9168-9182 Nucleic Acids Research, 2013, Vol. 41, No. 19

doi:10.1093/nar/gkt662

Published online 31 July 2013

The BAH domain of Rsc2 is a histone H3

binding domain

Anna L. Chambers’, Laurence H. Pearl?, Antony W. Oliver>* and Jessica A. Downs'*

"MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK and
2Cancer Research UK DNA Repair Enzymes Research Group, Genome Damage and Stability Centre,

University of Sussex, Falmer, Brighton BN1 9RQ, UK

Received October 15, 2012; Accepted July 7, 2013

ABSTRACT

Bromo-adjacent homology (BAH) domains are
commonly found in chromatin-associated proteins
and fall into two classes; Remodels the Structure
of Chromatin (RSC)-like or Sir3-like. Although Sir3-
like BAH domains bind nucleosomes, the binding
partners of RSC-like BAH domains are currently
unknown. The Rsc2 subunit of the RSC chromatin
remodeling complex contains an RSC-like BAH
domain and, like the Sir3-like BAH domains, we
find Rsc2 BAH also interacts with nucleosomes.
However, unlike Sir3-like BAH domains, we find
that Rsc2 BAH can bind to recombinant purified
H3 in vitro, suggesting that the mechanism of nu-
cleosome binding is not conserved. To gain insight
into the Rsc2 BAH domain, we determined its crystal
structure at 2.4 A resolution. We find that it differs
substantially from Sir3-like BAH domains and lacks
the motifs in these domains known to be critical for
making contacts with histones. We then go on to
identify a novel motif in Rsc2 BAH that is critical
for efficient H3 binding in vitro and show that
mutation of this motif results in defective Rsc2
function in vivo. Moreover, we find this interaction
is conserved across Rsc2-related proteins. These
data uncover a binding target of the Rsc2 family of
BAH domains and identify a novel motif that
mediates this interaction.

INTRODUCTION

Chromatin remodeling complexes alter the interactions
between DNA and histone proteins to regulate aspects
of DNA metabolism, such as transcription, replication
and repair. In budding yeast, Remodels the Structure of
Chromatin (RSC) is one such complex, which is highly

abundant and comprises 17 subunits. (1). It is known to
be important for transcriptional regulation and can act as
both an activator and a repressor. In addition, it is
involved in multiple DNA repair pathways (2—4), in estab-
lishment of cohesion (5) and in kinetochore regulation (6).

The homologous complex in higher eukaryotes is called
PBAF (or SWI/SNF-B) (7) and has been implicated in
DNA damage responses in addition to its known roles
in transcriptional regulation (8-11), therefore suggesting
a conserved functional role.

In yeast, RSC exists as two isoforms, containing either
the Rscl or Rsc2 subunit (12). These proteins share a
similar domain architecture, containing two bromo-
domains followed by a bromo-adjacent homology
(BAH) domain. Interestingly, in PBAF, there is a single
polypeptide termed BAF180 (or Polybromo) that appears
to be a fusion of yeast Rscl, Rsc2 and Rsc4 and contains
six sequential bromodomains followed by two BAH
domains (7,13). The function of the BAH domains in
these proteins is currently not known.

BAH domains are found in a number of chromatin-
associated proteins or protein complexes (13,14) and can
be subdivided into two classes by amino acid sequence
analysis (14,15). The first, which we refer to as ‘RSC-
like’, includes BAH domains from Rscl and Rsc2 and
their higher eukaryotic homologue BAF180. This family
includes a diverse range of chromatin-associated proteins,
such as Ashl homologues and DNA methyltransferases.
The second, ‘Sir3-like’ class is more restricted and only
includes Orcl homologues and the budding yeast protein
Sir3, which arose from a gene duplication of Orcl in this
species (16).

Transcriptional silencing in budding yeast exists at
three locations—telomeres, mating type switching donor
cassettes (HML/R) and ribosomal DNA (rDNA) repeats
(17). Both Orcl and Sir3 are important for mediating
transcriptional silencing at telomeres and HML/R, and
the BAH domain of each protein is critical for this
function (18).
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Yeast Orcl BAH interacts directly with the silent infor-
mation regulator Sirl (19), whereas in higher eukaryotes,
Orcl interacts with the heterochromatin-associated
protein HP1 (20). In addition to these interactions, Orcl
also binds directly to nucleosomes (21,22), and in higher
cukaryotes, this is mediated by an interaction with the tail
of histone H4 dimethylated at lysine 20 (23). The Sir3
BAH domain is also able to bind to nucleosomes (24,25)
via the Loss of Ribosomal Silencing (LRS) region of the
nucleosome, which includes sequences from both H3 and
H4 (26).

To date, no binding partners or molecular functions
have been identified for the RSC-like class of BAH
domains. Notably, neither the Sirl-interacting region of
Orcl (H-domain) nor the nucleosome-interacting regions
of Orcl or Sir3 are conserved at the amino acid level in the
RSC family of BAH domains, making predictions about
function or binding partners particularly difficult.

Here, we identify a role for Rsc2 in rDNA silencing,
prompting us to ask whether its BAH domain plays a
comparable role to those of Sir3 and Orcl. We found
that the Rsc2 BAH domain is able to interact with chro-
matin both in vivo and in vitro. However, Rsc2 BAH spe-
cifically interacts with histone H3, suggesting that the
mechanism of binding to chromatin is distinct from both
Sir3 and Orcl. In support of this, the crystal structure of
Rsc2 BAH, determined at 2.4 A, reveals major differences
to these other BAH domains, especially in the regions of
their structure that mediate nucleosome interactions.
Using targeted mutagenesis based on our structural infor-
mation, we identified residues in Rsc2 that are important
for H3 binding in vitro and for RSC function in vivo.
Interestingly, amino acid sequence conservation
within this region of the BAH domain suggests that a
subset of RSC-like BAH domains are also likely to
share this H3-binding mechanism. In support of this, we
find that the BAH domains from Rscl and BAF180 are
also able to bind H3 but not the other core histones
in vitro. These data identify the first binding partner of
the RSC-like family of BAH domains and provide
insights into the function of Rsc2 in the RSC remodeling
complex.

MATERIALS AND METHODS
Strains and plasmids

Information on yeast strains and plasmids is available in
the Supplementary Information.

