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Biological processes are carried out through molecular conforma-
tional transitions, ranging from the structural changes within
biomolecules to the formation of macromolecular complexes
and the associations between the complexes themselves. These
transitions cover a vast range of timescales and are governed by
a tangled network of molecular interactions. The resulting hierarchy
of interactions, in turn, becomes encoded in the experimentally mea-
surable “mechanical fingerprints” of the biomolecules, their force–
extension curves. However, how can we decode these fingerprints
so that they reveal the kinetic barriers and the associated timescales
of a biological process? Here, we show that this can be accom-
plished with a simple, model-free transformation that is general
enough to be applicable to molecular interactions involving an ar-
bitrarily large number of kinetic barriers. Specifically, the transfor-
mation converts the mechanical fingerprints of the system directly
into a map of force-dependent rate constants. This map reveals the
kinetics of the multitude of rate processes in the system beyond
what is typically accessible to direct measurements. With the con-
tributions from individual barriers to the interaction network now
“untangled”, the map is straightforward to analyze in terms of the
prominent barriers and timescales. Practical implementation of the
transformation is illustrated with simulated biomolecular interac-
tions that comprise different patterns of complexity—from a cas-
cade of activation barriers to competing dissociation pathways.
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Conformational transitions in biological macromolecules—
such as the folding of nucleic acids and proteins or the binding

of receptors and their ligands—usually serve as the mechanism
that brings biomolecules into their working shape and enables
their biological function (1). The conformational dynamics of a
biomolecule are governed by its energy, which is described by a
hypersurface—the energy landscape—in a space of the multitude
of atomic coordinates. The energy landscapes of biological mac-
romolecules are rough and hierarchical: the folded and unfolded
(or bound and unbound) conformational states are often separated
by a mountainous terrain of barriers (2–4). Remarkably, the prom-
inent features of the landscape can be revealed by pulling the
molecule apart: these features manifest themselves as nonmono-
tonic signatures—rips—in the force–extension curves of the mo-
lecule (5). Characteristics of the force–extension curves uniquely
identify the biomolecule and thus serve as its “mechanical finger-
prints” (6), in which the prominent barriers on the energy land-
scape are encoded. However, how can we decode the mechanical
fingerprints to uncover the locations and heights of the barriers
and the associated timescales of biomolecular motion (Fig. 1)?
This is the central question addressed in the present paper.
The realm of biomolecular interactions can be accessed in

single-molecule force experiments, which apply a stretching force
to a biomolecule and monitor the molecule as it samples its con-
formations. The force-clamp scheme applies a constant force,
while conformational transitions are signaled by abrupt changes
in the molecular extension over time. This scheme, repeated at
several values of force F, yields the force-dependent rate constant
kijðFÞ for the transition between states i and j. The force-ramp
scheme applies a force that is increased (stretching protocol) or

decreased (relaxation protocol) with time, while the transitions are
signified by abrupt changes in the force–extension curve. This
scheme, repeated at several values of the force-loading rate, yields
transition forces Fij and their probability distributions pijðFÞ. Al-
though the rates kðFÞ from the force clamp are, in principle, rel-
atively straightforward to interpret in terms of the kinetic barriers,
only a narrow range of forces can be probed in this scheme in
practice, which limits access to the full force-dependent profiles
of these rates, obstructing their analysis. The force ramp, on the
other hand, probes a broader range of forces and is easier to
implement, but the analysis of the measured force distributions
is not straightforward.
An analytical framework for the analysis of the outputs from

