB, represents arbitrary values, this unit correlates in a linear
manner with the observed particle amount under the condi-
tions used.
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Optical and Electron Microscopies—Aliquots of MVs resus-
pended in HEPES buffer were deposited on glass slides and
observed without fixation or staining with a BX-51 optical
microscope (Olympus) equipped with a �100 oil immersion
objective with iris (UPlanFLN, Olympus) and a dark field con-
denser (Cerbe Distribution). Specimens were observed at a
magnification of�1,000, and images were acquired with a Spot
Flex color camera (Diagnostic Instruments).
For negative stain TEM, MV preparations were deposited

onto Formvar carbon-coated grids and negatively stained with
0.5% aqueous uranyl acetate, followed by drying overnight at
room temperature. In some experiments, MVs were treated
with 0.1% (v/v) Triton X-100 prior to processing for negative
staining. Specimens were examined under an EMU-3C (RCA)
or JEM-100B (JEOL) transmission electron microscope.
Precipitates obtained following incubation of DMEM con-

taining MVs (with or without added serum) were pelleted by
centrifugation at 12,000 � g for 15 min and washed twice with
HEPES buffer prior to resuspension in the same buffer. A small
aliquot was deposited onto carbon-coated grids before drying
overnight. In this case, the particles were observed without fix-
ation or staining by TEM. Electron diffraction patterns were
obtained with the JEM-100B transmission electronmicroscope
operated at 120 keV.
For immunogold staining, MVs were deposited onto nickel

grids and blocked with PBS plus 1% gelatin. The grids were
placed on liquid drops containing the diluted protein or anti-
body for 1 h at room temperature. MVs were treated succes-
sively with annexin V (BD Biosciences), rabbit polyclonal anti-
annexin V antibody (sc-8300, Santa Cruz Biotechnology, Inc.),
and goat anti-rabbit antibody conjugated with a 5-nm gold NP
(R-14001, Agar Scientific). Between each treatment, MVs were
washed successively with PBST, 0.1% Tween 20 in PBS (5 min).
Fluorescence Spectroscopy—MVs were quantified as before

(49, 50) by measuring the concentration of total proteins using
a commercial Bradford protein assay (Bio-Rad). To detect lipid
membranes, we mixed a fraction of MVs corresponding to 0.5
�g of MV proteins with 0.1 mM 1,1�-dioctadecyl-3,3,3�,3�-
tetramethylindotricarbocyanine iodide (DiR; Molecular Probes)
in a final volume of 1 ml. The probe was initially dissolved in
0.5% ethanol. Specimens were incubated for 1 h at room tem-
perature with continuous agitation. The same amount of lipo-
philic tracer was added to HEPES buffer and processed in the
same manner as a negative control. THP-1 cells (2 � 104 cells/
ml) purchased from the American Type Culture Collection
(ATCC) were used as a positive control. These cells weremain-
tained in RPMI 1640 medium containing 10% FBS and 100
units/ml of both penicillin and streptomycin. Fluorescence was
measured using a fluorescencemicroplate reader (SpectraMax
M5 Spectrophotometer, Molecular Devices) with excitation at
748 nm and emission at 780 nm.
To detect PS on the surface of MVs, we mixed 5 �l of FITC-

labeled annexin V (BD Biosciences) with a MV fraction corre-
sponding to 30 �g of total MV proteins dissolved in 100 �l of
HEPES buffer (containing 2.5 mM CaCl2), with or without 0.5
mM EDTA. Reaction mixtures were incubated for 30 min at
room temperature and subsequently washed with HEPES
buffer to remove unbound annexin V following ultracentrifu-

gation at 200,000 � g. Fluorescence emission was measured at
535 nm following excitation at 485 nm.
Sucrose Gradient Centrifugation—MV preparations obtained

byultracentrifugationwere diluted to 10% (v/v) in 1ml ofHEPES
buffer and layered on top of a centrifugation tube (Ultra-Clear
centrifugation tubes, 14� 89mm, Beckman Instruments) con-
taining a linear sucrose gradient (0.2–20% sucrose, 20 mM

HEPES, pH 7.4) prepared using a gradient maker (Gradient
Station, BioComp Instruments). After centrifugation at
100,000 � g for 15 h at 4 °C, 1-ml fractions were collected from
the top of the tube. Collected fractions were dialyzed using a
commercial microdialysis system (Invitrogen) using a mem-
brane with a 12–14-kDa cut-off (Spectra).
Lipid Analysis—Lipids were quantified in sucrose gradient

fractions by using commercial kits for phospholipids (BioAssay
Systems), cholesterol, triglycerides, HDL, and LDL (BioVision)
based on the manufacturer’s instructions.
Western Blotting—SDS-PAGE and Western blot analysis

were performed as before (9). A fraction ofMVs corresponding
to 60 �g of MV proteins, 60 �g of proteins from mineralo-
organic NPs seeded by MVs, or 60 �g of proteins from either
HeLa cells or whole serumwas dissolved in 5� “loading buffer”
(0.313 M Tris-HCl, pH 6.8, 10% SDS, 0.05% bromophenol blue,
50% glycerol, 12.5% �-mercaptoethanol) to a final concentra-
tion of 1�, prior to heating at 95 °C for 5 min and separation
under denaturing and reducing conditions on 10% SDS-PAGE
using a minigel system (Hoefer). HeLa cells were purchased
from the ATCC and cultured in minimum essential medium
containing 10% FBS and 100 units/ml of both penicillin and
streptomycin. The primary antibodies used were goat poly-
clonal anti-tissue nonspecific ALP (sc-15065, Santa Cruz
Biotechnology), mouse monoclonal anti-LAMP2 (lysosome-
associated membrane protein 2) (sc-18822), goat polyclonal
anti-human TNFR1 (tumor necrosis factor receptor 1) (sc-
31349), rabbit polyclonal anti-annexin V (sc-8300), goat poly-
clonal anti-CD63 (cluster of differentiation 63) (sc-31214), and
rabbit polyclonal antibodies prepared in-house as described
below. The secondary antibodies used were horseradish perox-
idase-conjugated anti-goat, anti-mouse, anti-sheep, or anti-
rabbit antibodies (Santa Cruz Biotechnology). Primary and sec-
ondary antibodies were diluted based on the instructions
provided by the manufacturer. The polyclonal antibodies gen-
erated in house were used at a dilution of 1:1,000. The blots
were revealed using enhanced chemiluminescence (Amersham
Biosciences) and autoradiographic films (Molecular Technolo-
gies). Membranes were stripped by using the ReBlot Western
blot recycling kit (Chemicon).
Production of Polyclonal Antibodies—New Zealand White