Silencing assays

Serial dilutions of logarithmically growing cultures were
plated onto synthetic complete (SC) or media lacking
leucine (—LEU) for plasmid selection and the same
media lacking uracil (SC/—URA or —LEU/—URA) as a
measure of silencing activity. Colonies were imaged or
counted following 3-5 days incubation at 30°C. Survival
was calculated from colonies on media lacking URA
relative to those on URA-containing media. The data
shown are the mean of at least three independent experi-
ments £1 SD.
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Chromatin immunoprecipitation assays

Full-length Rsc2-myc was immunoprecipitated from
YNK179-191 (rsc2). BAH-CT1 was immunoprecipitated
from rsc2-BY4741 containing the indicated BAH-CTI1-
myc overexpression plasmid. Chromatin immunopre-
cipitation (ChIP) assays were performed as (27).
Following qPCR quantification, data were normalized to
input, and fold-enrichment was calculated relative to the
untagged control. Data shown are the mean enrichment of
at least three independent experiments +1 SD. Data
calculated as percentage of input are provided in
Supplementary Table S1.

Expression and purification of recombinant proteins

Expression and purification of recombinant His or GST-
tagged BAH-CT1, BAH®*! and BAHI1BAF!® proteins
were carried out by standard chromatographic methods
using Talon (TaKaRa Bio) or Glutathione Sepharose 4
Fast Flow (GE Healthcare) affinity resins and a HiLoad
Superdex 75 or 200 size exclusion column (GE Healthcare).
For full details, see Supplementary Information.

Nucleosome pull-down assays

Native mononucleosomes were prepared from BY4741 es-
sentially as (28). Either glutathione sepharose or Ni-
agarose beads were equilibrated in wash buffer [15mM
HEPES (pH 7.6), 110mM NaCl, ImM DTT] and
incubated with 2pg of GST-BAH-CT1 or His-
BAH-CTI. In all, 180 ul of wash buffer and 20 ul of nu-
cleosomes or nucleosome storage buffer [15mM HEPES
(pH 7.5), 400 mM NaCl, 1 mM DTT, 0.15mM spermine,
0.5mM spermidine, 10% glycerol] were added. Reactions
were incubated overnight at 4°C and washed three times.
Bound protein was cluted by boiling and analyzed by
western blotting using an anti-H2B (29) or anti-H4
antibodies (Abcam).

Mononucleosome gel shift assays

Mononucleosomes were assembled in vitro onto a
radiolabeled DNA fragment and gel purified as (30)
using histones purified from HEK 293 cells. Purified recom-
binant His-BAH-CT1 protein (0.24, 0.48, 0.72, 0.96 or
1.2 ug) was incubated for 1h at room temperature with
3 ul of mononucleosomes [final 10 pl of reaction contained
9.5mM Tris—HCI (pH 7.5), 0.9mM HEPES (pH 7.5),
47.7mM KCI, 11.5mM NaCl, 0.05mM EDTA, 0.02mM
TCEP, 9.5% glycerol, 0.4 pg/ml BSA]. Samples were run
on 4.5%/0.4x TBE acrylamide gels at 120V at 4°C.

DNA gel shift assays

Reactions contained 12.5fmol of 25 or 49 bp annealed
oligonucleotides or a 167bp PCR fragment. DNA was
end-labeled using **P-yATP and PNK then passed over
a G-50 spin column (GE Healthcare). Binding reactions
contained 15mM HEPES (pH 7.6), 5% glycerol, 2mM
MgCl,, 150mM NaCl and 18pg His-BAH-CT1 or
800 ng MBP-Ies6 (positive control) in a 10 pul of reaction
volume. Reactions were incubated for 1h at RT and
resolved on 6% acrylamide/0.5x TBE gel.
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GST pull-down assays

GST beads or beads bound to the indicated GST-BAH
protein construct were equilibrated with binding buffer
[15mM HEPES (pH 7.5), 400mM NacCl, 110mM KCI,
5% glycerol, 0.5% NP40) or [5S0mM Tris (pH 7.5), 1M
NacCl, 1% NP40]. Reactions using 100 pg of calf thymus
histones (Sigma) were incubated at 4°C for 1 h. Beads were
washed with 3x 1 ml of buffer. Bound protein was eluted
by boiling and analyzed by western blotting with anti-
H2A (31), anti-H2B (29), anti-H3 (Abcam) or anti-H4
(Abcam).

For recombinant histone pull-downs, GST beads or
beads bound to the indicated GST-BAH protein construct
were equilibrated with the binding buffer above supple-
mented with 1 mg/ml BSA and 2M urea. Binding reac-
tions using 10 pg of recombinant human H3 (NEB) were
incubated at 4°C for 1h, before washing, elution and
analysis as aforementioned.

Co-immunoprecipitations

Extracts with sheared chromatin were prepared from wt
or H3 A75V mutant H3-containing strains, each harbor-
ing either a myc-tagged Rsc2 expression plasmid or an
empty vector control in IP buffer [SOmM HEPES (pH
7.5), 10mM MgOAc, SmM EGTA, 0.lmM EDTA,
150mM KCI, 0.2% NP40, 5SmM pB-mercaptoethanol,
200 pg/ml PMSF, 2mM leupeptin, 2mg/ml pepstatin A
and 1mg/ml aprotinin]. Lysates were incubated for
40min at 4°C with anti-myc (9E10; Sigma). Protein G
Dynabeads (Invitrogen) were added, and samples were
incubated for a further 40 min at 4°C before 3 x 1 ml of
washes with IP buffer. Bound protein was cluted from
beads by boiling and analysed by western blotting using
anti-myc (Sigma) or anti-H2A (31).

Crystallization data

Crystallization trials, data collection, phasing and refine-
ment were performed as described in Supplementary
Information. Statistics for the data collection, details of
the model and Ramachandran and Molprobity statistics
are given in Table 1.

Survival assays

The 5-fold serial dilutions of logarithmically growing
cultures were spotted onto Yeast extract, Peptone,
Adenine, Dextrose (YPAD) plates containing the indi-
cated amounts of hydroxyurea (HU) or dimethyl sulfoxide
(DMSO). Plates were incubated for 2-3 days at 30°C.

RESULTS
Rsc2 is important for rDNA silencing

To investigate the potential contribution of the Rsc2
protein to transcriptional silencing at the rDNA
repeats, we created an rsc2 deletion in a strain carrying
a URA3 reporter gene in this region (32). In a wild-type
strain, survival on media lacking URA is low due to
transcriptional silencing of URA3. In contrast, the rsc2
mutant strain had much higher survival, indicating a

Table 1. Data collection and refinement statistics

Data collection®

Space group
Cell dimensions

a, b, ¢ (A)

o B,y (),
Resolution (A)
Rmerge
Mean I/c I
Completeness (%)
Redundancy
Wilson B (A?)