these two pulling schemes has been developed for the simplest
case in which the transition involves a single barrier and is ir-
reversible. Unified expressions for the force-dependent rate kðFÞ
of rupture and for the distribution pðFÞ of forces at rupture (7)
relate these experimentally measurable quantities to the intrinsic
(i.e., zero-force) parameters of the free-energy barrier: its loca-
tion x‡ and height ΔG‡, and the associated rate k0. Furthermore,
mapping that converts pðFÞ into kðFÞ has been established (8).
The analytical forms of the expression for pðFÞ (7) and of the
mapping of pðFÞ onto kðFÞ (8) make them suitable for the analysis
of force-ramp experiments when the conformational transition,
or a particular step in the transition, can be viewed as diffusive
crossing of a single barrier with no, or no influence from, pre-
ceding barriers (9–11). However, conformational transitions in
complex biomolecules and macromolecular assemblies usually
occur via multiple barriers, as is evident from multiple rips in
their force–extension curves. In contrast with the sophistication
of the resulting mechanical fingerprints (12–15), there is no ana-
lytical theory with which to analyze and interpret such rich be-
havior. The lack of a theory is evidently due to the difficulty of
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deriving an analytical expression for the force distribution pðFÞ
in multiple-barrier systems. As a result, analytical studies of force-
induced molecular transitions in such systems usually focus on
the effective rate keff ðFÞ at constant force (16, 17). An expression
for the quantity of relevance to force-ramp experiments—the most
probable rupture force F*ðV Þ at pulling speed V—has been
attempted empirically (17): the single-barrier rate kðFÞ was re-
placed by the multiple-barrier rate keff ðFÞ in the single-barrier ver-
sion of the expression for F*ðV Þ. However, such approach is no
longer justified (17) in the force range where two or more barriers
have comparable effects on the kinetics.
Here, we show that force spectroscopy experiments that probe

conformational transitions involving multiple barriers cannot, in
general, be approached with the existing analytical tool—the
theory for an irreversible single-barrier transition—even when
transitions over individual barriers are unambiguously resolved
in the experiment. At the same time, deriving a multiple-barrier
analog of the expression for the transition force distribution, pðFÞ,
is not a feasible approach due to the complexity of the kinetics in
multiple-barrier systems. Instead, we propose an approach that
bypasses the difficulty of deriving an analytical form of the dis-
tribution of transition forces for complex landscapes—by trans-
forming these forces into a form that is straightforward to analyze.
This approach is illustrated with several examples representative
of the different types of complexity encountered in biomolecular
interactions.

Sequential Transitions Are Generally Not Independent
Consider a single-molecule force spectroscopy experiment on a
macromolecule subject to stretching and/or relaxation cycles. As
the macromolecule traverses its energy landscape, transitions
over individual barriers are translated into a sequence of abrupt
drops and increases—rips—in the force–extension curve. An abrupt
drop in the force is associated with an unfolding or unbinding
event; an abrupt increase in the force with a folding or binding
event. The values of the force at each rip (arrows in Fig. 1, Lower)
correspond to transition (unfolding or refolding) forces. By re-
peating these cycles multiple times, distributions of forces are
collected for each type of transition. How can one translate the

force distributions back into the underlying landscape and rates
(Fig. 1)?
In view of the availability of an analytical theory of force-

induced crossing of a single barrier (7, 8), it is instructive to first
consider a naive approach: replace the problem of multiple se-
quential barriers by a sequence of independent single-barrier
problems. The parameters of each barrier could then be extracted
by fitting the corresponding force histogram to the single-barrier
theory. Is such an approach justified? Simple arguments indicate
that, generally, it is not.
Indeed, the force applied to the molecule in a force ramp

changes with time as is set by the experimental protocol. Thus, the
force faced by the molecule upon arrival to a state i depends on
the time it takes the molecule to make its way through the states
leading to i, a stochastic quantity. In particular, in a stretching
protocol in which the applied force increases with time, the later
the arrival into state i (due to a stochastic delay in the preceding
states), the higher the force faced upon arrival, and even higher
the force faced upon escape. It is this latter force that is recorded
as the ith rip in the force–extension curve. Clearly, this force value
is not a characteristic of the transition from i alone, but also of the
transitions leading to i. Similar arguments hold for the relaxation
protocol, in which a delay in the preceding transitions may cause
a subsequent transition to occur at a lower force than that char-
acteristic of this transition alone. The dependence of transition
forces on the history preceding the transition in the present context
should not be confused with non-Markovian dynamics (i.e., when
the system does not equilibrate in a given state before escaping
from this state). Rather, the dependence effect originates from
the obvious fact that, while the system wanders among multiple
barriers, the applied force is being changed.
The degree to which the i→ j transition affects the j→ k tran-