rabbits were obtained at�12 weeks of age. Human serum albu-
min, human serum fetuin-A, and human apolipoprotein AI
(apoA-I) as well as bovine serum fetuin-A and bovine serum
albumin were purchased from Sigma. The purified proteins
(500 �g) were dissolved in 1 ml of DMEM andmixed with 1 ml
of Freund’s complete adjuvant (Sigma) using two syringes con-
nected by a 3-way stopcock (Nipro). Each protein-adjuvant
mixture was administered intradermally on the back of the ani-
mals. Three weeks after the first immunization, one booster
dose (200 �g of protein in a 1:1 mixture of DMEM and incom-
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plete Freund’s adjuvant; Sigma) was administered every month
for a total of four times. Pre- and postimmunization blood was
collected from the ear vein. For apoA-I, 28–30 kDa gel bands
corresponding to�200�g of protein fromSDS-PAGEbands of
whole serum were used for the immunizations as described
above.
Seeding of Mineralo-organic NPs by MVs—MVs obtained by

either ultracentrifugation or sucrose gradient centrifugation
were added into DMEMwith or without 10% serum to obtain a
final volume of 1 ml. The 24-well plates were incubated under
cell culture conditions in a humidified cell culture incubator at
37 °Cwith 5%CO2. Photography of the plates andA650 readings
were performed as before (9). Day 0 pictures and turbidity
measurements were taken after reagent mixing. Mineralo-or-
ganic NPs obtained after incubation were pelleted by centrifu-
gation at 12,000 � g for 30 min and washed twice with HEPES
buffer prior to resuspension in the same buffer for furthermor-
phological and spectroscopy analyses.
CalciumDeposition Assay—The ability ofMVs to calcify was

assessed using a non-radioactive calcium phosphate deposition
assay (49). Briefly, phospholipid-richMV fractions correspond-
ing to 30 �g of total MV proteins were added into DMEM and
incubated in cell culture conditions. The incubation was termi-
nated at each time point by centrifugation at 12,000 � g for 30
min to obtain a co-precipitate of MVs and mineralo-organic
NPs. The mineral precipitate was solubilized in 0.6 M HCl for
24 h. The calcium content of the HCl supernatant was then
determined colorimetrically by using the O-cresolphthalein
complexone method (BioVision). Briefly, 2 �l of acidified
supernatant was incubated for 1 min with 150 �l of calcium
working reagent (chromogenic � base reagent mix) prior to
measurement with a microplate spectrophotometer. Absorb-
ance was read against a blank at 575 nm within 10 min of rea-
gent mixing.
To evaluate the contribution of PS to mineral seeding, we

mixedMVs (2mg of total proteins) with 0.2�g of either anti-PS
or anti-CD63 antibody in a final volumeof 1ml ofHEPES buffer
and incubated the resulting solution for 1 h at room tempera-
ture with gentle mixing.MVs were pelleted and washed follow-
ing ultracentrifugation at 200,000 � g for 2 h at 4 °C. MVs were
resuspended and incubated in 1 ml of DMEM in cell culture
conditions. After 1 week of incubation, mineral pellets were
retrieved and washed using centrifugation at 12,000 � g for 15
min. The calcium deposition assay was used to measure the
level of mineral precipitate formed.
MV Co-Precipitation Assay—A MV fraction corresponding

to 30 �g of MV proteins was added into DMEM prior to the
addition of 0.1–3 mM CaCl2 and NaH2PO4 each. After incuba-
tion in cell culture conditions for 24 h, the precipitate was har-
vested by centrifugation at 12,000� g for 30min. After washing
in HEPES buffer, the precipitate was resuspended in 50 �l of
HEPES buffer and subjected to SDS-PAGE and Western blot-
ting with the indicated antibodies. Samples that were not incu-
bated were used in parallel for comparison.
Spectroscopy Analyses—Energy-dispersive x-ray spectros-

copy (EDX)was performed as described previously (10). Briefly,
material obtained after incubation of DMEM containing MVs
(with or without serum) was pelleted by centrifugation at

12,000 � g for 30 min and washed twice with HEPES buffer
prior to resuspension in water. Mineralo-organic NPs were
dried overnight, and EDX spectra were acquired with an SEM
S-3000N scanning electron microscope (Hitachi Science Sys-
tems) equipped with an EMAX Energy EX-400 EDX device
(Horiba).
Fourier transform infrared spectroscopy (FTIR) was per-

formed as before (11). Briefly, the spectra were acquired using a
Nicolet 5700 FTIR spectrometer (Thermo Fisher Scientific)
equipped with a deuterated triglycine sulfate detector. Miner-
alo-organic NPs were prepared by adding 1 mM CaCl2 and
NaH2PO4 each in 5% FBS, followed by incubation for 1 week in
cell culture conditions (Fig. 4D, FBS-NPs). The particles were
collected by centrifugation at 12,000 � g for 15min andwashed
twice with HEPES buffer prior to drying overnight at room tem-
perature. Commercial CaCO3 (Mallinckrodt Baker), Ca3(PO4)2
tribasic (KantoChemical) andHAP(bufferedaqueoussuspension,
25% solid; Sigma) were used for comparison.
Statistical Analysis—All experiments were performed in

triplicate. The values shown represent means � S.E. Compari-
sons between control and experimental groupswere performed
using Student’s t test.