Refinement

Resolution (/0\)
No. reflections
Rwork/Rl‘ree
No. atoms
Protein
Chain A
Chain B
Chain C
Chain D
Ligand/ion

Water
B-factors (average)

Protein
Chain A
Chain B
Chain C
Chain D

Ligand/ion

Water

R.m.s. deviations
Bond lengths (A)
Bond angles (°)

Model Quality®

MolProbity score

All atom clashscore
Rotamer outliers
Ramachandran outliers

P2,

64.09, 64.07, 136.84
90.00, 95.47, 90.00
45.00-2.40 (2.53-2.40)°
0.142 (0.424)

5.8 (2.7)

98.7 (99.0)

3.5 (3.6)

25.5

44.50-2.40
42819
0.22/0.29

1893

1889

1893

1913

8 (CIN)

6 (glycerol)
40 (SOy)
541

34.13

32.85

17.34

16.63

36.24 (CIM)
27.88 (glycerol)
39.11 (SOy)
26.35

0.004
0.772

1.89 (96" percentile)
13.40 (87" percentile)
10/815

0/927

Ramachandran favoured 898/927 (96.9%)

“Data were collected from a single crystal.
®Values in parentheses are for highest-resolution shell.
“Determined by MolProbity v3.15.

defect in silencing (Figure 1A). The rsc2 strain has a
slow growth phenotype, resulting in generally smaller
colony sizes of the rsc2 strain compared with wild-type
or the sir2 strain, which makes comparisons between the
strains in this assay difficult. Therefore, we also
quantified the relative survival on media lacking URA
to give a more robust indication of the survival defect
(Figure 1B).

Sir2 is a histone deacetylase that functions in transcrip-
tional silencing at all three heterochromatic loci (HML/R,
rDNA and telomeres). Although Sir2 is a common factor,
it functions in concert with distinct protein complexes at
the rDNA and at telomeres (17). At the rDNA, Sir2 is a
part of the RENT complex that comprises Sir2, Netl and
Cdcl4, whereas at telomeres and HML/R, Sir2 works in
concert with Sir3 and Sir4 (17). The silencing defect in the
rsc2 mutant strain was similar to that seen in a sir2 mutant
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(Figure 1A and B), prompting us to examine the pheno-
type of an rsc2/sir2 double mutant. We found the defect in
the double mutant strain is neither worse nor significantly
different to that of the sir2 single mutant (Figure 1B), sug-
gesting that rsc¢2 may function in the same pathway as sir2
in mediating rDNA silencing.

The effect of RSC on rDNA silencing could be due to
direct action at the rDNA or indirect effects of transcrip-
tional misregulation in the absence of Rsc2. We therefore
investigated whether Rsc2 was associated with chromatin
in the rDNA repeats. To do this, we created a C-termin-
ally 13 Myc-tagged full-length Rsc2 construct under the
control of its own promoter (Figure 2A). We determined
that the presence of the Myc tag has no detectable effect
on Rsc2 activity in vivo (data not shown) and used this
to perform ChIP assays. Using primer pairs at various
sites within the rDNA repeats, we found that Rsc2 is
associated with multiple locations across the rDNA
repeat (Figure 1C; right panel), with substantial enrich-
ment at the cohesion-associated region and the 18S
coding region (Figure 1C; left panel).

The LRS region of the nucleosome, which is contacted
by the Sir3 BAH domain, is important for transcriptional
silencing at all three heterochromatic loci. However, as
described above Sir3 functions only at the telomeres and
HML/R loci. This raises the possibility that a different
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BAH domain might contact the LRS region of the nucleo-
some at the rDNA. Given our finding that Rsc2 is import-
ant for rDNA silencing and is physically associated with
rDNA repeats, we set out to investigate its BAH domain
in more detail.

The BAH domain of Rsc2 directly interacts with
chromatin

We began by investigating whether the isolated Rsc2 BAH
domain, like full-length Rsc2, was capable of binding to
chromatin in vivo. The RSC complex contains several other
protein subunits with direct chromatin binding activity
[e.g. (33,34)]. Additionally, Rsc2 itself has two bromo-
domains and an AT hook upstream of the BAH domain
that may also contribute to chromatin binding in vivo.
Therefore, to investigate whether the BAH domain is
able to independently interact with chromatin in vivo, we
created a Myc-tagged Rsc2 yeast expression construct
lacking the potential chromatin binding bromodomains
and AT hook motif (Figures 2A and 4A). This construct
also lacked the C-terminal region (CT2) required for
assembly of Rsc2 into the RSC complex (12) and corres-
ponded to the BAH domain and the highly conserved C-
terminal region 1 (BAH-CTI1) used in the structural
analyses described later in the text (Figure 4A).

X%
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40
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" 1

rsc2

sir2 rsc2/sir2

Figure 1. Rsc2 is important for mediating silencing of rDNA. (A) Silencing was monitored in strains containing a URA3 reporter gene in the rDNA
(32) by assaying survival on media lacking URA relative to survival on SC medium. (B) Survival of silencing reporter strains as in (A) on media
lacking URA was quantitated, and the data are represented as the mean + 1 SD of at least three independent experiments. Statistical analysis was
performed using an unpaired -test. Asterisks indicates P <0.01. (C) Chromatin IP analysis of Rsc2-myc at various locations across the rDNA repeat.
Data shown are the mean enrichment of at least three independent experiments = 1 SD. The right hand panel shows a schematic of the 9.1 kb rDNA
repeats with an expanded view of a single repeat. The 25S, 5S and 18S coding sequences are indicated with solid arrows. The relative positions of the
E-pro promoter region, cohesin-associated region and autonomously replicating sequence (ARS) are indicated. Locations of primer pairs are

indicated with arrows.
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Figure 2. The Rsc2 BAH-CT1 domain directly interacts with chromatin. (A) Western blot analysis of rsc2 null strains carrying an empty vector (lane
I; EV), a plasmid with myc-tagged full-length RSC2 under the control of its own promoter (lane 2; pRsc2-myc) and an overexpression construct of
myc-tagged BAH-CT1 under the control of the GAPDH promoter (lane 3; OE pBAH-CT1-myc). Westerns were analyzed with anti-myc (top two
panels) or anti-H2A (bottom panel) as a loading control. (B) Full-length Rsc2 and Rsc2 BAH-CT1 are associated with chromatin in vivo. ChIP
assays examining enrichment of full-length Myc-tagged Rsc2 (top panel) or Myc-tagged overexpressed BAH-CT1 (bottom panel) relative to the
untagged control at the HT7'A1 promoter or the 18S region of the rDNA (18S-B on Figure 1C). Data shown are the mean enrichment of at least three
independent experiments = 1 SD. (C) Coomassie stained gel of recombinant His-tagged BAH-CT]1 (left panel). Western blot analysis of pull-down
assays with nickel agarose using anti-H2B (right panel). Lane 1 shows 10% input of yeast mononucleosomes used in pull-down assays. The total
bound fraction and 10% of the unbound fraction of each pull-down reaction were analysed for the presence of H2B by western blotting.
(D) Gel shift analysis using mononucleosomes assembled onto radiolabeled DNA (lane 1) with increasing concentrations of recombinant His-
tagged BAH-CTI.

