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ABSTRACT

Motivation: Liquid chromatography-mass spectrometry (LC-MS) has

been widely used for profiling expression levels of biomolecules in

various ‘-omic’ studies including proteomics, metabolomics and gly-

comics. Appropriate LC-MS data preprocessing steps are needed to

detect true differences between biological groups. Retention time (RT)

alignment, which is required to ensure that ion intensity measurements

among multiple LC-MS runs are comparable, is one of the most im-

portant yet challenging preprocessing steps. Current alignment

approaches estimate RT variability using either single chromatograms

or detected peaks, but do not simultaneously take into account the

complementary information embedded in the entire LC-MS data.

Results: We propose a Bayesian alignment model for LC-MS data

analysis. The alignment model provides estimates of the RT variability

along with uncertainty measures. The model enables integration of

multiple sources of information including internal standards and clus-

tered chromatograms in a mathematically rigorous framework. We

apply the model to LC-MS metabolomic, proteomic and glycomic

data. The performance of the model is evaluated based on ground-

truth data, by measuring correlation of variation, RT difference across

runs and peak-matching performance. We demonstrate that Bayesian

alignment model improves significantly the RT alignment performance

through appropriate integration of relevant information.

Availability and implementation: MATLAB code, raw and prepro-

cessed LC-MS data are available at http://omics.georgetown.edu/

alignLCMS.html

Contact: hwr@georgetown.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Liquid chromatography-mass spectrometry (LC-MS) has been

an indispensable tool in various ‘-omic’ studies including prote-

omics, metabolomics and glycomics (Aebersold and Mann, 2003;

Patti et al., 2012; Zaia, 2010). Each LC-MS run generates data

consisting of thousands of ion intensities characterized by their

specific retention time (RT) and mass-to-charge ratio (m/z)

values, thus enabling comprehensive profiling of a variety of

biomolecules. This high-throughput technique is widely applied

to identify candidate markers whose expression levels change

between groups of distinct biological conditions (An et al.,

2009; Hawkridge and Muddiman, 2009; Madsen et al., 2010).

To ensure an unbiased comparison of the ion intensities, several

preprocessing steps including peak detection, RT alignment,

peak matching and normalization need to be appropriately

handled (Karpievitch et al., 2010). Typically, these preprocessing

steps generate a list of detected peaks with their RTs, m/z values

and intensities, which are subsequently analyzed using statistical

tests to identify significant differences in ion intensities. One cru-

cial step is the correct matching of unique peaks across multiple

LC-MS runs. With the advances in mass spectrometry technol-

ogy, it is now possible to achieve highly precise and accurate

mass measurement (Mann and Kelleher, 2008). However, con-

trolling the chromatographic variability is still a challenging task.

This often results in substantial variation in RT across multiple

LC-MS runs, raising significant challenges in the preprocessing

pipeline. Without appropriate correction of RT, the peak-match-

ing step is error-prone, and the subsequent analysis may yield

misleading results.
Alignment methods can be categorized as (i) feature-based

approaches and (ii) profile-based approaches (Vandenbogaert

et al., 2008). Most current approaches perform RT alignment

and peak matching based on a set of peaks identified upfront.

The two steps are either carried out sequentially (Fischer et al.,

2006; Lange et al., 2007; Smith et al., 2006) or combined into a

unified module (Voss et al., 2011). The feature-based approaches

rely on the correct identification of a set of consensus peaks

across LC-MS runs. However, this consensus list cannot be ad-

equately determined based on unaligned data. This, in turn, will

affect the alignment results due to erroneously matched peaks. In

addition, the results are highly dependent on the method used for

peak detection, the prioritization of the detected peaks based on

their quality and the handling of missing peaks (Fischer et al.,

2006; Voss et al., 2011). Moreover, estimation of RT variation is

limited to only a subset of time points, which is usually not as

accurate as considering the whole chromatograms, as done in the*To whom correspondence should be addressed.
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profile-based approaches (Listgarten et al., 2007; Tomasi et al.,
2004; Tsai et al., 2013). Profile-based approaches accomplish this
by considering a prototype function that represents the under-

lying pattern across the observed chromatograms, and estimating
a set of mapping functions that characterize the relationship
between the prototype function and the chromatograms.