RESULTS

Isolation of Lipid-containing MVs from Serum—Mineralo-
organic NPs initially described as NB have been shown to form
when serum or other body fluids are inoculated into a cell cul-
ture medium and incubated in culture conditions for several
days (4, 5). In contrast, incubation of the cell culture medium
alone failed to producemineral NPs, suggesting that nucleating
agents exist in serum and body fluids. To verify whether MVs
may represent a nucleating agent that induces the formation of
mineralo-organic NPs in body fluids, we first isolated MVs
from serum using an established protocol (see “Materials and
Methods”). We hypothesized that MVs may induce mineral
nucleation on their surface and thus become the core of miner-
alo-organic NPs. Given that mineralo-organic NPs and the so-
called NB have sizes ranging from 50 to 500 nm (5, 9), we
focused our attention on the smallest MVs present in body flu-
ids and used a protocol involving ultracentrifugation to obtain
vesicles with diameters below 100 nm.
After ultracentrifugation of serum, we obtained a pellet con-

taining small, round particles of variable sizes when observed
under optical, dark field microscopy (Fig. 1, A and B, insets).
Based on dynamic light scattering analysis, the particles derived
from HS showed a peak size of 37 � 14 nm, whereas the parti-
cles obtained from FBS peaked at 28 � 3 nm (Fig. 1, A and B).
The sizes of the particles obtained were relatively heterogene-
ous; polydispersity index values of 0.29 and 0.22 were obtained
for HS-MVs and FBS-MVs, respectively, indicating that the
sizes of HS particles were more heterogeneous than for FBS
particles.
Under negative stain TEM, MV preparations consisted of

round particles with sizes ranging from 20 to 400 nm (Fig. 1C,
Control). In order to determine whether these particles were
delineated by a lipid membrane, we treated the MV prepara-
tions with Triton X-100, a non-ionic detergent with lipid-dis-
persing properties (48, 51). This treatment destroyed the
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integrity of serum-derived particles, leaving only membrane
remnants (Fig. 1C, Triton X-100). To confirm these observa-
tions, we used the lipophilic tracer DiR, which is weakly fluo-
rescent in an aqueous environment but becomes highly fluores-
cent when intercalated within a lipid membrane. Accordingly,
DiR did not fluoresce in HEPES buffer used as a negative con-
trol but produced fluorescence when incubated with human
acute monocytic leukemia THP-1 cells used as a positive con-
trol (Fig. 1D). DiR treatment also produced fluorescence in the
presence of MVs obtained from either HS or FBS (Fig. 1D),
confirming that the isolated MVs were lipid-bound vesicles.
Biochemical Characterization of Serum-derivedMVs—Next,

we fractionated the MV preparations by sucrose gradient cen-
trifugation and determined the biochemical composition of
each 1-ml fraction. The concentration of phospholipids, cho-
lesterol, triglycerides, and lipoproteins (i.e. LDL and HDL) in
each fraction was determined using standardized biochemical
assays. Our results showed that MV fractions contained rela-
tively high concentrations of phospholipids, averaging from 30
to 93 �M for HS-derived vesicles (Fig. 2A) and from 4 to 15 �M

for FBS-derived vesicles (Fig. 2B). Cholesterol was detected in
low amounts in HS-derived MVs (Fig. 2A, fractions 4–6, peak
at 2 �M), but none was found in FBS-MVs (Fig. 2B). Triglycer-
ides, LDL, and HDL were not detected in the MV fractions
tested (Fig. 2, A and B; data not shown), indicating that the
isolated MV fractions did not contain lipoproteins.
We then performed Western blot analysis to examine the

proteins associated with serum-derived MVs. We found that
ALP, a glycosylated membrane-bound enzyme associated with

biomineralization processes (52, 53), was associated with the
phospholipid-richMV fractions (Fig. 2, C andD). The molecu-
lar weight of the ALP found in HS-MVs (55 kDa) was smaller
than the one found in FBS-MVs (72 kDa), possibly indicating
the presence of different ALP isoenzymes in these samples.We
also detected the presence of the exosome-associated proteins
TNFR1 and CD63 in phospholipid-rich fractions (Fig. 2, C and
D), whereas other exosome proteins like LAMP2 were not
detected in our specimens (data not shown).
Albumin, fetuin-A, and apoA-I were also found in associa-

tion with serum-derived MVs (Fig. 2, C and D). Although
fetuin-A and apoA-I were associated with fractions of lighter
densities compared with fractions containing exosome pro-
teins, the three serum proteins overlapped to some extent with
exosome-associated proteins. These serum proteins have been
consistently associated with mineralo-organic NPs derived
from body fluids, and they have been shown to act as both
inhibitors and seeders of mineral particles in culture (9–11).
The structural and morphological data reported here along

with the co-distribution of phospholipids and exosome pro-
teins confirmed that the particles isolated from serum con-
sisted of MVs and included exosomes. Given that the sizes of
the isolated MVs (20–400 nm) exceeded the sizes reported
previously for exosomes (30–100 nm) (32–34), we concluded
that other vesicles, possiblymicrovesicles and apoptotic bodies,
may also be present in our MV preparations.
Serum-derived MVs Induce Mineral Precipitation in Culture—