In addition to testing occupancy in the rDNA, we used To further substantiate this, we also investigated BAH-
the HTAI promoter as a positive control, as Rsc2 was CT1 nucleosome binding in vitro with mononucleosomes
previously found to be associated with this region (35). in gel shift assays. These mononucleosomes were prepared

We found that both full-length Rsc2 and the Rsc2 BAH- using native human histones assembled onto a radio-
CTl construct were enriched at both genomic loci labelled, 247 bp fragment of DNA (30). In this assay, we
(Figure 2B), showing that the BAH-CT1 protein is inde- also detected an interaction (Figure 2D), supporting the
pendently capable of binding to chromatin in vivo. The conclusion that the Rsc2 BAH domain binds directly to
lower level of BAH-CT1 enrichment in chromatin, nucleosomes.

despite much higher expression levels compared with full- . . . .
length Rsc2, is consistent with the idea that other domains The BAH domain of Rsc2 interacts with histone H3

and components of RSC contribute to the overall affinity To determine which component(s) of the nucleosome were
and/or specificity of the intact RSC complex. We also find responsible for the interaction detected with the BAH-
that overexpression of BAH-CT1 has no detectable influ- CTI1 protein, we individually tested DNA and histones.
ence on the phenotype of either wt or rsc2 mutant yeast First, we used the His-BAH-CT1 protein in gel shift

expressing this construct (data not shown), indicating that assays with multiple different DNA substrates, including
it does not interfere with RSC function in vivo. the 247bp substrate used to reconstitute mono-
To investigate whether this was a direct interaction, we nucleosomes used in the gel shift assays aforementioned.
isolated native mononucleosomes from yeast and tested We could not detect any interaction with free DNA under
these in a pull-down assay using purified recombinant a variety of binding conditions (Figure 3A and data not
His-tagged BAH-CT1 protein (Figure 2C, left panel) and shown).
nickel-agarose beads. Although there was a low level of We next tested interactions between BAH-CT! and
non-specific histone binding to the beads alone, the signal histones. To do this, we created a GST-BAH-CT1 con-
was substantially enriched when BAH-CT1 was present struct to circumvent non-specific binding problems with

(Figure 2C, right panel), which strongly suggests that free histones (Figure 3B, left panel). Using a mixture con-
BAH-CTI is able to directly interact with nucleosomes. taining all four core histones isolated from calf thymus, we
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Figure 3. The BAH-CT1 domain of Rsc2 interacts with histone H3. (A) Gel shift analysis using radiolabeled DNA with recombinant His-tagged
BAH-CT1 or recombinant MBP-tagged Ies6 as a positive control. (B) Coomassie-stained gel of recombinant GST or GST-BAH-CT!1 (left panel)
used in pull-down assays with native calf thymus histones. Bound proteins were analyzed by western blotting with antibodies against each of the four
core histones (right panel). (C) Pull-down assay using GST or GST-BAH-CT1 and native yeast mononucleosomes analyzed with anti-H4 antibody.
(D) Pull-down assay using GST or GST-BAH-CT! and recombinant purified histone H3, analyzed with antibodies against histone H3.
(E) Co-immunoprecipitation of chromatin with wt Rsc2 is unaffected by LRS mutation A75V of histone H3. Co-IP was performed from the
indicated strains containing either myc-tagged Rsc2 expression plasmid (Rsc2-myc) or empty vector with anti-myc antibody. Input and bound
proteins were analyzed with anti-myc (top panel) or anti-H2A (bottom panel).

found that histone H3, but no other core histones, inter-
acted specifically with BAH-CT1 in pull-down assays
(Figure 3B, right panel). Under these conditions, H3 and
H4 can potentially interact, raising the possibility that
when BAH-CT1 binds H3, it displaces H4. To investigate
this, we repeated the pull-down assay using native
mononucleosomes purified from yeast and probed for
the presence of H4. We found that H4 was pulled-down
by BAH-CT1 when in the context of the nucleosome
(Figure 3C), indicating that BAH-CT1 binding to H3
does not disrupt H3-H4 interaction. Taken together
with the nucleosome binding assays in Figure 2, these
data suggest that the nucleosome structure is not grossly
perturbed by BAH-CT1 binding.

We then performed pull-down assays using purified re-
combinant histone H3 and also detected an interaction
with the BAH-CT1 protein (Figure 3D), demonstrating
that the interaction is direct. Because the H3 used in
these experiments was recombinant protein purified from
Escherichia coli, this result also demonstrates that covalent
modifications of histone H3 are not required for the inter-
action with BAH-CT1.

The LRS region of the nucleosome, which is bound
by Sir3 at telomeres and HML/R, is made up of H3 and

H4 surfaces, and the BAH domain of Sir3 makes extensive
contacts with all four core histones (26). Therefore, our
data suggest that the mechanism of chromatin binding by
Rsc2 BAH is distinct from that of the Sir3 BAH domain.
To further investigate this, we tested whether a mutation
in the LRS region of the nucleosome, which impairs the
ability of the Sir3 protein to bind (24), would also impair
the ability of Rsc2 to bind. We immunoprecipitated Rsc2
from extracts with sheared chromatin prepared from wt or
LRS mutant (H3 A75V) yeast and found no difference in
associated histones (Figure 3E). This result suggests that
LRS mutations that have previously been shown to
disrupt Sir3 binding do not disrupt Rsc2 binding, consist-
ent with the idea that the Rsc2 BAH domain is binding to
chromatin in a mechanistically distinct manner from the
Sir3 BAH domain.

Structure of the Rsc2 BAH domain

To gain insights into the mechanism of chromatin binding,
we set out to investigate the structure of the Rsc2 BAH
domain. Through a combination of a priori knowledge,
using our previously determined crystal structure of the
first (proximal) BAH domain from BAFI80 (PDB:
1W4S), multiple sequence alignment and the Phyre
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protein-fold recognition server (http://www.sbg.bio.ic.ac.
uk/~phyre), we were able to predict the likely domain
boundaries of the Rsc2 BAH domain. We transformed
E. coli with different constructs exploring these limits,
purified the expressed recombinant proteins by standard
chromatographic procedures (see ‘Materials and Methods’
section) and then put them into crystallization trials.
Diffracting crystals were only obtained for a construct

A

C Rsc2 BAH-CT1 BAF180 BAH1

(1W4S)

encoding amino acids 401-642 (BAH-CT1), encompassing
the BAH domain and the highly conserved C-terminal 1
(CT1) region of Rsc2 (Figure 4A).

