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The vast majority of travel takes place within cities. Recently, new data has become available which allows for
the discovery of urban mobility patterns which differ from established results about long distance travel.
Specifically, the latest evidence increasingly points to exponential trip length distributions, contrary to the
scaling laws observed on larger scales. In this paper, in order to explore the origin of the exponential law, we
propose a new model which can predict individual flows in urban areas better. Based on the model, we
explain the exponential law of intra-urban mobility as a result of the exponential decrease in average
population density in urban areas. Indeed, both empirical and analytical results indicate that the trip length
and the population density share the same exponential decaying rate.

nderstanding human movement patterns is considered as a long-term fundamental but challenging task

for decades. It is an essential component in urban planning'~, epidemics spreading**® and traffic engin-

eering’"’. With the mobile positioning technology (e.g., GPS, cellular towers and Wi-Fi) widely used in our
daily lives over the years, massive amounts of individual tracks can be observed and recorded, which provides a
great opportunity to the research of human mobility patterns.

In recent studies, one of the important discoveries is that the patterns of human movements in large scale of
space, including trips between counties or cities, exhibit the Lévy walk characteristic'"'*, which is also observed in
animal motions'*". For instance, the measured trip lengths can be well approximated by fat-tailed distributions
through investigating the dispersal of bank notes in the United States'® and mobile phone records in European
countries''. While regarding to the human movements in urban areas, the latest research shows the scaling law is
absent'®**. Be specific, several studies report exponential-tailed distributions of travel distances produced by
various transportation means: taxis'®’, private cars* and subways®. Furthermore, the exponential decaying of
trip lengths is also demonstrated respectively in eight cities of Northeast China by analyzing the mobile call
records®. It is worth noting that distinct characteristic trip lengths are observed in different cities****. In order to
understand the origin of the scaling law, several possible explanations from the viewpoint of individual move-
ments*’ > are presented. The scaling law is also employed to model mobility patterns directly, which can
reproduce some statistical features of human trajectories'>. While with respect to intra-urban mobility, it is more
necessary to explore its patterns, because for most citizens the majority of their trips occur in urban areas and just
traverse small distances. Some studies conjecture that the exponential law is produced by trips from a single
means of transportation and the scaling law is obtained by aggregated trips from all kinds of transportation®>*.
But the exponential tails of trip lengths can also be observed in intra-urban human movements captured by
mobile phone calls* and location-based services*, which are not restricted to modes of transportation. Besides,
the idea of intra-urban movements are driven by the distribution of points of interest (POIs)** might be chal-
lenged by the fact that the visit probabilities of POIs depend not only on their geographical locations, but also on
their sizes and popularities. To sum up, although more and more evidence demonstrates the exponential law in
intra-urban human movements, the convincing origin of this universal rule is still missed.

Because most empirical studies aforementioned are based on collective human trips while there is no strong
evidence that individual movements have the similar patterns with collective motions****. In this paper, we
explore the statistical characteristics of intra-urban mobility and uncover the origin of the exponential law from
the perspective of collective movements. A new model is presented to predict individual flows between different
regions with high fidelity, which could also reproduce the actual distributions of trip lengths in cities. Then from
this model, we find that the traffic flux depends on the spatial population distribution heavily. Finally, both the
empirical simulations and the analytical proof indicate that the exponential law is caused by the distribution of
population density and they also share the same decaying rate. Our results can help deepen the understanding of
intra-urban movements further and provide important guidance to model individual movements in urban areas.
Moreover, our findings can offer new insights into the origin of different laws at different space scales.
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Results

Modeling collective intra-urban mobility. In this paper, human
travel records were collected from four great cities by taxis,
subways and surveys (see Methods section). It is demonstrated that
the exponential law of collective human movements does exist in
urban areas of cities (see Supplementary Information (SI) section I).