Appropriate utilization of the whole chromatogram allows
improved estimation of the RT variation characterized by the
mapping functions. However, this requires that a representative

prototype function be reliably selected or estimated, which is still
a challenging task for the majority of profile-based approaches
using pairwise time-warping techniques. We previously proposed

a profile-based method that uses single ion chromatogram (e.g.
base peak chromatogram) to estimate both prototype and map-
ping functions for RT alignment (Tsai et al., 2013). The method

has been shown to have better performance than other profile-
based methods. However, there were unresolved issues including
the following: (i) lack of integration of informative prior know-
ledge, e.g. internal standards, and (ii) implicit assumption of

the existence of an underlying pattern based on a single ion
chromatogram.
In the present work, we propose a Bayesian alignment model

(BAM) to address the aforementioned issues. BAM combines the
strength of both feature-based and profile-based approaches by
incorporating comprehensive information such as multiple

representative chromatograms and internal standards. The use
of multiple chromatograms is considered in a few studies, by
either binning the LC-MS data (Listgarten et al., 2007) or

using all the extracted ion chromatograms with acceptable qual-
ity (Christin et al., 2010). However, a suitable procedure to use
multiple representative chromatograms while retaining computa-

tional feasibility is currently not available. We propose a cluster-
ing approach to identify multiple representative chromatograms
from each LC-MS run. The chromatograms are simultaneously

considered in the profile-based alignment to facilitate the estima-
tion of the prototype and mapping functions. Moreover, we in-
corporate Gaussian process (GP) regression (Rasmussen and

Williams, 2006) to estimate the RT variation, based on the
peaks of internal standards. The use of internal standards enables
a high-confidence estimation of RT variations, which avoids the

ambiguity in identifying consensus peaks encountered in the fea-
ture-based approaches. The inferred information is used as the
prior of the mapping function for profile-based alignment. The

integration of internal standards proceeds through weighing un-
certainty measures of the regression estimate. Information on
internal standards affects the posterior estimation via the GP

prior, rather than just providing an initial estimate of the map-
ping function. This is in contrast to existing methods that rely on
internal standards merely as landmarks and do not use them for

further adjustment (Frenzel et al., 2003).
We apply BAM to LC-MS metabolomic, proteomic and gly-

comic data. A consensus list of the ground-truth data is used

to evaluate the RT difference across runs, the coefficient of
variation (CV) of extracted ion chromatograms and the peak-
matching performance in terms of precision and recall. The sim-

ultaneous multiple alignment (SIMA) model (Voss et al., 2011),
which has shown outstanding performance for the benchmark
datasets in Lange et al. (2008), is used to perform the peak-

matching step.

The remainder of this article is organized as follows. Section 2

introduces the proposed profile-based BAM, including the spe-

cification of a GP prior that uses information from internal

standards, and the chromatographic clustering approach to per-

form multi-profile alignment. Section 3 describes LC-MS

datasets from metabolomic, proteomic and glycomic studies.

Section 4 demonstrates the application of BAM on these

datasets. Finally, Section 5 concludes the article with a summary

and possible extensions in future work.

2 METHODOLOGY

The generic task of RT alignment is to estimate a set of mapping

functions in N LC-MS runs, uiðtÞ, i ¼ 1, . . . ,N, that character-

izes the mapping relationship between observed RTs in each LC-

MS run and a consensus reference. We use GP regression on the

internal standards to derive a prior distribution for the mapping

functions, which is then integrated into the profile-based align-

ment model. Markov chain Monte Carlo methods are used to

draw inference for the profile-based model by estimating the

posterior distribution of the model parameters. Figure 1 presents

the three main components of BAM, which are elaborated in the

following sections.

2.1 GP prior

For experiments in which an internal standard is added during

the sample preparation, it is possible to identify a set of peaks

with known identities and their RTs in each LC-MS run. With

this information, adjustment can be made for each internal

standard peak. This can be extended to other time points by

conducting a GP regression to estimate the mapping function

for each run with a regression function.