Todeterminewhether serumMVsmay induce the formation of
mineralo-organic NPs andmineral precipitation in body fluids,

FIGURE 1. Characterization of serum MVs isolated by ultracentrifugation. MVs were isolated from HS (A) and FBS (B) by ultracentrifugation as described
under “Materials and Methods.” Round particles of heterogeneous sizes were observed under optical, dark field microscopy without fixation or staining
(insets, �1,000). Particle sizes measured by dynamic light scattering peaked at 37 � 14 nm for HS and 28 � 3 nm for FBS. C, negative stain TEM revealed round,
20 –500-nm structures (Control) susceptible to treatment with a lipid-dispersing detergent (Triton X-100; 0.1%, v/v). D, treatment with a fluorescent, lipophilic
probe (DiR; 0.1 mM) showed that both HS-MVs and FBS-MVs (corresponding to 0.5 �g of total MV proteins) produced fluorescence and thus harbored a lipid
membrane. As controls, DiR produced no fluorescence in HEPES buffer but fluoresced when incorporated in cell membranes (THP-1; 2 � 104 cells/ml). *, p �
0.01 versus control HEPES. Error bars, S.E.
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we inoculated MVs into DMEM and incubated the resulting
mixture in cell culture conditions for several days (Fig. 3A).
Although the addition of MVs into DMEM produced no tur-
bidity following inoculation at day 0, precipitation visible to the
naked eye was observed in most wells containing MVs after 1
week of incubation (Fig. 3A). The precipitation increased in a
dose-dependent manner with the amount of MVs added and
was more abundant for FBS-MVs than for HS-MVs. The level
of visible precipitation continued to gradually increase with
time, as seen after 2 weeks of incubation (Fig. 3A, 1Week versus
2 Weeks). The observations of visible MV-induced precipita-
tion were consistent with the turbidity increase monitored by
spectrophotometry at a wavelength of 650 nm (Fig. 3A, A650).
To confirm that serum MVs induce the formation of mineral
precipitates in culture, we used another assay that monitors cal-
cium deposition in a non-radioactive manner. We noticed that
DMEMcontainingMVsshowedatime-dependent increase incal-
cium deposition during incubation, whereas no calcification was
observed in DMEM alone (Fig. 3B). As seen earlier (Fig. 3A), pre-
cipitation levels produced by FBS-MVs were slightly higher than
those produced by HS-MVs (Fig. 3B).
To identify the biochemical component ofMV fractions that

induces mineral precipitation, we inoculated MV fractions
obtained by sucrose gradient centrifugation into DMEM and
measured the level of mineral precipitation following incuba-
tion in different cell culture conditions. After 2months of incu-
bation, the MV fractions containing high levels of phospholipids
induced higher levels of mineral precipitation than MV frac-
tions containing low amounts of phospholipids (Fig. 3C). Sim-
ilar results were obtained for incubation periods of either 2

weeks or 1 month (data not shown). These results indicate that
phospholipid-rich MV fractions induce mineral precipitation
in culture.
In order to evaluate whether MVs induce mineral precipita-

tion by binding to calcium and phosphate ions in cell culture
medium, we inoculated MVs into DMEM and treated the
resulting mixture with calcium and phosphate ions to induce
mineral precipitation. We have shown previously (9–11) that
the addition of calcium and phosphate ions in DMEM contain-
ing a body fluid producesmineral precipitateswithout the delay
usually required for mineral NPs to spontaneously form in cul-
ture. Here, a constant amount of MVs was added into DMEM,
followed by the addition of calciumand phosphate ions at 0.1–3
mM each. After overnight incubation in cell culture conditions,
the precipitates were harvested by centrifugation and subjected
toWestern blot analysis to detectMVproteins (Fig. 3,D and E).
Whole HS used as a control showed the presence of the pro-

teins ALP (low signal), TNFR1, and CD63 as well as albumin,
fetuin-A, and apoA-I (Fig. 3D, lane 1). In the case of whole FBS,
all of these proteins were detected (Fig. 3E, lane 1). As shown
earlier in Fig. 2,C andD, HS-MVs and FBS-MVs harboredALP,
TNFR1, CD63, albumin, fetuin-A, and apoA-I (Fig. 3, D and E,
lane 2).WhenMVs were added into DMEM and centrifuged at
low speed (12,000 � g), the vesicles could not be pelleted, as
seen by the absence of MV-associated proteins in this control
experiment (Fig. 3,D and E, lane 3). However, after inoculation
of MVs into DMEM and incubation for 1 day in cell culture
conditions prior to low speed centrifugation, several MV pro-
teins were detected (Fig. 3, D and E, lane 4), suggesting that
MVs induced the formation of mineral precipitate following

FIGURE 2. Biochemical characterization of serum-derived MVs. A and B, lipid characterization of serum MVs. MVs isolated by ultracentrifugation as in Fig. 1
were further fractionated by sucrose gradient centrifugation as described under “Materials and Methods.” The phospholipid, cholesterol, and triglyceride
content of each 1-ml fraction were assessed using standardized biochemical assays. C and D, protein characterization of serum MVs. Proteins from individual
MV fraction corresponding to 60 �g of total proteins were separated by SDS-PAGE under denaturing and reducing conditions and analyzed by Western
blotting with the indicated antibodies. The blots shown here were assembled from two different gels run in parallel, and they are separated by a blank space
between fractions 9 and 10.
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incubation and that this precipitate was heavy enough to be
pelleted by the low speed centrifugation used. When HS-MVs
were incubated intoDMEMwith exogenous calcium and phos-

phate ions were added at 0.1–3 mM each, MV-associated pro-
teins were also detected, and most proteins (ALP, TNFR1,
CD63, and apoA-I) produced signals that increased in a dose-