The structure was solved by molecular replacement
(using the BAF180-BAHI domain as a search model)
and refined at a resolution of 2.4 A (PDB: 4BB7; see
Table 1). The protein crystallized in spacegroup P2,
with four molecules comprising the asymmetric unit

O N-terminal O core BAH domain

O loop insertion #1

@ C-terminal

O loop insertion #2

Figure 4. Structure of the Rsc2 BAH-CTI. (A) Schematic representation of the functional domains of Saccharomyces cerevisiae Rsc2 where BD,
BAH and CT indicate bromodomain, BAH domain and C-terminal conserved regions, respectively. The boxed region indicates the amino acid
boundaries of the RSC2-BAH-CT1 expression construct used in this study. (B) Stereo-pair secondary structure cartoon of RSC2-BAH-CT]1, colored
blue to red from the visible N-terminus at residue 401 to the C-terminus at residue 633. (C) Side-by-side comparison of the BAH domain structures
of Rsc2 BAH-CTI (this study), BAF180, Sir3 and Orcl. The core canonical BAH domain fold is colored gray in each case. N- and C-terminal
additions/extensions to the fold are colored blue and red, respectively, with loop insertions at two points colored in green and yellow. PDB accession

codes are shown in parentheses.
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Experimental Procedures

(see ‘Materials and Methods’ section). Readily interpret-
able electron density spanned amino acids Asp401 to
Thr633 (Figure 4B) for each molecule.

The N-terminal part of BAH-CT1 (Asp 401 to Lys 524)
essentially conforms to the definition of a canonical BAH
domain [described in (14,15)], which comprises a distorted
B-barrel core with additional B-strand and 3;o helical
elements. In contrast, the CT1 region (Pro 557 to Ile
632, colored red in Figure 4C) follows an extended
‘meander’, containing only a few secondary structure
elements, which wraps around and packs back against
the core BAH domain fold (Figure 4C and
Supplementary Figure S1). Interestingly, amino acids
Lys 524 through Asn 617 also form an unusual helical
super-structure, containing several B-turn motifs.

BAH domains and their interactions with histones

Comparison of the BAH domains from Rsc2, BAF180,
Sir3 and Orcl (Figure 4C) clearly highlights the structural
diversity possible in this type of domain, and therefore the
necessary sub-categorization into either RSC-like or Sir3-
like classes. In each case, the fold of the core is strongly
conserved between each protein, but then extensively
elaborated, via both N and C-terminal additions and
large loop insertions at two positions within the fold
(Figure 4C). For Sir3 and Orcl, this includes the inserted
H-domain that is required for interaction with their
respective protein partners, and the C-terminal helix-
turn-helix motif required for specific nucleosome con-
tacts—with both of these structural motifs notably absent
from both Rsc2 BAH-CT1 and BAF180 BAHI.

The recent X-ray crystal structures of the yeast Sir3 BAH
domain in complex with a nucleosome core particle [PDB:
3TU4, (26)] and of the mouse Orcl BAH domain in
complex with an H4K20me?2 peptide [PDB: 4DOW, (23)]
allows a detailed examination of their respective histone
interfaces and a direct comparison with the structurally
equivalent regions of Rsc2 BAH-CT1 (Figure 5).

Sir3 makes multiple interactions with the protein
surface of the nucleosome. First, an extended interface is
made with the tail of histone H4 (amino acids 13-24),
which binds to a complementarily charged channel tra-
versing one face of the BAH domain (Figure 5A, left).
Residues Lys16, and Hisl8 of the histone tail also sit
within a small charged pocket, making a number of
specific contacts with the side chains of Sir3. Calculation
of surface electrostatic potential and superposing of struc-
tures (CCP4MG; McNicholas et al. Acta Cryst. 2011)
highlights that (i) the equivalent face of Rsc2 BAH-CT]
(Figure 5A, right) does not have the same overall charge
distribution as that of Sir3, being substantially less nega-
tively charged and more hydrophobic in nature, and there-
fore unlikely to be able to bind to the predominantly basic
histone H4 tail; (ii) the pocket accommodating the side-
chains Lys16 and Hisl8 of histone H4 is not present in
Rsc2; and (iii) the trajectory of the bound histone H4 tail
is blocked in Rsc2, by the loop comprising amino acids
577-584 of the CT1 region (CT1-loop).

Second, Sir3 makes specific hydrogen bonds to histone
H3, in particular with the end of helix o1 and loop L1, of
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which five residues comprise part of the LRS region of the
nucleosome, namely, GIn76, Asp77, Phe78, Lys79 and
Thr80 (Figure 5B). In Sir3, the guanidinium head group
of Arg75 makes hydrogen bonds to the backbone car-
bonyls of both Asp77 and Phe78. The equivalent side
chain of Rsc2 is Trp436, which would be both functionally
and structurally unable to make the same contacts
(Figure 5C). In Rsc2, Trp444 and Asp477 are respectively
in the equivalent position to Glu84 and Glul40 of Sir3,
which interact with the side-chain of Lys79 from histone
H3. Furthermore, the overall position of the H3 ol helix
and the Lys79 side chain are stabilized by van der Waals
interactions with Trp86—which is equivalent to Asn446 in
Rsc2. In each case, the conformationally equivalent
residues of Rsc2 would not be able to recapitulate the
observed Sir3/histone H3 interaction.

Third, at its N-terminus, Sir3 contains a ‘basic patch’
motif (Figure 5D, left) comprised of residues Arg28,
Arg29, Arg30, Arg32, Lys33 and Arg34. In the Sir3/nu-
cleosome structure, this motif lies in close proximity to the
complementarily charged acidic patch, found on the
combined H2A/H2B histone surface. The Rsc2 BAH-
CTI1 construct used for crystallization studies starts at
amino acid Asp401 and therefore does not directly
contain information about the structurally equivalent
region. However, amino acid sequence alignment and sec-
ondary structure predictions [PsiPred, (36)] indicate that
Rsc2 does not contain such a basic patch and could there-
fore not interact with H2A/H2B in the same manner as
Sir3 (Figure 5D, right).