For each LC-MS run, we have the mapping relationship fs, rg,

where s ¼ ðs1, . . . , sRÞ
> is the vector of original RTs for the R

internal standard peaks, and r ¼ ðr1, . . . , rRÞ
> is the correspond-

ing assigned vector of reference times estimated by the average

of each standard peak across multiple runs. A GP prior is defined

over a latentmapping function uiðtÞ of the observation fs, rg, that is

Fig. 1. Three main components of the BAM: GP prior, chromatographic

clustering and profile-based alignment
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uiðsÞjs � Nð�u,DuÞ ð1Þ

where the mean function is an identity function, i.e. �u ¼ s, and

the R� R covariance matrix Du is defined via a squared expo-

nential covariance function �, which reflects greater dependence

between neighboring time points than distant points. The likeli-

hood function is defined as pðrjuiðsÞÞ ¼ N ðrjuiðsÞ, �
2
nIÞ. Based on

the defined likelihood function and the GP, it can be shown (see

Supplementary Material) that the predictive distribution of the

mapping function uiðtÞ at time t is a Gaussian with mean

E uiðtÞ½ � ¼ tþ �ðt, s>Þ Du þ �
2
nI

� ��1
ðr� sÞ ð2Þ

and variance

Var uiðtÞ½ � ¼ �ðt, tÞ � �ðt, s>Þ Du þ �
2
nI

� ��1
�ðs, tÞ ð3Þ

where �ðt, s>Þ ¼ ð�ðt, s1Þ, �ðt, s2Þ, . . . , �ðt, sRÞÞ, and �ðs, tÞ ¼
ð�ðs1, tÞ, �ðs2, tÞ, . . . , �ðsR, tÞÞ

>. This provides an effective way to

infer the mapping functions, and the estimation depends on the

number of standard peaks that can be reliably used and the

coverage of RT by these peaks. As discussed in Section 1, we
propose to use more comprehensive chromatographic informa-

tion in our profile-based approach, in which the GP can be

incorporated using the predictive distribution of the mapping

function as the prior for subsequent estimation.

2.2 Profile-based alignment

In this section, we give a brief introduction of the previously

reported profile-based alignment using a single chromatogram,

e.g. base peak chromatogram from each LC-MS run (Tsai et al.,
2013). Then, we discuss how we extend the model to handle

multiple representative chromatograms simultaneously.

2.2.1 Single-profile modeling We use a generative model to

characterize the chromatographic elution process, where the
observed chromatograms from N replicates, yiðtÞ, i ¼ 1, . . . ,

N, t ¼ t1, . . . , tT, are assumed to share a similar profile charac-

terized by the prototype function m(t). For the i-th chromato-

gram at RT t, the intensity value is referred to as the prototype

function indexed by the mapping function uiðtÞ, i.e. m uiðtÞð Þ. By
incorporating the variability of intensity using affine transform-

ation, each chromatogram is modeled as

yiðtÞ ¼ ci þ ai �m uiðtÞð Þ þ "iðtÞ, i ¼ 1, 2, . . . ,N ð4Þ

where ai and ci are scaling and translation parameters, and

the errors "iðtÞ’ s are independent and identically distributed nor-
mal random variables "iðtÞ �

iid
Nð0, �2" Þ. The prototype function is

modeled with B-spline regression, m ¼ Bm , and the prior for

each of the regression coefficients is defined as

 l � Nð l�1, �
2
 Þ, where  0 ¼ 0. The mapping function uiðtÞ

is a piecewise linear function characterized by a set of knots
� ¼ ð�0, �1, . . . , �Kþ1Þ and their corresponding mapping indices

�i ¼ ð�i, 0,�i, 1, . . . ,�i,Kþ1Þ. The prior of uiðtÞ is specified by the

GP prior as described in Section 2.1, and conjugate priors are

chosen for the other model parameters.

2.2.2 Multi-profile modeling For complex biological samples,
collapsing the 3D data into a 2D chromatogram may blur ori-

ginally distinct patterns. In such cases, the lack of a consistent

pattern can hinder the estimation of mapping functions. To
retain better chromatographic profiles, we propose to identify

multiple representative chromatograms and perform the align-
ment by considering these chromatograms simultaneously.

Extension of the generative model to handle multiple chromato-

grams can be made by introducing associated prototype func-
tions of the representative chromatograms. That is,

yðgÞi ðtÞ ¼ ci þ ai �mg uiðtÞð Þ þ "ðgÞi ðtÞ ð5Þ

where sample index i ¼ 1, . . . ,N, and chromatogram index

g ¼ 1, . . . ,G. As in the single-profile (SP) modeling, the proto-

type function associated to each of the representative chromato-
grams is modeled with B-spline regression: mg ¼ Bm g, and the

errors "ðgÞi ðtÞ’ s are independent and identically distributed

normal random variables "ðgÞi ðtÞ �
iid
Nð0, �2" Þ. The relationship be-

tween the G pairs of prototype functions and chromatograms is

characterized by the mapping function.

