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ABSTRACT

Motivation: Data quality is a critical issue in the analyses of DNA

copy number alterations obtained from microarrays. It is commonly

assumed that copy number alteration data can be modeled as piece-

wise constant and the measurement errors of different probes are

independent. However, these assumptions do not always hold in prac-

tice. In some published datasets, we find that measurement errors are

highly correlated between probes that interrogate nearby genomic

loci, and the piecewise-constant model does not fit the data well.

The correlated errors cause problems in downstream analysis, leading

to a large number of DNA segments falsely identified as having copy

number gains and losses.

Method: We developed a simple tool, called autocorrelation scanning

profile, to assess the dependence of measurement error between

neighboring probes.

Results: Autocorrelation scanning profile can be used to check data

quality and refine the analysis of DNA copy number data, which we

demonstrate in some typical datasets.
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1 INTRODUCTION

DNA copy number alteration (CNA) is one of the hallmarks
of cancer (Hanahan and Weinberg, 2011) and has been linked
to various complex genetic diseases (Girirajan et al., 2011;

McCarroll and Altshuler, 2007). Technological advances in
microarrays (Maresso and Broeckel, 2008; Snijders et al., 2001;
Wang et al., 2009; Yau and Holmes, 2008) and next-generation

sequencing (Campbell et al., 2008) have made it possible to gen-
erate large amounts of CNA data (Ahmad and Iqbal, 2012;
Li et al., 2012; Lisovich et al., 2011; Teo et al., 2012). Various

methods developed for CNA data analysis have been compared
in published reviews (Baross et al., 2007; Eckel-Passow et al.,
2011; Grayson and Aune, 2011; Yau and Holmes, 2008). These

methods differ in their focus, including preprocessing and nor-
malization (Lisovich et al., 2011; Stamoulis and Betensky, 2011;
Wang et al., 2012), segmentation (Broet and Richardson, 2006;

Huang et al., 2005; Hupe et al., 2004; Olshen et al., 2004), joint
analysis of multiple samples (Diskin et al., 2006; McCarroll et al.,

2008; Walter et al., 2011; Wu et al., 2009), copy number based on

mapped sequence reads (Chiang et al., 2009; Ivakhno et al., 2010;

Li et al., 2012; Magi et al., 2011, 2012; Sathirapongsasuti et al.,

2011; Xi et al., 2011), integrated analysis with genotyping, allele-

specific copy number (Li et al., 2008) and others (Abyzov et al.,

2011; Li et al., 2011; Pique-Regi et al., 2010; van de Wiel et al.,

2007; Wang et al., 2007). However, there are still some challen-

ging issues regarding quality assessment and biological interpret-

ation of CNA data (Hanemaaijer et al., 2012; Wineinger and

Tiwari, 2012; Zhang et al., 2011).
A common step of CNA analysis is segmentation, which trans-

forms noisy measurements into genomic segments of equal copy

number. This step aims to reduce noise and data dimension.

Significant gains/losses of the segments can be subsequently

recognized. The ends of the segments may correspond to DNA

breakage points. The underlying assumptions in segmentation

are (i) the data can be modeled as piecewise constant, and

(ii) the measurement errors of different probes are independent.

Although in most cases, methods such as circular binary segmen-

tation (CBS; Olshen et al., 2004) yield reasonable results, we find

that occasionally the piecewise-constant model appears to fit the

data poorly and the independence assumption is grossly violated.

The independence assumption is critical because it forms the

basis for separating true signals from noise. Correlated errors

are expected to lead to incorrect identification of aberrant

segments.

To address the issue, we have developed a method called the

autocorrelation scanning profile (ASP). Autocorrelation is the

cross-correlation of a signal with itself, which is a mathematical

tool for finding repeating patterns in time series data. If the time

series data can be modeled as piecewise constant and the noises

in the data are independent at different time points, ASP has the

following appealing properties: (i) the autocorrelation within

each segment of a constant mean is expected to be 0; (ii) at the

junction of an abrupt change-point, however, the autocorrelation

rises significantly above 0. We observe different patterns when

the ASP method is applied to published datasets. Our results

show that ASP can be used to check for CNA data quality

and refine the analysis.

2 METHODS

2.1 Autocorrelation scanning profile

ASP assesses the autocorrelation pattern from the copy number profile

(CNP) of a sample. A CNP is a vector, denoted as x½1, . . . , n�, where n is

the number of probed positions in the genome. The components of the

vector are ordered by the chromosome number and the chromosomal*To whom correspondence should be addressed.
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coordinates of the probed positions. The values of the components of the

vector are log-transformed DNA copy numbers. Probes that do not cor-

respond to unique chromosomal positions are excluded. We define the

ASP as a vector that is computed as follows:

ASP j½ � ¼ cor x j�
w

2
, . . . , jþ

w

2
� 1

h i
, x j�

w

2
þ 1, . . . , jþ

w

2

h i� �
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where j ¼ w
2 þ 1, . . . , n� w

2 and cor stands for Pearson correlation. The

vector x½ j� w
2 , . . . , jþ w

2 � 1� represents a scanning window enclosing w

probe signals. In this study, we choose w¼ 100.

The following procedure is used to evaluate the statistical significance of

the ASP. (i) To remove the effects of gains/losses, we apply Tukey’s run-

ning median smoothing algorithm (window size¼ 101) to a CNP, which

results in a smoothed CNP. (ii) We then take the difference between the

raw probe signals and the smoothed CNP to be the residuals, which we

then randomly permute along the genome to compute the ASP. Because

the randomly permuted residuals are supposed to have no significant

autocorrelation, the ASP values resulting from the permuted residuals

are assumed to form a null distribution. (iii) We use the top 99 percentile

of the ASP values as the threshold value of significance, with P¼ 0.01.