The interaction of the BAH domain from Orcl with the
histone H4 tail (dimethylated on Lys20) is also structur-
ally distinct from that observed for Sir3 (23). The histone
tail (amino acids 16-23) sits instead across a predomin-
antly hydrophobic face of Orcl, with the methylated lysine
bound into a small pocket, gated on one side by the side
chain of Trp119 (Figure SE, left). The CT1-loop, which
packs back up against the core BAH domain fold in Rsc2,
would again sterically prevent the tail of histone H4 from
binding in a similar manner (Figure S5E, right).
Furthermore, residues that form the H4K20me2 binding
pocket in Orcl (Trp87, Val89, Glu93, Tyr114 and Trp119)
are not conserved in Rsc2 (Figure SF and G) and do not
form a methyl-lysine binding pocket. Moreover, there is
no equivalent to Trp119, which forms an essential part of
this pocket—instead two prolines (583 and 584) from the
distal CT1-loop pack against the side-chain of Tyr451
that, in combination with its hydroxyl group, fill and
block any potential binding pocket in Rsc2.

Our comparisons of the Rsc2 BAH-CTI1 structure with
both Sir3 and Orcl in complex with nucleosomes/histone
tails strongly indicate that the observed interaction of
Rsc2 with histone H3 must occur via a unique and
distinct interface, using an alternative set of surface
amino acid residues.

Identification of an H3 binding interface on the Rsc2
BAH domain

We previously determined that the related Rscl and Rsc2
proteins have both redundant and individual functions in
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H4 tail

Rsc2 BAH-CT1

D
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Sir3: 2- AKTLKDLDGWQVIITDDQGRVIDDNN
R30 Rsc2: 366- KISNILEKTFTSLARFELSKPDRSFI
Sir3 | [predicted alpha-helix |
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Rsc2 BAH-CT1
Figure 5. The Rsc2 BAH-CT1 domain differs from both Sir3 and Orcl BAH domains in regions critical for making histone-specific contacts,
indicating that the mechanism of H3 binding in Rsc2 is distinct from these proteins. (A) Molecular surface representations of Sir3 BAH (left) and
Rsc2 BAH-CT]1 (right) coloured by electrostatic potential. The tail of histone H4 (amino acids 13-24) bound to Sir3 is shown in stick representation,
with carbon atoms colored in cyan. The equivalent path for the histone tail in Rsc2 was determined by superposing the two structures. The overall
charge distribution on the surface of Rsc2 is different to Sir3, being much less acidic and more hydrophobic in nature and therefore unlikely to bind
to the histone H4 tail. Furthermore, the presence of the CTl-loop (amino acids 577-584) also prevents an interaction by blocking the expected
binding path. (B) Molecular details of the Sir3-BAH interaction with helix ol and loop L1 of histone H3, including several residues comprising the

(continued)



mediating DNA damage responses (37). In addition, we
found that replacing the BAH domain of Rsc2 with that of
Rscl has no effect on survival after DNA damage but
changes the remodeling activity of Rsc2 at a DNA DSB
in vivo (37), suggesting that the BAH domains themselves
have both overlapping and distinct functions. We there-
fore set out to test whether the Rscl BAH-CT1 domain
was also capable of binding to histone H3. When pull-
down assays were performed using recombinant purified
GST-BAH®™*! an interaction with H3 was detected
(Figure 6A). We then tested the proximal BAH domain
(BAHI1) of human BAF180 using purified recombinant
GST-BAHI1BAT!80 and this protein was also capable of
interacting with H3 in pull-down assays (Figure 6A). To
determine whether selective binding to H3 is a feature of
this family of BAH domains, we examined the specificity
of binding of BAH®**! and BAH1®AF"8 from a mixture
of all four histones prepared from calf thymus. All three
BAH domains interacted with H3, but not with any of the
other core histones (Figure 6B). These results suggest that
the ability to bind to histone H3 is a conserved feature of
the BAH domains of the Rsc2 homologues. In addition,
because the BAF180 construct did not contain the down-
stream CT1 region, these data suggest that the interface
with H3 is contained within the BAH domain itself.

To further define the nature of the interaction between
Rsc2 BAH-CT1 and H3, we selected a number of residues
on the surface of the molecule for mutagenesis. These were
guided by our crystal structure and selected based on
solvent accessibility with a focus on those residues
conserved between the BAH domains of Rsc2, Rscl and
BAF180. The mutant GST-BAH-CT1 constructs were
tested in pull-down assays with H3 as aforementioned,
and we found that several of these were no longer able
to bind to H3 as well as the wild-type protein (Figure 6C).

Of the mutations tested, W436A and K437E reprodu-
cibly showed reduced binding to histone H3 in pull-down
assays (Figure 6D and E and data not shown).
Interestingly, both Trp436 and Lys437 are both located
at one end of beta-strand 4 (f4), close to the loop connect-
ing B4 to BS. Both residues are solvent accessible, but face
in opposite directions. Trp436 is only partially packed
against Trp444 at its C-beta position, which in turn
makes van der Waals contacts with the side chain of
Leud79 (Figure 6F). We were concerned that mutation
of a large hydrophobic residue might drastically destabil-
ize the Rsc2 BAH-CT1 protein. We therefore decided to
make an alternative mutation replacing the tryptophan
with a LEU—W436L—intended to partially recapitulate
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the observed hydrophobic stacking with Trp444. Notably,
this mutation also showed a histone H3 binding defect
(Figure 6E). We then tested each mutant in a thermal de-
naturation experiment to assess the overall stability/fold
of each protein. As might be expected, the Lys437 charge
reversal mutant had little effect, as indicated by a similar
temperature midpoint (T,,), for the transition from folded
to unfolded protein, as the wild-type protein (45.6 and
46.4°C, respectively). Of the two Trp436 mutants,
W436A had a somewhat lower T,, (41.3°C) than W436L
(43.0°C), indicating that there was, at least, some perturb-
ation of the fold (Supplementary Figure S2). However, as
each recombinant protein produced a single, cooperative,
sigmoidal-shaped denaturation curve; was readily ex-
pressed in, then purified from E. coli with no apparent
chaperone contaminant (i.e. GroEL); eluted as a single
monomeric peak, at the same volume, from a size exclu-
sion chromatography column; and could be concentrated
to >5mg/ml, we surmise that the apparent reduction in
T,, is most likely due to localized changes in amino acid
side chain packing, rather than a global misfolding of the
protein.

We examined the amino acid sequence of this area
from BAH domains of a number of other proteins and
find that the pair of hydrophobic residues flanking the
B4-B5 connecting loop is conserved among Rsc2 homo-
logues as well as a subset of RSC-like BAH domains. In
contrast, they are not found in the Orcl and Sir3 proteins
(Figure 6G).

Mutations in the H3 binding interface of the BAH
domain result in impaired Rsc2 activity in vivo

To determine whether mutation of the residues that
impaired H3 binding in vitro had any consequence to
RSC activity in vivo, we introduced the W436A, W436L
and K437E mutations into a full-length, myc-tagged Rsc2
expression construct. These were introduced into an rsc2
null strain (alongside a wt control), and expression was
analyzed by western blotting. We found all three mutant
proteins were stably expressed in vivo (Figure 7A).