In order to understand the exponential law of collective human
mobility in urban areas, it is essential to model individual flows from
one region to the other in a city. Although the gravity model® has
already been applied widely to predict flows, including human tra-
vel**, cargo ship movement® and telephone communications™, it
still has some flaws such as incompetence to explain the discrepancy
of the numbers of individual flows in both directions between a pair
of locations. Then in order to fix its disadvantages, Simini et al.** put
forward the radiation model without parameters. In this model, the
expected flux (T;) from location i to j is defined as

PP,
(Pi+Py) (Pi+P;+Py)

(Ty)=T; (1)

where P; and P; are the populations of location i and j, T; is the
number of trips starting from i and Pj; is the total population of
locations (except i and j) from which to i the distances are less than
or equal to dj; (the distance between i and j). The model can predict
population movements between counties or cities successfully®, but
itis not clear whether the model applies to intra-urban movements as
well.

Especially noteworthy is that in urban areas, it is difficult to obtain
population distribution directly because of high mobility. Moreover,
because people often move frequently for various purposes in cities
(e.g., go to work, visit their friends and go shopping), it is unsuitable
to use resident population to model individual flows. Compared to
the resident population, the average daily population occurring in a
zone of city is more reasonable to characterize the urban mobility®,
which is because it reflects routine travel behaviors and establishes a
bond between human travel intensity and the function of the zone.
So, in this paper, we regard the number of trips arriving at a zone as
the population of the zone, which is proportional to the actual aver-
age daily population approximately.

Because the gravity model can not distinguish the directions of
human flows, we only verify whether the radiation model is applied
to predict human flows in urban areas. After calculating the popu-
lation of zones, the results of simulation in Beijing by the radiation
model is shown in Fig. 1. From the figure, it seems that the predicted
flux has a large deviation from the actual ones and the model under-
estimates the probabilities of trips with distances larger than 1 km.
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Similarly, the same phenomena can also be observed in other three
cities, which are not included here. The possible reason to account for
the incapability of radiation model is that there are different travel
habits and preferences existing in trips at different scales of space.
Therefore, it is necessary to consider a new model to understand
intra-urban human mobility patterns.

Inspired by the gravity model®, we assume that the probability
arriving at a location has a positive correlation with the population
density of the location, but has a negative correlation with the
Euclidean distance between the location and the originated location.
Hence, in our model the probability of a trip reaching the location n,
conditioned on starting from the location m, is defined as follows

p(n)
Fm)” @

where p(*) is the population density function and f(d) is a function of
distance between locations, which is usually given by two frequently
used forms: power law and exponential.

Likewise, as for regions, the probability of a trip arriving at the
region j, conditioned on originating from the region i, is defined as

P(j)

; (3)
£(d)
where P(*) is the population of regions. Then the probability of a trip
from region i to j can be derived as

P(i—7) = Puorm (i) P(jli)

P()/f () @
Zk#P(k)/f(dik),
where P,,,,,,(*) means the normalized population indicating the pos-
sibility of originating a trip from the region. Assuming T is the total

number of trips, the expected number of trips from region i to j can be
concluded as

P(n|m)oc

P(jli)oc

= Pnorm (1)

(Ty) =T-P(i—j)
— T Pnorm(i)P(j)
Zk#ip(k)/f(dik) f(dzj) (5)
_ T Pum()P())
M@)  f(dy)

where M(i)= %", P(k)/f(di).
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Figure 1 | The simulations by the radiation model in Beijing. (a) The comparison of distance distributions between actual and simulated trips. (b) The
prediction of traffic flows between regions. The grey points show the relationship between actual and predicted flux for ordered pairs of regions.
The red line y = x stands for the actual flows equal with predicted ones. The black points are the mean values of predicted flux in the bins. The ends of

whisker represent the 9th and 91st percentile in the bins.
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As described in the gravity model, the number of trips from region
i to j is equal with the one from region j to i. However, that is not the
case in our model because M(i) and M(j) depend on geographic
positions of i and j respectively, which are often not equal to each
other. In fact, it is more consistent with actual situations.