2.2.3 Parameter inference We use Markov chain Monte Carlo
methods to draw inference based on the posterior distribution of

model parameters. Once posterior estimates are obtained, the

alignment can be performed based on the estimated mapping
function, i.e. by replacing the RT t of the i-th run by ûiðtÞ. For

parameters whose full conditionals have closed forms, we use
Gibbs sampling to update their values. The only exception is

�i, which is updated using an efficient block Metropolis–

Hastings algorithm with a uniform proposal density that reflects
the constraints on the boundaries. Details of the profile-based

alignment including the full conditionals and the Metropolis–

Hastings algorithm are provided in the Supplementary Material.

2.3 Chromatographic clustering

A critical issue involved in the multi-profile modeling is the iden-

tification of representative chromatograms from the LC-MS
runs, where a trade-off between computational efficiency (less

chromatograms) and information retention (more chromato-

grams) needs to be considered. Naı̈vely binning along the m/z
dimension is not desirable, as chromatograms with similar m/z

values do not necessarily resemble each other, and this would

inevitably blur the chromatographic profiles. With an initial set
B of binned chromatograms xðbÞi at a resolution of 0.5 Da/bin,

b 2 B, we propose a clustering procedure consisting of screening
of unqualified chromatograms, identification of exemplars and

agglomerative clustering as follows.

2.3.1 Screening of unqualified chromatograms Quality of each

binned chromatogram is assessed by the mass chromatogram
quality (MCQb) and cross-correlation across LC-MS runs

(XCb), where the value of MCQb is computed using the compo-
nent detection algorithm by Windig et al. (1996) to identify con-

taminated binned chromatograms in any of the LC-MS runs,

and the cross-correlation is to gauge the consistency of the chro-
matographic pattern across the runs. The chromatograms are

screened based on their quality. Only those satisfying the speci-

fied criterion, e.g. MCQb � 0:9 and XCb � 0:85, are retained for
further processing.

2.3.2 Identification of exemplars We apply the affinity propa-

gation algorithm (Frey and Dueck, 2007) to identify exemplars
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of the retained chromatograms that best represent the whole

chromatographic profiles, where Pearson correlation coefficient

is used as the similarity measure, and the average of all the simi-

larity measures is assigned as the exemplar preference. In affinity

propagation, the sum of the similarity measure between each

chromatogram and its exemplar is maximized, where the exem-

plar belongs to the chromatograms retained from the previous

step.

2.3.3 Agglomerative clustering Based on the set of identified
exemplars, we perform the hierarchical agglomerative approach

to cluster the exemplars, which is a bottom-up approach.

Initially, each exemplar forms a singleton cluster, and two closest

clusters are iteratively merged. At each level, the clustered chro-

matogram yðgÞi ðtÞ is summarized by

yðgÞi ðtÞ ¼
X
b2Bg

xðbÞi ðtÞ ð6Þ

where Bg denotes the set of chromatograms in the g-th cluster.

The distance between two clusters is defined based on the over-

lapping level between two clustered chromatograms

dðBg,Bg0Þ ¼
XN
i¼1

XtT
t¼t1

min y
ðgÞ
i ðtÞ, y

ðg0Þ
i ðtÞ

n o
ð7Þ

Our goal is to cluster together chromatograms with less over-

laps, i.e. agglomeration of fairly distinct chromatographic pro-

files, to better retain the chromatographic profiles. The

procedure continues until all the exemplars are merged into a

single cluster. Once the hierarchy is built, the number of clusters

is determined using the L-method by Salvador and Chan (2004).

On the plot of overlapping level against the number of clusters,

we observe incremental decrease of the overlapping level and the

L-method searches for the knee of the overlapping curve, where

the benefit of adding an additional cluster starts decreasing. A

sequence of two piecewise lines that fit the overlapping curve and

their sum of squared errors are considered. The point minimizing

the fitted sum of squared errors is chosen as the sufficient

number of clusters.

3 LC-MS DATASETS

We applied BAM to three LC-MS datasets from metabolomic,

proteomic and glycomic studies. These datasets present scenarios

of real LC-MS experiments and capture the variabilities due to

sample type, sample preparation methods and instrument condi-

tion, which all play a role in the quality of chromatographic

reproducibility. It should be emphasized that none of these

datasets can solely represent the complexity of all -omic studies.