We then investigated the ability of these mutant con-
structs to support rDNA silencing. Perhaps surprisingly,
all three mutants were able to rescue the silencing defect of
a rsc2 null strain to apparently wild-type levels
(Figure 7B). We note that the W436A mutant strain
appears to have a mild silencing defect when compared
with wt, but this is not statistically significant. We con-
sidered several possible reasons for this finding. First,
BAH-CT1 proteins bearing these mutations were still

Figure 5. Continued

LRS region of the nucleosome core particle. Potential hydrogen bonds are indicated by black dotted lines. (C) Molecular details for the equivalent
region of Rsc2 BAH-CT1 as shown in (B), highlighting that the identities of the amino acids involved in H3 binding are not conserved between the
two BAH domains. (D) The N-terminus of Sir3 contains a ‘basic patch’ (amino acids 28-32), which interacts with a complementarily charged ‘acidic
patch’ formed between histones H2A and H2B on the surface of the nucleosome core particle, as shown by the molecular cartoon and electrostatic
surface (left). Sir3 BAH is shown in gold, and superposed Rsc2 BAH-CT1 in gray. The visible N-terminus (Asp401) of Rsc2 is indicated by the short
arrow. Amino acid sequence alignment and secondary structure prediction (right) indicates that a similar basic patch is not present in Rsc2, and that
the protein could not interact with the acidic patch in the same manner as Sir3. BD2 = bromodomain 2. (E) As for (A), but showing the interaction
between Orcl and the tail of histone H4 (amino acids 16-23) dimethylated at lysine 20. (F) Molecular details of the Orcl BAH H4K20me?2 binding
pocket. (G) Molecular details for the equivalent region of Rsc2 BAH-CTI, as shown in (F), highlighting that the identities of the amino acids
involved in K20me2 binding are not conserved between the two BAH domains, and do not form a methyl-lysine binding pocket.
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Figure 6. A conserved motif on Rsc2 BAH mediates the interaction with H3. (A) Left panel: Coomassie stained gel of GST, GST-BAH domain from
Rscl (GST-BAH®*') and GST-BAHI from BAF180 (GST-BAHI1PAF'8%) " Right panel: GST pull-down assay using Rsc2 BAH-CT1 (GST-
BAH-CT1), GST-BAH®*! or GST-BAHI®*T'® and recombinant histone H3. Bound protein was analyzed by western blotting using anti-H3.
(B) Rsc2 GST-BAH-CT1, GST-BAH®*! and GST-BAH1PAF18 proteins were assayed for the ability to specifically interact with histone H3 from a
mixture of calf thymus core histones in pull-down assays. Bound protein was analyzed by western blotting using antibodies specific for each of the
four core histones. (C) A panel of mutant Rsc2 GST-BAH-CT1 proteins was assayed for the ability to interact with histone H3 in pull-down assays.
Bound protein was analyzed by western blotting using anti-H3 antibody. Coomassie stained gel of the GST-BAH-CT1 proteins used in the pull-down
assays (bottom panel). (D) GST-BAH-CT1 or GST-BAH-CT1-K437E was used in pull-down assays containing the indicated amount of recombinant
H3 and bound protein was analysed by western blotting using anti-H3. (E) Molecular details of the B4—B5 connecting loop of Rsc2 BAH-CT1
showing the positions of Trp436, Lys437 and Trp444. (F) GST pull-down assay using wt, W436A and W436L GST-BAH-CT1 constructs. Bound
protein was analyzed by western blotting using anti-H3. (G) Sequence alignment of the region of the BAH domain encompassing B4, B5 (indicated by
arrows below the alignment) and the connecting loop. The positions of Trp436 and Trp444 in Rsc2 are indicated by arrows above the alignment.
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Figure 7. Mutation of the conserved motif in the Rsc2 BAH domain that is important for H3 binding in vitro disrupts some Rsc2 functions in vivo.
(A) Western blot analysis of whole cell lysates prepared from rsc2 null strains carrying empty vector or expression constructs with full-length
Myc-tagged Rsc2 (wt, W436A, W436L or K437E mutant) using anti-myc (top panel) or anti-H2A (bottom panel) as a loading control. (B) Silencing
was monitored as in Figure 1B using the rsc2 null strain carrying either empty vector, wt Rsc2 or mutant Rsc2 constructs, and the data are
represented as the mean + 1 SD of at least three independent experiments. (C) The W436A and W436L mutant Rsc2 proteins are unable to fully
complement the hypersensitivity of an rsc2 null strain. Serial dilutions of mid-log cultures were plated onto media containing the indicated drug and
incubated for 2-3 days at 30°C before imaging. (D) Survival of the W436A mutant strain compared with wt Rsc2. Three independent cultures of
each strain were grown and plated onto media containing the indicated amount of HU. Survival was calculated relative to media lacking HU and the
data are shown £ 1 SD. (E) Western blot analysis of whole cell lysates prepared from rsc2 null strains carrying either empty vector or overexpression
BAH-CTI1-myc constructs as indicated using anti-myc (top panel) or anti-H2A (bottom panel) as a loading control. (F) W436A and W436L
mutations in Rsc2 BAH-CTI impair chromatin association in vivo. ChIP assays examining enrichment of Myc-tagged overexpressed BAH-
CTI1 relative to the untagged control at the 18S region of the rDNA. Data shown are the mean enrichment of at least three independent experi-
ments = 1 SD.
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able to weakly bind H3 in vitro, and it is possible that the
effect of such mutations in vivo is too small to disrupt
activity, particularly when there are multiple other chro-
matin binding domains still present in the RSC complex.
In this case, we would predict that all of Rsc2’s functions
would be intact in the BAH mutant-containing strains.
Second, it is possible that the H3 binding activity of the
BAH domain does not contribute to the function of Rsc2
in mediating silencing at the rDNA but is important for
other functions of Rsc2. We therefore set out to test the
mutants in other cellular assays.

To determine whether these mutations had any effect on
the role of Rsc2 in mediating DNA damage responses, we
tested the ability of the mutant Rsc2-containing strains to
survive in the presence of DNA damage. We found that
mutation of Trp436 is unable to fully complement the
hypersensitivity of an rsc2 null strain to the DNA
damaging agent HU (Figure 7C). Because the phenotypes
of the mutant strains in this assay were subtle, we
quantitated survival in the W436A mutant strain and
found there is a significant reduction in survival in the
presence of HU when compared with wt (Figure 7D).