sition can be assessed from the degree of overlap between the
forces faced upon arrival into the state j from i and the forces at
the escape from j en route to k (Fig. 2B). If there were no overlap
in these forces, the transitions could be viewed as independent.
A quantitative measure of the dependence of the two transitions
is the correlation coefficient (18), defined as the ratio of the co-
variance of the forces at these transitions and the product of their
SDs: rFi→ j;Fj→ k = hðFi→j − hFi→jiÞðFj→k − hFj→kiÞi=ðσFi→ jσFj→ kÞ. For
example, r= 0:6 has been reported for the native-to-intermediate
ðN→ IÞ and intermediate-to-unfolded ðI→UÞ transitions in the
experiment on a fibronectin type III module in (18). The sub-
stantial correlation indicates that the second transition ðI→UÞ is
not independent of the first one.
To appreciate the dependence factor in sequential transitions,

consider the potential shown in black in Fig. 2A at the parame-
ters representative of an RNA hairpin (9) or a medium-size pro-
tein (19). Is the transition over the second barrier equivalent to the
transition on the hypothetical potential shown in gray? Fig. 2C
compares two distributions of forces: the black histogram (Brownian
dynamics simulations; force-loading rate: 80 pN/s) results from
the transition over the second barrier on the actual potential,
whereas the distribution in gray results from the transition on the
hypothetical single-barrier potential, which eliminates any in-
fluence from the first barrier. The pronounced discrepancy be-
tween the two distributions illustrates the arguments above: a
delay caused by the first transition ðN→ IÞ shifts the force distri-
bution for the second transition ðI→UÞ to higher forces. The
second transition is thus far from being independent and cannot
be analyzed with the single-barrier version of the expression for
pðFÞ. Backward transitions ðI→NÞ at low pulling speeds will en-
hance the dependence effect even further. Fig. 2D shows the result
of transforming the force distribution for the second transition
(black histogram in C) into the force-dependent rate while ignoring
the first transition, i.e., using the single-barrier mapping (8). If such
an approach were justified, the resulting force-dependent rate
would closely match the rate obtained at a constant force directly,
which is not the case here. We conclude that sequential transi-
tions under a time-varying force are generally not independent.

Fig. 1. Conformational transitions in biological macromolecules are often
governed by complex energy landscapes. (Upper) A sequence of intermedi-
ates ðI1, . . . ,InÞ separate the native (N) and unfolded (U) states on the free-
energy profile. (Lower) Conformational transitions can be resolved as rips
(indicated by arrows) in the mechanical fingerprints. The challenge of decoding
the fingerprints, so that they reveal the rates and rate-limiting barriers, is
addressed in the present study.
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p(F ) for Sequential Transitions: An Analytical Impasse
The demonstrated fallacy of the above naive approach suggests
that a thoughtful approach must account for the dependence of se-
quential transitions. Ideally, one would like to have an analytical
expression for the transition-force distribution pðFÞ, analogous
to that for the single-barrier process (7), but now accounting for
the fact that the transition follows, and hence may be affected by,
other transitions.
A natural starting point for attempting such an approach is the

set of coupled rate equations for the time evolution of the prob-
ability density of molecular configurations in a multistate potential.
Solving this set of equations analytically for the force dis-
tributions for every type of transition that occurs on this poten-
tial would provide the desired analytical tool for the analysis of
transition-force histograms. However, this approach does not
appear to be amenable to a general analytical treatment. In fact,
even for the simple case of a single intermediate, it does not seem
feasible to obtain a general analytical expression for pðFÞ that
would be valid for any arbitrary parameters of the barriers
and wells.