The metabolomic dataset is from a benchmark study by Lange

et al. (2008), provided with ground-truth data (Available at

http://msbi.ipb-halle.de/msbi/caap). The proteomic and glycomic

datasets were generated by our group, where serum samples

were spiked with internal standards, and peaks associated to

the internal standards and the ground-truth data were deter-

mined. We provide the internal standards and the ground-truth

data for both the proteomic and glycomic datasets in the

Supplementary Material.

3.1 Metabolomic dataset

The metabolomic dataset consists of 24 LC-MS runs of

Arabidopsis thaliana extract, acquired by an Agilent 1100

HPLC coupled to a Bruker micrOTOF-Q. To evaluate the align-

ment result, ground-truth data were generated based on ion an-

notation, correlation of chromatographic profile and consistency

of peak. Comparison was carried out by evaluating recall and

precision of the alignment results against the ground-truth data.

For more details about this dataset, we refer interested readers to

Lange et al. (2008).

3.2 Proteomic dataset

The proteomic experiment was designed to evaluate the applica-

tion of the MARS Hu-14 column (Agilent Technologies) for

depletion of high abundant proteins in human serum. The tryptic

peptides are a mixture of the following five non-human proteins

(Bruker-Michrom): Alcohol dehydrogenase (yeast), Carbonic

anhydrase (bovine), Cytrochrome c (equine), Enolase (yeast)

and Myoglobin (equine). Serum samples from five healthy indi-

viduals were analyzed. LC-MS/MS analysis of the serum samples

was performed on an Agilent 1200 nano-LC coupled to a

ThermoFisher LTQ-Orbitrap mass spectrometer, where data

were acquired with double injections from two groups, with

two different concentrations of the spike-in tryptic peptides.

LC-MS/MS analysis of the internal standard mixture was also

performed in duplicate right before the analysis of the serum

samples. The mass spectrometer was scanned approximately

every second using a 60 000 resolution setting. For each scan,

up to five ions were automatically selected based on their inten-

sities for the MS/MS analysis in the LTQ. The MS/MS spectra of

the internal standard mixture were searched with Mascot, and 22

peaks corresponding to the internal standards were identified.

3.3 Glycomic dataset

The glycomic dataset is from an untargeted LC-MS study aimed

at identifying N-glycan disease biomarkers. We analyzed human

serum samples representing two distinct biological groups (cases

and controls). The dataset was generated from sera of 11 cases

and 12 controls. Sample preparation consists of release, purifi-

cation, reduction and permethylation of N-glycans. Following

sample preparation, LC-MS data were acquired using a

Dionex 3000 Ultimate nano-LC system interfaced to an LTQ-

Orbitrap Velos mass spectrometer on positive mode. An internal

standard (galactose) was added to the serum samples before the

LC-MS data acquisition, and five peaks (galactose 3–7) corres-

ponding to the internal standard were consistently detected in all

the analyzed samples.

4 RESULTS

We evaluate the alignment results based on the consensus list of

the ground-truth data. Specifically, we compare the RT differ-

ence across LC-MS runs, the CV of extracted ion chromato-

grams and the peak-matching performance. The RT difference

measures the difference between the largest and smallest RTs for

a consensus peak. The CV evaluates the variability across chro-

matograms. The peak-matching performance is evaluated
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through precision and recall of the peak-matching results against

the ground-truth data, as defined in Lange et al. (2008) and

provided in the Supplementary Material. The SIMA model

(Voss et al., 2011) is used for the peak-matching step. Internal

standards are not included in the evaluation, as they are directly

used in the alignment process. For confirmation purpose, we

provide the alignment result in the Supplementary Material.
As there is no information about internal standards in the

metabolomic dataset, the GP prior was not applied in this

dataset, and only SP alignment was performed. The prior of

the mapping function coefficients �i in this case is specified via

a slope value !i ¼ ð!i, 1, . . . ,!i,Kþ1Þ
>, where !i, j is defined as

!i, j ¼ ð�i, j � �i, j�1Þ=ð�j � �j�1Þ, and it is assumed to follow a

normal distribution with mean !i, j�1 and variance �2! truncated

below by 0. Means (standard deviations) of the RT difference

and CV values are compared based on the 1169 ground-truth

peaks, where the RT values are in seconds. RT differences before

and after alignment are 5.87 (3.16) and 3.86 (3.33), respectively,

and CV values before and after alignment are 0.544 (0.120) and

0.474 (0.126), respectively. Although the RT alignment leads to a

reduction of both RT difference and CV values, the peak-

matching performance evaluated by (precision, recall) is barely

improved, i.e. (0.826, 0.970) before alignment and (0.826, 0.971)