FIGURE 3. Serum MVs induce mineral precipitation in cell culture conditions. A, MVs prepared by ultracentrifugation from HS and FBS were quantified based on
total protein content prior to inoculation into DMEM at the amount indicated (Day 0, final volume of 1 ml). The solutions were incubated in cell culture conditions for
the time indicated. MVs produced visible precipitation that increased in a time-dependent manner. DMEM used as a negative control produced no precipitation. B, the
ability of MVs isolated by sucrose gradient centrifugation to undergo calcification. Phospholipid-rich MV fractions corresponding to 30 �g of total protein were added
into DMEM and incubated in cell culture conditions. Precipitates were collected at the time indicated following centrifugation at 12,000�g for 30 min, and the calcium
content was determined using the O-cresolphthalein complexone assay. Both HS-MVs and FBS-MVs induced the formation of calcified precipitate in a time-depen-
dent manner during incubation. C, phospholipid-rich MV fractions induce mineral precipitation in culture. 100 �l of each sucrose gradient fraction was added into
DMEM in a final volume of 1 ml prior to incubation in cell culture conditions for 2 months. Mineral precipitation was assessed by A650 turbidity readings. Turbidity
observed before incubation was subtracted from the turbidity reading obtained after incubation (Differential A650). The content of phospholipids was determined
using a standardized biochemical assay. Phospholipid-rich fractions produced slightly higher levels of precipitation under these conditions. D and E, Western blotting
analysis of co-precipitates containing MVs and mineralo-organic NPs. MVs were inoculated into DMEM, and CaCl2 and NaH2PO4 were added at the concentration
indicated in a final volume of 1 ml prior to incubation in cell culture conditions for 1 day. Mineral precipitates were pelleted by centrifugation at 12,000 � g for 30 min
prior to washing steps in HEPES buffer. Equal amounts (60 �g) of proteins from whole serum, MVs, or MV-NP co-precipitates were separated under denaturing and
reducing conditions by SDS-PAGE and probed with the indicated antibodies. Some of the lanes shown here originated from two different gels run in parallel; these are
delineated by the blank space seen in some of the blots. **, 0.1 � p � 0.5. Error bars, S.E.
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dependent manner with the concentration of ions added (Fig.
3D, lanes 5–7), indicating that MVs interacted with the exoge-
nous ions to produce a mineral precipitate. In the case of FBS-
MVs, protein signals were also detected for all MV proteins
(Fig. 3E, lanes 5–7; note that ALP, TNFR1, CD63, and apoA-I
produced signals only after the addition of ions at 3 mM).

These results suggest that the isolated serumMVs induce the
formation of calcium-containing precipitates in culture. These
MVsmay induce the formation ofmineral precipitates by bind-
ing to exogenous calcium and phosphate ions in cell culture
conditions.
Morphological and Mineral Characterization of Mineralo-

organic NPs Seeded by MVs—To verify the nature of the pre-
cipitation induced by MVs, we submitted the precipitates
(obtained in Fig. 3A) to TEM analysis without fixation or stain-
ing. The precipitates produced following inoculation of MVs
into DMEM consisted of small, round, electron-dense particles
of sizes varying from 10 to 400 nm (Fig. 4A). The fact that these
particles could be observed without staining suggested that
theymay be coated with an electron-densematerial like miner-
als (compare the negatively stained, non-mineralized MVs
shown in Fig. 1C with the unstained, mineralized MV-seeded
particles in Fig. 4A). Mineralization of the particles was con-
firmed by electron diffraction analysis, which showed several
concentric rings corresponding to a polycrystalline mineral
(Fig. 4A, insets). Particles of similar size, morphology, and elec-
tron density were noted in the precipitates seeded by FBS-MVs
(Fig. 4A). We confirmed the presence of MV proteins in the
seeded mineral NPs by Western blots (Fig. 4A, right panels).
Overall, the particles seeded by MVs were similar to the parti-
cles described earlier as NB (6, 54). No mineral particles could
be pelleted by centrifugation of incubated DMEM (data not
shown), consistentwith the observation thatDMEMalone does
not produce mineral NPs under these conditions (4, 5).
We also inoculated MVs into DMEM containing either 5%

HS or FBS prior to incubation for 2 weeks to compare the
nature of the particles obtained with and without serum. The
mixtures of MVs, DMEM, and serum producedmineral NPs of
a crystalline nature following incubation (Fig. 4B). Accordingly,
the electron diffraction patterns of these particles (Fig. 4B,
insets) showed concentric rings that were more pronounced
than that of the particles seededwithout serum (Fig. 4A, insets).
The particles obtained this way appeared larger in size com-
paredwith the particles preparedwithout added serum (Fig. 4B,
20–500 nm). All of the proteins found earlier in MVs (Fig. 2, C
and D) were detected within the MV-seeded mineral NPs (Fig.
4B, right panels).
Notably, the mineral particles seeded by MVs and serum

were highly similar not only to NB (6, 54) but also to the sec-
ondary calciprotein particles (CPPs) observed by Jahnen-Dech-
ent and colleagues in specimens obtained from patients under-
going dialysis (55) or suffering from calcifying peritonitis (27).
These observations suggest that, in addition to MVs, serum
may provide additional compounds that induce crystallization
of the mineral particles following prolonged incubation.
Next, we used EDX and FTIR spectroscopies to identify the

mineral phase associated with MV-seeded particles. Previous
studies have shown that the so-called NB (5, 56) and the min-