The Transformation: From Fingerprints to Rate Map
We showed that it is generally incorrect to convert a force histo-
gram pðFÞ into the rate kðFÞ using the transformation that
assumes an independent single-barrier process when the histo-
gram itself results from a multiple-barrier process. At the same
time, deriving a general analytical expression for pðFÞ is not a
feasible approach when the dynamics involve multiple barriers. In
contrast, an analytical expression for the force-dependent rates
kðFÞ of such dynamics can be readily derived. Thus, if we find a
way to convert the force histograms, measured in a multiple-barrier
process, into the force-dependent rates, the analysis of these rates
would be straightforward. The transformation derived below
accomplishes this task.
Consider conformational dynamics on a free-energy landscape

with an arbitrary number of barriers and metastable states under
a time-dependent external force. The number PijðtÞdt of mole-
cules in the ensemble that undergo the transition from state i to
state j between times t and t+ dt, is proportional to the rate con-
stant kijðtÞ for this transition, the number of moleculesN iðtÞ in the
state i, and the time interval dt. During the same time interval, the
applied force changes from F to F + dF by the experimental pro-
tocol. Summarizing the above arguments, the number of the mol-
ecules that transit from i to j at a force that falls within ½F;F + dF� is

PijðFÞjdFj=PijðtÞdt= kijðFðtÞÞN iðtÞdt: [1]

The absolute value sign makes this expression applicable both to
the stretching and relaxation protocols. The population N i in the
state i at time t, in turn, is determined by the initial population
ðN 0

i Þ in this state and the number of molecules that have trans-
ited out of ðPm

R t
0 Pimðt′Þdt′Þ and into ðPm

R t
0 Pmiðt′Þdt′Þ, the state

i by time t. This observation and Eq. 1 provide the ingredients for
relating the rate kijðFÞ and the transition-force distribution PijðFÞ
as follows:

kijðFÞ=
�� _FðFÞ��i PijðFÞ

N iðFÞ         ∀  i→ j; [2]

where

N iðFÞ≡N iðFðtÞÞ=N 0
i −

X
m

Z t

0

Pim
�
t′
�
dt′+

X
m

Z t

0

Pmi
�
t′
�
dt′:

Because the force-loading rate _FðFÞ≡ dFðFÞ=dt changes as the
molecule transits between different states, the index i has been
added to specify the loading rate in state i.
Having no constraints on the number of kinetic barriers in the

system and therefore being quite general, the transformation in
Eq. 2 is also remarkably practicable: every quantity on the right-
hand side can be read directly off the experimental outputs. In-
deed, PijðFÞ is found as the raw number of counts in a bin of the
force histogram divided by the bin width. The populationN iðFÞ is
found as the number of force trajectories in state i at force F. A
simple algorithm in Supporting Information, section III and
Fig. S1 automates the procedure of counting the trajectories.
Although N iðFÞ could also be calculated by approximating the
integrals in the above expression for N iðFÞ with the summation
over the corresponding bins in the histogram, the method of
counting the force trajectories has the advantage of eliminating
the errors associated with the discretization of the integral. Fi-
nally, the loading rate _FðFÞ is found as the slope of the force–
time trajectory at force F in the state of interest. Expressing the
transformation in Eq. 2 as a straightforward-to-implement
word equation gives

ratei→jðFÞ= jloading  rate  in  state  i  at  Fj
trajectories  in  state  i  at  F

×
counts  in  bin  F

bin  width
; [3]

for a transition from state i to state j.
The transformation in Eqs. 2 and 3 converts the mechanical

fingerprints of the system directly into the map of force-dependent
rates kijðFÞ for all of the transitions that occur among the low-
energy states in the system. Generalizing the method developed
previously for an irreversible transition over a single barrier (8),
the transformation in Eqs. 2 and 3 has no constraints on the
complexity of the system as long as the individual transitions in
the system are activated rate processes. The transformation can
be applied to transitions involving an arbitrary number of acti-
vation barriers, as well as to transitions involving multiple dis-
sociation pathways as long as the pathways can be identified based
on mechanical fingerprints. The transformation naturally accounts