after alignment. This is partly owing to the fact that RT variation

is relatively small in this dataset. In addition, as the ground-truth

data were generated based on ion annotation, further examin-

ation of the data is needed. More details and discussion are

provided in the Supplementary Material.

Table 1 summarizes the results in the LC-MS proteomic and

glycomic datasets, for the following procedures: no alignment

performed to adjust the peak lists (raw), alignment performed

using a GP regression as defined in Equation (2), SP alignment

performed with no information about internal standards, SP

alignment performed with a GP prior (GPSP) and multi-profile

alignment performed (four chromatograms identified by the clus-

tering procedure of Section 2.3) with a GP prior (GPMP). Each

procedure was followed by a peak-matching step using SIMA.

Most current LC-MS preprocessing pipelines do not adjust the

peak lists detected upfront (raw) and directly apply a peak-

matching procedure. SP alignment represents the current pro-

file-based models including our earlier study (Tsai et al., 2013),

where a single chromatogram is considered without using any

information about internal standards. When chromatographic

patterns are well captured by the base peak chromatogram, as

in the proteomic dataset, the SP approach yields reasonable

alignment result. Integration of internal standards (GPSP) and

(a) (b)

Proteomic data set Glycomic data set

Fig. 2. Measures of precision and recall in the (a) proteomic and (b) glycomic datasets, based on 72 pairs of tolerance parameters in SIMA. The five

procedures compared are as follows: raw (asterisks), GP (circles), SP (squares), GPSP (triangles) and GPMP (diamonds)

Table 1. Performance comparison in the LC-MS proteomic and glycomic datasets

Performance

measure

Proteomics Glycomics

Raw GP SP GPSP GPMP Raw GP SP GPSP GPMP

RT 83.08 (20.84) 18.02 (22.74) 19.37 (28.56) 11.74 (19.61) 10.70 (20.67) 103.20 (32.63) 42.36 (29.76) 67.45 (42.39) 44.65 (31.35) 24.85 (27.21)

CV 1.634 (0.256) 1.118 (0.372) 1.150 (0.415) 1.060 (0.380) 1.052 (0.380) 1.194 (0.346) 0.931 (0.284) 1.090 (0.399) 0.978 (0.366) 0.821 (0.292)

Precision 0.937 (0.026) 0.983 (0.007) 0.985 (0.004) 0.988 (0.004) 0.990 (0.003) 0.943 (0.008) 0.965 (0.005) 0.967 (0.008) 0.976 (0.003) 0.980 (0.002)

Recall 0.638 (0.241) 0.933 (0.089) 0.952 (0.043) 0.962 (0.050) 0.970 (0.027) 0.612 (0.215) 0.819 (0.136) 0.773 (0.166) 0.829 (0.167) 0.907 (0.095)

Note: Five approaches are compared: no alignment performed (raw), alignment performed using a GP regression, SP alignment performed without using a GP prior (SP), SP

alignment performed with a GP prior (GPSP) and multi-profile alignment (G¼ 4) performed with a GP prior (GPMP). Performance comparison based on RT difference (in

seconds) across runs for consensus peaks, CV of the extracted ion chromatograms of consensus peaks, precision and recall. For RT difference and CV, means (standard

deviations) are reported based on the 273 and 106 consensus peaks in the proteomic and glycomic datasets, respectively. For precision and recall, means (standard deviations)

are reported based on 72 pairs of tolerance parameters of m=z 2 f0:05, 0:1, 0:25g and RT 2 f5, 10, . . . , 120g in SIMA.
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multiple chromatograms (GPMP) can lead to further improve-

ment, as shown in Table 1. The improvement becomes significant

in the glycomic dataset, which turns out to be the most challen-

ging case. In the glycomic dataset, we observe that GP regression

(with only five peaks of the internal standard) performs better

than SP and comparably with GPSP. This is due to the lack of

consistent pattern in the base peak chromatogram. Utilization of

the internal standard and multiple chromatograms (GPMP) is

advantageous as demonstrated by its consistently highest preci-

sion and recall, as well as its lowest RT and CV for both datasets.