After given the actual trips, the parameter of function f{d) in our
model can be determined by using the method of Maximum
Likelihood Estimation (MLE) (see Methods section). After inspect-
ing the two forms of function f{(d) carefully, it is found that the power-
law form f(d) = d° is much better. The power-law exponents ¢ in our
model for the four cities-Beijing, London, Chicago and Los Angeles-
are 1.601, 0.402, 1.832 and 1.805 respectively. By using our model to
simulate human travels in the four cities, the relationships between
actual and predicted traffic flows are shown in Fig. 2. From the
subgraphs, it can be observed that the red lines y = x almost lie
between the 9th and the 91st percentiles in all bins except the last
bin in Los Angeles, indicating that the model can predict the number
of trips between regions accurately. Moreover, the comparisons of
distributions of actual and simulated trip lengths are illustrated in
Fig. 3. Itis discovered that the simulated distributions accord with the
actual ones very well in the four cities. The fitted exponential para-
meters for the simulated distance distributions in the four cities are
0.1828 = 0.0001, 0.181 = 0.0008, 0.0903 * 0.0017 and 0.0696 *
0.0012 respectively, which are very close to the fitted values for actual
trip-length distributions as shown in Table S1. In summary, our
model with the form of power law can be treated as an appropriate
model to predict traffic flows in urban areas.

Analyzing the influence of population distribution. From the
model, it is apparent that the spatial population distribution has an
important impact on collective human mobility. Taking Beijing as an
example, it is investigated that how the geographic population distri-
bution could affect the trip-length distribution. First, considering the
population distribution is uniform, individual trips could be predi-
cted by our model with different parameters . As shown in Fig. 4(a),
contrary to the actual trip-length distribution, the simulated distance
distributions accord to power laws with exponential cutoff very well
and decay more slowly. The power-law exponents of the two
simulated distributions are —0.716 for ¢ = 1.6 (green triangles)

and —1.100 for ¢ 2.0 (red stars), which approach to the
analytical results 1 — o (see SI section II). Second, remaining the
distribution of population numbers of cells unchanged, three
synthetic population distributions are generated by randomly
rearranging the population numbers of cells. In simulations of
human trips, the parameter ¢ of our model is the fixed value 1.601,
which is the same as the actual one in Beijing. In Fig. 4(b), the
simulated distributions are similar to each other and could be
described by power-law distributions better. In summary, these
demonstrate that not only the distribution of population numbers
but also the layout of them could influence the trip-length
distribution.

Thus, it is necessary to study the spatial distribution of urban
population. Here the relationships between the normalized average
density and the distance to urban centers are plotted in Fig. 5 for four
cities (see Methods section). From the graph, it can be observed that,
for different selected centers of each city, the average urban densities
have similar trends. More importantly, the densities for four cities all
decay exponentially with the increase of distance to the urban cen-
ters. And it is worth noting that the declining slopes are not far from
the exponents of exponential estimated from the corresponding dis-
tance distributions shown in Table SI.

Assuming the density function p(r) is a negative exponential func-
tion that depends on the distance r to the center

p(r)=Ce *(1>0,0<r<R), (6)
where C is a constant. The distance distribution P(d) can be derived
as

Cid' e <P(d) < Cyd' e, 7)
where C, and C, are constants (see the proof in SI section II). Hence
when d > 1/4, the exponential section dominates and P(d) begins to
decay exponentially.