eralo-organic NPs observed in calcified human tissues (30, 57)
consist of carbonate HAP, a mineral similar to the one found in
bones and teeth of vertebrates (58, 59). EDX spectra of mineral
particles seeded byMVs in DMEM showedmajor peaks of car-
bon (C), calcium (Ca), oxygen (O), sodium (Na), phosphorus
(P), and sulfur (S) (Fig. 4C, HS-MVs�DMEM and FBS-
MVs�DMEM), consistent with the presence of carbonate-cal-
ciumphosphate inMV-seededNPs. Similarly, theparticles seeded
by MVs in DMEM containing serum showed similar peaks con-
sistent with the formation of carbonate-calcium phosphate (Fig.
4C,HS-MVs�DMEM�HS and FBS-MVs�DMEM�FBS).
FTIR analysis revealed major peaks of phosphate at 566

cm�1, 604 cm�1, 960 cm�1, and 1,033–1,100 cm�1 in the par-
ticles seeded byMVs inDMEMwith or without serum (Fig. 4D;
compare with the spectra of commercial Ca3(PO4)2 and HAP
shown for reference; see also Refs. 60 and 61). In addition, peaks
corresponding to carbonate at 875 and 1,430 cm�1 were found
in MV-seeded particles (Fig. 4D; compare with the signals
obtained for CaCO3; see also Refs. 62 and 63). For comparison,
a sample of mineralo-organic NPs prepared by adding calcium
and phosphate into DMEM containing 5% FBS showed similar
phosphate and carbonate peaks (Fig. 4D, FBS-NPs). These FTIR
spectra were consistent with the presence of carbonate HAP
within the MV-seeded particles. Other peaks corresponding to
H2O and the amide bonds of serum proteins were also detected
in the seeded particles (Fig. 4D; see also Refs. 58, 64, and 65).
These spectroscopy analyses confirm that the MV-seeded par-
ticles contain carbonate HAP similar to the particles described
earlier as NB (7) and to the mineralo-organic NPs found in
calcified human tissues (30).
PS on the Surface of MVs Contributes to Mineral NP Seeding—

PS appears to represent a nucleator of calcium phosphate in
matrix vesicles (38, 66). Several MV populations, such as those
released by platelets and apoptotic cells, harbor PS on their
surface (67, 68), but it is unclear whether PS acts as a nucleator
in this context. We first usedWestern blot analysis to examine
whether the PS-binding protein annexin V is present in serum
MV fractions. AnnexinVwas not detected in eitherHS-MVs or
FBS-MVs (Fig. 5A; a HeLa cell lysate was used as positive con-
trol).Next, we examinedwhether PS is present onMVsbyusing
immunogold labeling and annexin V as a probe. TEM images
showed that annexin V binds the surface of MVs isolated from
HS or FBS (Fig. 5B). Similarly, using fluorescence spectroscopy,
we observed that annexin V that was prelabeled with the fluo-
rochrome FITC interacts with MVs of both human and bovine
origins. As a control, the interaction between PS and annexinV,
which requires free calcium (69), was abrogated by the addition
of the calcium chelator EDTA (Fig. 5C). These results confirm
that PS is present on the surface of MVs isolated from serum.
We investigated whether PS found on the surface of MVs

contributes to the seeding of mineralo-organic NPs by the ves-
icles. We incubated MVs with an anti-PS antibody and mea-
sured the seeding potential of MVs following the washing steps.
Blocking PS moieties with the antibody significantly decreased
seeding of mineral NPs by MVs, whereas an anti-CD63 anti-
body used as a negative control showed no effect on seeding
(Fig. 5D). These data indicate that PS contributes to the seeding
activity of MVs.
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DISCUSSION
In the present study, we show that serum MVs isolated by

ultracentrifugation and sucrose gradient centrifugation induce
the formation of mineral NPs similar to the so-called NB fol-
lowing incubation in cell culture conditions. These results indi-
cate thatMVsmay represent the long sought nucleator of min-

eralo-organic NPs in body fluids. Moreover, these observations
support our previous studies showing that NB-like structures
represent non-living mineral NPs that possess biomimetic
properties (9, 16).
The MVs isolated from serum harbor various proteins,

including ALP, exosome markers (TNFR1 and CD63), and

FIGURE 4. MV-induced mineral precipitation represents calcium phosphate mineralo-organic NPs. A, mineral precipitates obtained from DMEM contain-
ing MVs as in Fig. 3A were harvested by centrifugation and analyzed by TEM without fixation or staining. The precipitates displayed round NPs with a dark
electron-dense structure. The polycrystalline, mineralized nature of the particles was confirmed by the concentric rings produced on electron diffraction
patterns (insets). Western blotting analysis revealed the presence of MV-associated proteins within the seeded mineralo-organic NPs (right panels). B, mineral
precipitates obtained from DMEM containing both MVs and 5% serum showed ellipsoid NPs of a polycrystalline nature (insets). MV-associated proteins were
also detected in these particles (right panels). C, EDX spectra of mineral particles seeded by MVs with or without 5% serum showed peaks corresponding to
carbon, calcium, oxygen, sodium, phosphorus, and sulfur. D, FTIR analysis revealed the presence of both phosphate groups at 566, 604, and 960 cm�1 and
between 1,033 and 1,100 cm�1 and carbonate at 875 and 1,430 cm�1, consistent with the presence of carbonate apatite. Peaks corresponding to water and the
amide bonds of proteins were also observed in MV-seeded particles. Mineralo-organic NPs prepared by adding 1 mM CaCl2 and NaH2PO4 each in 1 ml of DMEM
containing 5% FBS showed similar peaks (FBS-NPs). Commercial powders of Ca3(PO4)2, CaCO3, and HAP were included for comparison. WB, Western blot.
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serum proteins (albumin, fetuin-A, and apoA-I; Fig. 6A). The
size of the isolated MVs (30–180 nm) and the presence of exo-
some markers indicate that exosomes represent the major ves-
icles present in our preparations, consistent with previous
results obtained with a similar fractionation protocol (32).
Given that the sizes of the MVs isolated here (30–180 nm) are
slightly larger than the sizes reported previously for exosomes
(30–100 nm), it is possible that microvesicles and apoptotic
bodiesmay representminor constituents of ourMVspecimens.
The minor differences in the composition of the MVs isolated
here and in previous studies may be due to the nature of the
starting material (e.g. serum versus plasma) as well as variation
in sample preparation (70), among others.
ALP, a phosphatase enzyme found on the surface of matrix