A B C DFig. 2. Transitions on complex
landscapes in force spectroscopy
are generally not independent,
because the force faced by the sys-
tem in a given transition depends
on the duration of the preceding
transitions. (A) Under a time-varying
force, is the transition over the
second barrier on the potential in
black equivalent to the transition
on the potential in gray? (B) Force–
extension trajectories generated on the black potential in A show overlap between the forces faced upon arrival into the second well and the forces at the
escape from this well. The overlap (the region indicated by a brace between the two trajectories highlighted in black) is caused by the delay of the transition
from the first well. (C) Rupture force distribution for the transition over the second barrier (black histogram) is markedly different from the distribution (gray
curve) for this transition if it were independent from the transition over the first barrier. (D) Force-dependent rate obtained by transforming the black
histogram in C via the single-barrier transformation differs from the rate obtained directly at constant force, indicating that the effect of the first transition
on the second one is not negligible.
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for—and, in fact, turns into an advantage—the usually compli-
cating factor of the reversibility (back-and-forth “hopping” be-
tween low-energy states), typically present in experiments on
systems with multiple metastable states. Indeed, “hopping” is a
source of additional data for the inputs PijðFÞ and N iðFÞ in Eq. 2
(or “counts in bin F” and “trajectories in state i at F” in Eq. 3),
thus increasing the statistical sample size. Moreover, because the
reversible behavior involves, by definition, backward transitions,
it opens access to the regions of the energy landscape that are
rarely visited by the system otherwise. In the appropriate limit,
when the topology of the landscape is such that the sequential
transitions are independent, the transformation reduces to a se-
quence of single-barrier transformations (Fig. S2).

The Transformation at Work: Illustrations
Let us first illustrate the power of the transformation in Eqs. 2
and 3 on a system with a single intermediate along the dissociation
pathway. The free-energy profile of the system is characterized by
two activation barriers separating the (N)ative, (I)ntermediate,
and (U)nfolded states (Fig. 3A and Table 1). Conformational
dynamics in the presence of a harmonic pulling device and an
anharmonic linker tethering the molecule to the device were
assumed to be diffusive and captured by the extension XðtÞ of
the molecule-linker construct. Mechanical fingerprints of the
system were generated via Brownian dynamics simulations on
the combined potential Gðx;X ; tÞ=G0ðxÞ+GLðX − xÞ+ 8ðX0 ±
Vt−X

�2
=2, where ± indicates the stretching/relaxation pro-

tocol, G0ðxÞ is the intrinsic molecular potential along the molec-
ular extension xðtÞ (Fig. 3A), GL is the worm-like chain potential
of the linker, 8 is the spring constant of the pulling device, and V is

the pulling speed. Each stretching (relaxation) cycle began with a
sufficiently small (large) separation X0 such that N (U) was ini-
tially the predominantly populated state. In addition, the simu-
lations explicitly accounted for the effects of a position-dependent
diffusion coefficient (20, 21), baseline drift (22), and missed/
misjudged events (Supporting Information, sections IA and II,
Table S1, and Fig. S3).
The key inputs into the transformation in Eqs. 2 and 3 are the

transition forces and their histograms, collected from the force–
extension curves. One thousand force–extension curves for each
of the two protocols were generated at each of the four nominal
loading rates. Fig. 3B shows two sample force–extension curves
from a stretching and relaxation cycle, with multiple rips re-
vealing the transitions between the three low-energy states on
the potential in Fig. 3A. The transition forces (indicated in Fig.
3B) were grouped into histograms (Fig. 3D) for each of the four
types of transitions that occur in this system. Note that the his-
tograms include all transition events of a particular type ob-
served in a given trajectory (e.g., both of the two transition forces
FNI in the stretching trajectory in Fig. 3B are included in the
histogram N→ I). Note also that the force histograms that enter
the transformation should not be normalized, as PijðFÞ in Eq. 2 is
the raw number of counts in the bin divided by the bin width.
Values of the force-loading rate _F were extracted as the slope of
force-vs.-time trajectories in the individual states. Note that, al-
though the anharmonic linker effect may complicate the force
dependence of the loading rate _FðFÞ, the incorporation of this
effect in the transformation is straightforward because _FðFÞ enters
the transformation as a factor that can be determined from the
slope of the force trajectories. Finally, N iðFÞ was determined as