Then, it is aimed to verify the analytical result through simulating
human trips based on our model further. And our model is simulated
on grid cells whose size is 80 X 80. When fixing the model parameter
o, as shown in Fig. 6(a), the simulated trip-length distributions
all exhibit exponential tails and the parameters of exponential
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Figure 2 | The relationships between actual and predicted traffic flux. (a)B

eijing. (b)London. (c)Chicago. (d)Los Angeles.
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Figure 3 | The distributions of actual and simulated trip distances in the four cities. The blue solid lines denote the actual traveling distance
distributions. The red triangles represent the trip-length distributions simulated by our model. (a)Beijing. (b)London. (c)Chicago. (d)Los Angeles.

distributions approach to the corresponding parameters 4 of popu-
lation density distributions. From the Fig. 6(b), the distance distribu-
tions have similar rates of exponential decay indicating that the
model parameter ¢ has little influence on the exponential tails of
distributions when fixing the parameter 4 of the density function.
In conclusion, the result of proof agrees with the simulations very
well.

According to the analytical result, it could be explained why the
exponential parameters of actual distance distributions are close to the
ones of population density distributions in the four cities. Furthermore,
in urban areas, the density usually decreases significantly leading to a
large exponent 4, thus a short range of power-law section. Meanwhile,
it must be noticed that, since the power of d is often larger than —1
(due to o < 2 like the four cities in our datasets), P(d) shows such slow
power-law decay that it is obviously not a Lévy walk observed in
collective human movements in large scale of space. Therefore, it
can explain the reason why the distance distribution of human trips
in urban areas accords with an exponential distribution much better.

It is worth mentioning that the empirical density distributions in
four cities is the same as the Clark’s model*, which is the most

10° ;

10t

102 F

Data(Beijing)

influential model for describing urban population density. Since
then, some studies have proposed other mathematical forms for
population density. For example, the inverse power function is
employed by Smeed®. Though some controversies, Parr* suggests
that the negative exponential function is more appropriate to model
the density in urban areas, while the inverse power function is more
appropriate to model the variation of density in the urban fringe and
hinterland. Therefore, the phase transition of population density
function in different scales of space may be able to explain the dif-
ferent laws emerging in collective human mobility patterns.

Discussion

In the paper, it is aimed to understand the exponential law of intra-
urban human mobility at the population level. The four travel data-
sets in urban areas of cities are analyzed, which further confirm the
exponential law. Through considering the travel flows between
regions, it is clear that the radiation model is incapable of modeling
collective human movements in urban areas. Because of this, a new
model is proposed, which can predict traffic flows between regions
very well. Based on our model, we discover that the average
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Figure 5 | The normalized average density versus the distance to urban centers. For each city, three hot regions with high population densities are
considered as urban centers. And the blue circles, green triangles and red stars denote the average densities, which are normalized by the maxima of
densities, for selected urban centers respectively. The black dashed lines represent the decreasing rates of densities with distance.

population density decreasing exponentially with distance to the
urban center ultimately leads to the exponential law of collective
human mobility patterns. Moreover, the difference of population
distribution in different scales of space might explain the differ-
ent laws (power-law and exponential) in collective human
movements.

In fact, from the exponential law, it is hard to conclude that the trip
lengths at the individual level follow a power-law distribution. It
must be noted that most empirical studies about human mobility
patterns are at the population level, but many models are trying to
explore the origin of scaling law at the individual level. Ref. 37
demonstrates that a scale-free distribution of the aggregated move-
ment lengths could also be obtained from individuals with different
exponential distributions of movement lengths. A new evidence in
human temporal dynamics® shows that although at the aggregated
level the intercall durations follow a power-law distribution, but
at the individual level they follow a Weibull distribution for the
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majority. In addition, animal motions inspire the research of human
mobility while there are still some controversies®*~*' on whether ani-
mals exhibit Lévy-like behavior. Because of these, the individual
mobility patterns should be considered carefully and more compre-
hensive human travel records are needed for deeply empirical ana-
lysis. In the future, we will investigate how the geographical
distribution of population can influence the human mobility patterns
in large scale of space in detail, to understand the intrinsic reasons of
different laws better.