vesicles (34, 53, 71), is found in association with the serumMVs
described here. Hunter et al. (72) have observed that blocking
ALP activity with specific inhibitors considerably decreases the
formation ofmineral particles from tissue homogenate culture.
These observations support the possibility that ALP may con-
tribute to the seeding of mineralo-organic NPs in this context.
In the case of serum proteins, we proposed in a previous

study (11) that albumin and fetuin-A may initially inhibit min-

eral particle formation butmay eventually nucleate particle for-
mation and deposition once the concentrations of calcium and
phosphate exceed saturation levels. The results obtained in the
present study appear to support this proposal, because albumin
and fetuin-Awere found in associationwithMVs,which in turn
induced the formation of mineralo-organic NPs in culture.
The presence of PS on the surface ofMVs suggests a possible

mechanism to account for the formation of mineralo-organic
NPs induced by serum MVs (Fig. 6B). PS possesses calcium-
binding properties (38–40), and its presence on the surface of
MVs suggests that this phospholipidmay serve as a binding site
for calcium and phosphate ions. Binding of calcium and phos-
phate on the surface of MVs may induce mineral precipitation
and lead to the formation of fully crystallized mineral particles
with time. Such mineral NPs have been shown to evolve into
mineralized biofilm-like structures, as seen previously for the
so-calledNB (5) andmineralo-organicNPs (9). Notably, several
human diseases, including include cancer, diabetes, malaria,
sickle cell anemia, thalassemia, and uremia, have been associ-
ated with increased exposure of PS on MVs or cells (73), sug-
gesting that PSmay also contribute to mineral NP formation in
these conditions.

FIGURE 5. PS exposed on the surface of serum MVs contributes to seeding of mineralo-organic NPs. A, Western blotting showing the absence of annexin
V on MVs isolated from either HS or FBS by sucrose gradient centrifugation. Equal amounts of proteins (60 �g) from either HeLa cell lysates (positive control),
whole serum, or MV fractions (corresponding to the same fractions as in Fig. 2) were separated under denaturing and reducing conditions on SDS-PAGE and
probed with anti-annexin V antibody. B, annexin V-immunogold labeling of serum MVs. Fixed and stained thin sections of MVs were treated sequentially with
annexin V, rabbit anti-annexin V antibody, and gold-conjugated anti-rabbit antibody prior to observation by TEM. Binding of the gold particles to MVs revealed
the presence of PS on the vesicles’ surface. C, annexin V-fluorescence labeling of serum MVs. MVs corresponding to 30 �g of total protein content were
incubated for 30 min at room temperature with FITC-labeled annexin V in 100 �l of HEPES buffer prior to centrifugation and washing steps. Both HS-MVs and
FBS-MVs produced fluorescence, which was abrogated by the calcium chelator EDTA (0.5 mM). Reaction mixtures containing either no reagents or FITC-annexin
V alone were processed as above and used as negative controls. D, PS contributes to MV-induced mineral seeding. MVs (2 mg of total proteins) were treated
with either anti-PS or anti-CD63 antibody (0.2 �g/ml) for 1 h at room temperature. MVs were then pelleted, washed, and incubated in DMEM for 1 week before
measuring calcium deposition. ***, p � 0.01. Error bars, S.E.
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Weobserved that FBS-MVs possess a highermineral seeding
ability compared with HS-MVs (Fig. 3, A and B). Fetal serum
(i.e. FBS) may represent a better pro-calcifying milieu needed
for bone and teeth formation compared with adult serum (HS).
If this is the case, FBS-MVs may show functional differences
compared with HS-MVs; accordingly, ALP appears to be pres-
ent in slightly higher amounts in FBS-MVs compared with HS-
MVs (Figs. 2 (C and D) and 4 (A and B)), an observation that
may partially explain the difference in seeding ability of these
vesicles.
Our results may have important implications for the under-

standing of ectopic calcification in humans. For one, MVs may
induce the formation of mineral NPs in tissues and body fluids
under certain conditions. Although the exact nature of these
circumstances has not been examined in the present study, var-
ious conditions could possibly induceMV-mediated seeding of
mineral NPs in vivo. For instance, a decrease in the level of
calcification inhibition proteins, an increase of calcium and
phosphate concentrations due to kidney failure, a disturbance
of vitamin D physiological activity, or an increase in the pro-
duction of MVs due to inflammation or hyperlipidemia may

lead to MV-induced formation of mineral NPs. In addition,
given thatMVs are present inmost body fluids, it appears plau-
sible that these entities may induce the formation of mineralo-
organic NPs in other areas of the body. Further studies are
currently under way to assess the relevance of MV-induced
ectopic calcification in vivo.
A prominent factor that may induce the formation of MVs

and ectopic calcification in vivo is inflammation (40). Chronic
inflammation can induce the differentiation of VSMCs into
osteoblast-like cells that produce matrix vesicles, which in turn
induce ectopic calcification. A recent study byAikawa et al. (74)
has shown that inflammation precedes ectopic calcification in a
mouse apolipoprotein E-deficient model of atherosclerosis,
suggesting that inflammation may lead to ectopic calcification.
These authors concluded that macrophages infiltrating the
sites of lipid accumulation secrete cytokines that induce the
phenotypic differentiation of VSMCs into functional osteo-
blast-like cells. Given that calcium phosphate displays pro-in-
flammatory properties (75–77), Shanahan (78) suggested that
these processes may lead to a vicious cycle of inflammation and
calcification, which would eventually propitiate atherosclero-