RSC also functions in transcriptional regulation, and
one set of genes that is misregulated in strains lacking
RSC activity is related to cell wall biogenesis (38).
Consistent with this, we find that rsc2 null strains are
hypersensitive to DMSO (Figure 7C). When tested in
the presence of DMSO, we found that there was a small
but reproducible decrease in survival, particularly of
the W436A mutant strain, when compared with wt
(Figure 7C). Collectively, these data suggest that
mutation of this region of the BAH domain impacts on
at least a subset of Rsc2 functions in vivo.

Based on our biochemical data, we predicted that the
observed phenotypes in the mutant strains were due to
decreased ability of the mutant BAH domains to bind to
H3. To test this, we performed ChIP assays. However,
when we did this using full-length Rsc2 constructs, we
did not find a decrease in chromatin enrichment in the
mutants compared with wt (data not shown). One
possible explanation for this is that the effect of BAH
domain mutations on chromatin binding may be small
when they are present within the full-length protein,
which, when incorporated into the RSC complex, will be
associated with multiple chromatin binding domains. To
circumvent this issue, we created the mutations in the
BAH-CTI1 overexpression construct to allow us to assess
the ability of these mutant proteins to bind to chromatin
in vivo when examined in isolation. The three mutant
BAH-CT1 domains were expressed at similar levels to
wt (Figure 7E). When ChIP assays were performed, we
found the chromatin enrichment of the K437E mutant
construct was not significantly different from wt
(Figure 7F), suggesting the residual H3 binding activity
we detect in vitro (Figure 6D) is sufficient for chromatin
binding in vivo. In contrast, and consistent with the greater
effect of these mutations on H3 binding in vitro, the en-
richment of the two tryptophan mutants (W436A and
W436L) in chromatin was substantially reduced
compared with wt (Figure 7F). To examine whether this
loss of binding was specific to the rDNA locus, chromatin

enrichment of the mutant BAH-CT1 domains was
analyzed at a further two loci; the promoter regions of
the HTAl and HTZI genes. The mutant proteins dis-
played largely the same profile of chromatin association
at these loci as at the rDNA locus, suggesting that their
defect in chromatin binding is global (Supplementary
Figure S3).

DISCUSSION

In this work, we identified a role for the Rsc2 subunit of
RSC in transcriptional silencing at the rDNA, which
prompted us to focus on the BAH domain of this
subunit. These studies uncovered a direct interaction
between the Rsc2 BAH domain and histone H3 and led
to the identification of an interaction interface that is
conserved in a subset of Rsc-like BAH domains. These
data give us a number of insights into the role of Rsc2
and its BAH domain in the context of RSC activity
in cells.

The mutations in the BAH domain that impact on H3
binding in vitro result in relatively subtle phenotypes
in vivo. As the RSC complex has multiple subunits that
are known or predicted to make contacts with chromatin,
such as the bromodomains of Rsc2, Rsc4 and Sthl, it is
reasonable to speculate that impairment of any single
domain is not likely to abolish chromatin binding or
activity of the complex. In support of this, we found
that the mutant proteins were not defective in chromatin
binding when tested in the context of the full-length
protein in vivo, but they only showed differences from
wt when tested in the context of the BAH-CT1 construct.
Perhaps more surprisingly, we found that the mutations
did not appear to have an impact on silencing (although
we note that there may be a weak effect of the W436A
mutation), but they did affect other Rsc2-dependent func-
tions. This shows that the BAH domain is not specifically
mediating RSC-dependent rDNA silencing, but it is
instead playing a more general role.

We found that the BAH domains of Rsc2 homologues
are also able to bind H3 in vitro, and the presence of a
tryptophan at the end of beta strand 4 (B4) is conserved
in these proteins. In addition, they have a second large
hydrophobic residue present at the other end of the
B4—B5 connecting loop, analogous to Rsc2 Trp444, which
makes hydrophobic contacts with Rsc2 Trp436 (Figure 6F
and G). Unsurprisingly, in Sir3 and Orcl BAH domains,
which use distinct nucleosome-binding surfaces, neither of
these residues is conserved nor are they conserved across
the entire RSC-like class of BAH domains (e.g. Human
MTALI, see Figure 6G). Interestingly, however, there are
a number of other proteins, such as Ashl (Figure 6G),
within the RSC-like class of BAH domains that, like
Rsc2 and its homologues, have a conserved tryptophan
in B4 and a large hydrophobic residue in B5. Based on
our findings, we speculate that these proteins may also
interact in a similar manner with H3.

Despite the fact that the BAH domains from both Rsc2
and Rscl can bind H3 in vitro, we found that replacing
the BAH domain of Rsc2 with that of Rscl alters its spe-
cificity of remodeling (37), suggesting that they are not
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functionally equivalent in vivo. One possibility is that
the modification pattern of H3 may be differentially af-
fecting interactions with the two BAH domains. However,
it is also possible that there are other functions or inter-
action partners of the BAH domains that are not
interchangeable.

Genes encoding several subunits of PBAF, including
BAF180, are commonly mutated or misregulated in
cancer and have been shown to function as tumor suppres-
sor genes (39,40). Mutations in BAF180 were found in lung
cancer, breast cancer and renal carcinoma cells (39.,41), and
protein expression levels were altered in head and neck
squamous cell carcinoma (HNSCC) (42). The loss of
BAF180 activity results in compromised p53 activity
(41,43). Interestingly, a squamous cell lung cancer sample
in the Catalogue of Somatic Mutations in Cancer database
possesses a W948L missense mutation within the first BAH
domain of BAF180 (the mutation data were obtained from
the Sanger Institute Catalogue Of Somatic Mutations In
Cancer web site, http://www.sanger.ac.uk/cosmic) (44).
This substitution is the equivalent of W436L of Rsc2,
which we found to be defective in H3 binding. The vast
majority of the mutations identified in the renal cell carcin-
oma study resulted in truncated proteins, but 9 missense
and 2 in-frame deletions were identified, two of which were
in the second BAH domain (39). Based on our data, we
would predict that the 6 amino acid deletion in BAH2
(M1209-E1214, DMFYKKE) in BAF180 (corresponding
to L463-E468, DLFYKNEof Rsc2) would lead to a highly
destabilized or unfolded protein, due to the removal of
several residues forming part of a hydrophobic core. The
second BAH2 mutation identified was D1285G, which cor-
responds to D540 in Rsc2. Interestingly, this mutation
would not be expected to affect the fold but would alter
the overall localized negative charge in this region.

The identification of the BAH domain of the RSC-like
class of BAH domains as a histone H3 binding module will
aid studies of the RSC/PBAF chromatin remodeling
complexes and lead to a greater understanding of the
molecular mechanism underpinning their cellular activities.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
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