Methods

Data descriptions. Beijing. The dataset is about the taxis’ GPS data generated by over
10 thousand taxis in Beijing, China, during three months ended on Dec. 31st, 2010*.
Based on taxis’ locations and statuses of occupation (with passengers or without

passengers), trajectories of passengers can be observed. After dividing the urban areas
of Beijing (inside the 6th Ring Road) into grid-like cells of 0.01 degree latitude by 0.01
degree longitude, a total of 11,776,743 trajectories between 3450 cells were extracted.
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Figure 6 | The simulations based on negative exponential distributions of population density. (a) Different population density distributions with the
fixed model parameter ¢ = 1.6. The simulated distance distributions, corresponding to different 4 (0.1, 0.2 and 0.4), decay exponentially with slope
0.085 (blue dashed line), 0.180 (green dash-dot line), 0.414 (red dotted line) respectively. (b) Different model parameters with the fixed population

density distribution (1 = 0.2).
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London. The dataset contains about 5% samples of human trips by Tube in London,
which were captured by Oyster cards during a week in November 2009 (available
online at http://www.tfl.gov.uk/businessandpartners/syndication/). In the dataset,
the stations that a journey started or ended at were recorded. It was noticed that some
stations were very close to each other, even less than 200 m. Because of too small area
of regions, it could not reflect the regular mobility patterns between regions obviously.
After merging some adjacent stations, we obtained 183 voronoi cells based on stations
and a total of 667,584 trips between them.

Chicago. The dataset used here comes from the household travel tracker survey in
Chicago Metropolitan areas conducted by Chicago Metropolitan Agency for
Planning from January 2007 to February 2008 (available online at http://www.cmap.
illinois.gov/travel-tracker-survey/). The survey contained various kinds of informa-
tion about households and travel activities of household members. Among them, the
trips occurred in the Cook county were considered which is seen as the urban area of
the city according to the population density. Then we extracted a total of 43,881 trips
between the 1314 zones which correspond to the census tracts.

Los angeles. The Post-Census Regional Household Travel Survey, sponsored by the
Southern California Association of Governments in 2001, was aimed to investigate
human travel behavior in the Los Angeles region of California (available online at
http://www.scag.ca.gov/travelsurvey/). The region consisted of six counties. In terms
of the survey data, it was paid more attention to the movements in the Los Angeles
county. As a result, based on the census tracts, the county was divided into 2017 zones
and a total of 46,000 tracks were identified between these zones.

MLE for our model. Consider a dataset of intra-urban trips between regions
D= { (seq(k) ,rf,k) ,rfik)) ‘rék) ,r[(ik) eSk=1,... ,n} in which 7 is the number of trips, S is

the set of regions and each tuple representing a trip consists of the sequence number,
the regions of origin and destination. Supposing these trips are independent of each
other, the log likelihood function is given by

log P(D) = longIIP(rf]k) %r;k))

o (8)
= Z TijlogP(i—j).
ijeS,i#]
By making use of (4), we obtain
Pnorm<i)P(j)/f(d‘j)
logP(D) = Tilog————-——2. 9)
s Z O s PO/ (i)
Therefore, the solution for the parameter ¢ of the function f(d) should satisfy
o =arg min(—logP(D)). (10)

In this paper, the Nelder-Mead simplex algorithm* is employed to evaluate the
parameter ¢ numerically.

Intra-urban population distribution. The spatial distribution of population in a city
is often characterized by average population density with the distance to the urban
center. As for the dataset of Beijing, the trips are in very fine granularity and there are
similar-sized regions (cells) with small area. After selecting the cells with high
densities as urban centers, the average densities with distance to centers are calculated
easily. But, for the datasets of other three cities, there are coarse granularity of travels
and irregular zones. It is not suitable to compute the average density directly.
Therefore, assuming that population density in each zone is uniform, the urban area is
divided into grid-like cells with size 0.005° X 0.005°. The population density of each
cell is regarded as the density of the zone in which the cell lies. Finally, the average
densities with distance can be calculated based on these divided grid cells.
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