FIGURE 6. Schematic model illustrating the composition of MVs and the seeding of mineralo-organic NPs by MVs. A, illustration representing an MV
isolated from serum in the present study. Our results indicate that the isolated MVs consist of phospholipid-bound vesicles containing ALP, TNFR1, CD63,
albumin, fetuin-A, and apoA-I. PS was found in the outer phospholipid layer of MVs. B, calcium ions present in cell culture medium and body fluids may bind to
PS exposed on the surface of MVs and induce mineral precipitation. With time, mineralization of MVs may further increase and lead to the formation of fully
mineralized mineralo-organic NPs similar to the so-called NB. Molecules present in serum and body fluids may promote the crystallization of the mineral
particles and produce mineral precipitates similar to those observed previously in human calcified tissues.
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sis. We recently found that mineralo-organic NPs of calcium
phosphate do not activate pro-inflammatory reactions in
macrophages but that large particle aggregates led to caspase-1
activation and secretion of pro-inflammatory IL-1� (17). These
results suggest thatmineralNPs nucleated byMVsmay initially
be inert in the body but may eventually induce inflammation
andparticipate in disease processes after reaching a certain size.
Apoptosis represents another factor that may control the

formation of mineral NPs and ectopic calcification in the body.
A previous study by Proudfoot et al. (44) showed that VSMCs
calcify after about 28 days in culture and that apoptosis appears
prior to mineral precipitation. Blocking apoptosis with a pan-
caspase inhibitor reduced calcification, whereas induction of
apoptosis with anti-Fas IgM increased calcification in culture.
In the end, calcification was attributed to the release of apopto-
tic bodies (44) similar to the MVs studied here.
Obviously, differences may exist between the in vitro system

studied here and what might occur in the human body. For
instance, the observation that PS is exposed on the surface of
MVs suggests that these MVs could be subject to constant
phagocytosis and clearance by macrophages of the reticuloen-
dothelial system in vivo. It remains to be seen under what con-
ditions procalcifying MVs similar to the ones characterized
here may accumulate at amounts high enough in body fluids to
induce the formation of mineralo-organic NPs and larger cal-
cified deposits.
Jahnen-Dechent and colleagues (79, 80) have proposed that

mineral NPs in the form of CPPs may be part of a larger physi-
ological cycle that controls the use and clearance of mineral
ions in the body. These authors have proposed that serum pro-
teins like fetuin-Amay serve as systemic calcification inhibitors
and chaperone molecules that stabilize excess calcium and
phosphate in the form of CPPs, leading to clearance of the par-
ticles by the reticuloendothelial system (81). Recently, these
authors have shown that the scavenger receptor-A present on
macrophages is implicated in the recognition and rapid clear-
ance of CPPs from the blood of mice (82).
From another perspective, we noticed that the MVs isolated

from serum (Fig. 1, A and B) share similarities with a group of
intriguing particles described previously in the blood under
various names, including “microzymas,” “protits,” “somatids,”
“cancer bacteria,” “pleomorphic bacteria,” and “filterable bod-
ies,” among other terms (83–86). Vodyanoy and colleagues (87)
have reported that metal nanoclusters may form structures
referred to as “proteons” when they bind to denatured proteins
in various body fluids, such as blood. Based on these and similar
observations (8–17), we believe that the putative microzymas,
protits, somatids, and related entities may represent a combi-
nation of various particles that form spontaneously in the blood
during incubation, which may include MVs, mineralo-organic
NPs, proteons, and cellular remnants. Further studies are
needed to verify this intriguing possibility.
In summary, our results indicate that human and bovine sera

containMVs that are able to induce the formation of mineralo-
organic NPs when incubated in cell culture medium. These
results suggest that the formation of mineral NPs and ectopic
calcification occurring in the human body may be induced by
MVs similar to the ones described here.
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Note Added in Proof—We have recently extended the findings on
calcium apatite nanoparticles to other types of cations which also
assemble nano- and micro-scale structures resembling biological
topologies, which we have termed collectively as bions (Wu, C. Y.,
Young, L., Young, D.,Martel, J., Young, J. D. (2013)Bions: A family of
biomimetic mineralo-organic complexes derived from biological
fluids. PLoS One 8, e75501).

REFERENCES
1. Donaldson, K., Murphy, F. A., Duffin, R., and Poland, C. A. (2010) Asbes-

tos, carbon nanotubes and the pleural mesothelium. A review of the hy-
pothesis regarding the role of long fibre retention in the parietal pleura,
inflammation and mesothelioma. Part. Fibre Toxicol. 7, 5

2. Chen, J., Dong, X., Zhao, J., and Tang, G. (2009) In vivo acute toxicity of
titanium dioxide nanoparticles to mice after intraperitioneal injection.
J. Appl. Toxicol. 29, 330–337

3. Kim, B. Y., Rutka, J. T., and Chan, W. C. (2010) Nanomedicine. N. Engl.
J. Med. 363, 2434–2443

4. Kajander, E. O., Kuronen, I., Akerman, K., Peltarri, A., and Cifcioglu, N.
(1997) Nanobacteria from blood, the smallest culturable autonomously
replicating agent on Earth. Proc. Soc. Photo-Opt. Intrum. Eng. 3111,
420–428
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