A D

B

C

Fig. 3. Practical implementation
of the transformation in Eqs. 2 and
3, illustrated with conformational
dynamics through an intermediate.
Color code distinguishes different
types of transitions. (A) Free-energy
profile at zero force, featuring an
intermediate. Indicated are the pa-
rameters of the barriers and intrinsic
rates sought to be reconstructed. (B)
Selected force–extension trajecto-
ries from a stretching and relaxation
cycle, generated on the potential in
A in the presence of an anharmonic
linker and a pulling device with
the spring constant 8 = 5 pN/nm,
representative of an atomic force
microscope. Transition forces for
different types of transitions are
indicated. (C) Determining N i in Eq.
2 and “trajectories in state i at F” in
Eq. 3 by counting trajectories in the
state of interest at a chosen value
of force, illustrated with three
trajectories from a stretching cy-
cle. (D) Transition force histograms
collected from the force–extension
curves at the nominal loading rates
indicated (in piconewtons per sec-
ond) next to each histogram. As the
result of the transformation (Eqs. 2
and 3), each histogram contributes
to the corresponding branch on
the rate map (Fig. 4A) as indicated
by the matching symbol next to
the histogram.
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the number of force–extension curves that are in state i at force F.
Fig. 3C illustrates how to determine N NðFÞ, N IðFÞ, and N UðFÞ
with three sample trajectories; generalization to a larger number
of trajectories is straightforward.
The described simple procedure converts the mechanical fin-

gerprints of the system with an intermediate (Fig. 3A) into the
map of force-dependent kinetic rates (Fig. 4A, color code follows
the one adopted in Fig. 3). Every activated process that can possibly
occur on the potential in Fig. 3A, and is resolved in the force–
extension curves of the system, becomes reflected in the corre-
sponding branch on this map. We note that, with the exception of
the simplest biomolecules, it is challenging or unfeasible to con-
struct such a comprehensive map by attempting to measure the
transition rates directly under constant force. Indeed, sampling
a sufficient number of rare events to be able to determine the
transition rates in a broad range of forces in such measurements
would require a force clamp with stability beyond that which is
typically achieved. In contrast, the transformation in Eqs. 2 and 3
yields such amapwith relative ease, because the desired broad range
of forces—and hence the complete spectrum of transitions—is
accessed by transforming data from force spectroscopy measure-
ments performed at a broad range of pulling speeds.
The variation in the rates due to the finite number of the

available force trajectories can be estimated as follows. For a
transition i→ j, the SD (error bars in Fig. 4) in the logarithmic
rate kijðFmÞ at the force Fm is given by (Supporting Information,
section IV):

σln kijðFmÞ ≈
�

1
PijðFmÞΔFm

+
1

N iðFmÞ
�1
2
; [4]

where PijðFmÞΔ  Fm is the number of counts in the mth bin of
width Δ  Fm, and N iðFmÞ is number of trajectories in the state i
(i.e., the origin of the transition) at the force Fm.

Next, we successfully apply the transformation in Eqs. 2 and 3
to more complex systems, each comprised of a particular type of
complexity: multiple intermediates along the dissociation path-
way (Fig. 4B) or competing dissociation pathways in which one of
the pathways features an intermediate (Fig. 4C).