Figure 2 shows the measures of precision and recall of the five

considered approaches, based on 72 pairs of tolerance param-

eters in SIMA. GPMP yields the best performance, with the least

variability to the choice of parameters.

For the multi-profile alignment, representative chromato-

grams are first identified as discussed in Section 2.3. We use

the L-method to determine the sufficient number of clusters as

demonstrated in Figure 3. As shown in the figure, the sum of

squared errors is minimized when the number of clusters is

chosen as four in the glycomic dataset. For the four clustered

chromatograms, the original and aligned chromatograms are

shown in Figure 4. Similarly, for the proteomic data, the

sufficient number of clusters to capture the chromatographic

patterns was found to be four. Table 2 compares the peak-

matching performance using multi-profile alignment for varying

number of chromatographic bins or clusters. Chromatograms

are derived either by binning along the m/z dimension or using

the proposed chromatographic clustering procedure. As shown

in the table, the chromatographic clustering procedure outper-

forms the binning approach. Incorporation of the GP prior

shows significant improvement over those without the prior in-

formation, when using binning and when the number of chro-

matographic clusters is underestimated. This indicates that using

the informative prior is beneficial for the profile-based align-

ment, especially when a consistent chromatographic pattern is

unavailable. For a reasonable range of chromatographic clusters

that capture the chromatographic patterns (G ¼ 3, . . . , 5), the

results with or without integrating the internal standards are

similar. We believe that further improvement can be achieved

with the addition of more internal standards that allow better

coverage of the RT.

5 CONCLUSION

In this article, we propose a BAM for LC-MS data analysis.

BAM improves on existing alignment methods by (i) using GP

prior derived from internal standards and (ii) considering multi-

profile modeling with representative chromatograms identified

by a clustering approach. Application of the method to various

LC-MS datasets shows that the proposed alignment approach

greatly facilitates the subsequent peak-matching process by ap-

propriate utilization of available information, which is often

overlooked by current methods. Although this article focuses

on using internal standards to derive the GP prior, it is also

possible to specify the GP prior for the mapping relationship

based on the identification of MS/MS spectra or targeted

compounds.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Clustered ion chromatograms in the glycomic dataset. (a–d) are the unaligned chromatograms and (e–h) are their corresponding aligned

chromatograms. The inset is a zoomed part in the middle RT range of the chromatograms

(a) (b)

Fig. 3. Normalized overlapping level (a) and sum of squared errors (b)

using the L-method in the glycomic dataset. The sufficient number of

clusters is four
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The alignment model proposed here considers underlying pat-

terns for LC-MS runs in samples drawn from the same biological
group. When samples arise from different biological subgroups,
the model needs to be extended to account for the heterogeneity
across these subgroups. Future work will focus on developing a

unified approach that allows the simultaneous alignment of sam-
ples from multiple biological groups to ensure coherence in the
processing step and data comparability.

The LC-MS raw data, the preprocessed peak lists and the
ground-truth data used in this article have all been made publicly
available to serve as a benchmark for the evaluation of new

preprocessing methods.
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Table 2. Multi-profile alignment of the glycomic dataset with and without using a GP prior

Performance

measure

Binning without GP prior Clustering without GP prior Binning with GP prior Clustering with GP prior

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

Precision 0.957 0.960 0.964 0.963 0.964 0.980 0.979 0.980 0.976 0.977 0.978 0.974 0.980 0.979 0.980 0.980

(0.007) (0.008) (0.007) (0.006) (0.007) (0.004) (0.004) (0.002) (0.003) (0.003) (0.004) (0.006) (0.003) (0.003) (0.002) (0.003)

Recall 0.766 0.783 0.770 0.780 0.796 0.906 0.910 0.913 0.848 0.856 0.830 0.837 0.904 0.904 0.907 0.908

(0.138) (0.122) (0.147) (0.154) (0.138) (0.094) (0.099) (0.092) (0.151) (0.141) (0.160) (0.156) (0.098) (0.099) (0.095) (0.096)

Note: Precision and recall are compared between cases where G chromatograms (G ¼ 2, . . . , 5) are derived either by binning alongm/z or using the chromatographic clustering

procedure.
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