From Rate Map to Activation Barriers
The outcome of the transformation—the rate map—consists of
individual branches, each being the force-dependent rate for the
transition over a particular single barrier. Therefore, each branch
can be approached with a single-barrier theory. However, when
dealing with molecular interactions described by multistate en-
ergy landscapes, we must account for the fact that, unlike the
narrow (“stiff”) folded state, the unfolded state in biopolymers
may be broad (“soft”, i.e., 8x‡

2 ðFÞ=2 � kBT may not be satis-
fied). Thus, the approximation of the applied force F = 8ðVt− xÞ
as F ≈ 8Vt (7), although fully justified for a transition originating
from the stiff folded state (i.e., the unfolding), may not be suf-
ficiently accurate for transitions that originate in the unfolded
state (i.e., the refolding) or in a soft intermediate. The following
analytical expression for the force-dependent rate incorporates
the first-order correction to this approximation:

kðFÞ= k0

"
1+

ν8x‡
2

2ΔG‡
∓
νFx‡

ΔG‡

 
1+

ð1− νÞ8x‡2
2ΔG‡

!#1
ν−1

exp

�
ΔG‡

�
1−

"
1+

ν8x‡
2

2ΔG‡
∓
νFx‡

ΔG‡

 
1+

ð1− νÞ8x‡2
2ΔG‡

!#1
ν
��

:

[5]

While the unified nature, captured by the scaling factor ν, of
this expression has been retained, the expression is now appli-
cable to transitions from both “stiff” and “soft” states. The

Table 1. Intrinsic rates and barriers (heights and locations) from the analysis of the rate map in Fig. 4 with Eq. 5

Parameter set ln
	
k0
NI



Δ  G‡

NI x‡NI ln
	
k0
IN



Δ  G‡

IN x‡IN ln
	
k0
IU



Δ  G‡

IU x‡IU ln
	
k0
UI



Δ  G‡

UI x‡UI

True −7.25 19.0 1.20 7.58 4.0 0.60 −10.85 25.0 1.40 8.55 5.0 1.00
Fit (mean) −7.18 18.8 1.20 7.38 4.7 0.66 −9.50 27.6 1.21 8.58 5.8 1.09
Fit (σ) 0.10 0.5 0.03 0.22 1.6 0.05 0.49 3.9 0.10 0.38 2.4 0.11

A B C

Fig. 4. Rate maps obtained by applying the transformation in Eqs. 2 and 3 to the mechanical fingerprints of three systems comprised of different types of
complexity of the molecular interactions. (A) An intermediate along the dissociation pathway. (B) A cascade of barriers along the dissociation pathway. (C)
Coexisting dissociation pathways, with one of them featuring an intermediate. Individual branches on each map are the force-dependent rates for the
corresponding activated processes. Symbols (color and shape) in A correspond to those in Fig. 3D. The colored lines are the fit of the individual branches to Eq.
5. Data points with σ2 > 0:2 as calculated using Eq. 4 (∼5 counts or less in the bin of the original histogram) were not used in the fit as not statistically
significant. Fitted parameters are summarized in Table 1 for the system in A and Tables S2 and S3 for the systems in B and C. Spring constant of the pulling
device is 8 = 5 pN/nm in A, representative of an atomic force microscope, and 8 = 0.2 pN/nm in B and 0.5 pN/nm in C, representative of an optical trap. An
anharmonic linker effect was incorporated in the simulations of the system in A and B.
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minus sign (−) in ∓ notations applies to forward transitions, e.g.,
N→ I and I→U, and the plus sign (+) to backward transitions,
e.g., U→ I and I→N, in both the stretching and relaxation
cycles. A smooth barrier corresponds to ν= 2=3 and a cusp-like
barrier to ν= 1=2 (7). If an anharmonic linker is present, the
effective spring constant may become force dependent, in which
case 8 can be estimated as the average of the effective spring
constant in the range covered by transition forces.
Individual branches on the rate maps were each fitted with

Eq. 5 (colored curves in Fig. 4), yielding the location x‡ and
height Δ  G‡ of each activation barrier and the associated rates
k0 on the intrinsic potential. For the system with a single inter-
mediate (Figs. 3 and 4A), the parameters extracted from the fit
with ν= 1=2 are listed in Table 1 (rates in seconds−1, distances in
nanometers, energies in kBT); fitting with ν= 2=3 yields results
mostly within 2σ, indicating that the parameter values are rela-
tively model insensitive. The key features of the energy landscape
and the intrinsic rates are now reconstructed. Fig. 4 B and C
and Tables S2 and S3 report the agreement between the recon-
structed and actual parameters for the other two, more complex,
systems studied.
The rate measured in a constant-force experiment at force F

will generally deviate from the rate corresponding to the same
force F on the rate map because of the difference in the bias
(linear vs. nonlinear) imposed on the molecular potential in a
force clamp vs. force ramp. To account for this difference when
comparing rates from the two pulling schemes, the rate kðFÞ
measured at constant force F should be transferred to the rate
map as kðF′Þ with F′= ðF ± 8x‡=2Þ=½1+ ð1− νÞ8x‡2=ð2ΔG‡Þ� (“+”
applies to forward and “−” to backward transitions; Supporting
Information, section V).
Having demonstrated the predictive power of the introduced

transformation, we will mention a few cautionary notes on the
application of this approach to experimental data. Limited time
resolution may result in missed transitions, which, in turn, (i) may
hamper the identification of the pathway the transition belongs to
if multiple pathways are present, and (ii) may cause missed hop-
ping events; both of these problems reduce the accuracy of the
input in Eq. 2. A simple criterion can be used to assess the effect
of the missed transitions: for any rate on the rate map that is
small compared with the inverse of the instrument resolution time,
k � 1=tres, this effect is negligible. Different states can be identi-
fied based on the change in the contour length upon a transition
and the kinetic scheme can be determined from the connectivity
of the states seen in the force–extension curves; however, if the
resulting changes in contour length happen to be similar (14),
these states may be identified incorrectly. This may lead to

missed states in the reconstructed free-energy landscape or cause
an abnormal behavior in the force-dependent rates; additional
analyses (23) may be required to distinguish the cause from other
effects, such as the multidimensionality of the energy landscape
(24). Finally, because complex energy landscapes involve com-
peting transitions, certain types of the transitions may only occur
in a limited force range, which may introduce large uncertainties
in the parameters extracted with Eq. 5 for those transitions.

Conclusions
Conformational transitions in biological macromolecules—usually
a prerequisite for their functional activity—are often governed by
complex energy landscapes with cascades of activation barriers
and metastable intermediates. Single-molecule force spectroscopy
experiments resolve these intermediates in the form of nonmono-
tonic features in the mechanical fingerprints of the macromole-
cules. Although the analytical framework for the analysis of the
fingerprints of simple systems—those with a single barrier and no
reversibility—has been developed, such an approach is generally
not applicable to systems with multiple barriers subject to a time-
varying force.
In this study, we introduced an approach to decode the me-

chanical fingerprints of complex systems—those with an arbi-
trarily large number of kinetic barriers. The central finding that
enables this approach is a general transformation (Eqs. 2 and 3),
which converts—in a model-free way—the observed features in
the fingerprints directly into a map of force-dependent kinetic rates.
Every activated process resolved in the fingerprints is reflected in
a corresponding branch on this map. The rate map, itself being
a comprehensive representation of the force-dependent kinetics
of the system, can be further interpreted in terms of the intrinsic
rates and rate-limiting barriers. To enable such interpretation, we
derived a generalized analytical expression (Eq. 5) for the force-
dependent transition rate, valid both for transitions from “stiff”
states (typical of folded conformations) and “soft” states (typical
of unfolded conformations). A combination of generality and
simplicity makes the proposed theory suitable for the analysis of
force spectroscopy data on complex macromolecules and their
assemblies, yielding microscopic parameters that govern the con-
formational dynamics in these systems.
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