2.2 Computer simulation

To generate simulated CNP data, we set the dimension of a CNP to be

n¼ 10 000. Let x be a vector of 10000 random numbers following a

standard normal distribution. Here, x is the initial CNP that corresponds

to a sample with no copy number change and ASP is �0. To generate a

CNP that has ASP40, we use the following coupling function:

VðxÞ ¼ x � ð1� �Þ þ ðyþ zÞ �
�

2
,

where y ¼ ðx½2�,x½3�, . . . ,x½n�,x½1�Þ, z ¼ ðx½n�, x½1�, . . . , x½n� 2�,x½n� 1�Þ

and � is an adjustable parameter. We then normalize the CNP so that its

mean is 0 and standard deviation (sd) is 1. We then introduce a gain

region and a loss region on V(x), each with 2000 probe sites. The amp-

litudes of the gain and the loss are equal to 1. By tuning beta, we obtain

V(x) with different levels of the median ASP. We then apply the CBS

algorithm to identify the segments. A segment is called a significant gain/

loss if the following:

m �
p
N43,

where m is the segmental mean and
p
N is the square root of the number

of probes in the segment. False positives (FPs) are defined as sites that are

called significant gains/losses, but for which the nominal value is 0. False

negatives (FNs) are defined as sites that are not called as significant gains/

losses, but for which the nominal is not 0. True positives (TPs) are defined

as gains/losses that are correctly identified. True negatives (TNs) are

defined as sites that are not called as significant gains/losses, and for

which the nominal is 0.

The computer program we use in this study can be found in the

Supplementary Materials.

3 RESULTS

To evaluate the use of the ASP method, we compute the ASPs

using previously published DNA copy number data. Figure 1

shows the typical patterns we observe. The most common pat-

tern is shown in Figure 1A. After denoising, the CNP (the green

curve) has the shape of step functions with well-defined abrupt

change-points. The ASP profile (Fig. 1A, bottom) peaks around

the abrupt change-points of CNP but mostly fluctuates near 0 in

other loci, and rarely exceeds the significance line (the horizontal

black line). It appears that the piecewise-constant model fits the

CNP data well and there is little correlation between the

measurements of different probes, i.e. the probes can be regarded
as independent in this case.
However, the pattern shown in Figure 1A is not universal,

as other patterns have also been observed. For example, in
Figure 1B, the ASP appears to be much higher, exceeding the
significance line (the horizontal black line around 0.2) through-

out the genome. We also find samples lacking clearly defined
change-points (Fig. 1C). The CNP appears to have gradual
changes in some areas, such as in chromosome 1 (Fig. 1C,

top). Another distinct pattern is shown in Figure 1D, in which
the ASP reaches high levels in a localized region in the genome
(chromosome 12). The CNP also fluctuates a lot in the same

region.
We suspect the pattern seen in Figure 1B may indicate a qual-

ity problem with the DNA sample. We obtained supporting

evidence of this view from comparing formalin-fixed paraffin-
embedded (FFPE) samples with fresh-frozen samples obtained
from the same type of cancer and using the same microarray

platform. Formalin fixation is known to cause damages in
DNA, and extraction of DNA from FFPE samples is more
prone to biases (Brosens et al., 2010). As expected, we find

that the FFPE samples appear to have elevated ASPs (Fig. 2)
more often than the fresh-frozen samples. The average of the
median ASP of each FFPE sample is 0.32, whereas the median

ASP of the fresh-frozen samples is only 0.13. The difference
between the two groups of samples is statistically significant
(P¼ 7.56e-10, Student t-test).

To better understand the consequences of elevated ASPs, we
performed computer simulations to create artificial CNPs with
different levels of autocorrelation. We first generated CNPs fol-

lowing a standard normal distribution, which corresponds to a
sample with no copy number change and ASP approximately
equal to 0. We then introduced correlation between neighboring

probes by coupling the signals between neighboring probes with
a tunable parameter (see details in Methods). Figure 3 shows
how the CBS segmentation results depend on median ASPs

that are computed from the simulated CNPs. The results show
that when the median ASP is 50.1, the number of segments
remains at 1 and the FP rate is close to 0. The number of seg-

ments and the FP rate rise rapidly when the median ASP is40.4.
This result suggests that there is a clear association between the
elevated ASP and the number of segments. A similar relationship

has been found in real data. Figure 4 shows correlation between
the median ASP and number of segments in a dataset of
971 breast cancer samples (Spearman’s rank correlation

coefficient¼ 0.74).
Besides correlated measurement errors between adjacent

probes, segmental copy number changes can affect ASP. To

assess the effects of the former factor alone, we used a dataset
of 270 samples from a population without cancer and with few
copy number changes. We used that dataset as a standard refer-

ence set for calibrating the data on the platform. To further
reduce the effects of the copy number changes, we removed the
segments that had significant gains and losses. Because the nom-

inal copy number is 2 nearly throughout the genome, the correl-
ations observed between neighboring probes thus should
measure the extent to which the probes depend on each other.

We calculated the copy number correlation between neighboring
probes. Figure 5 shows the distribution of the correlations (red
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line). The distribution is centered �0 (mean¼�0.0001), but the

range is much wider than that expected from randomly permuted

data. The sd of the red line is 0.16, whereas the sd of the black

line 0.06. This means that we cannot assume that the probes

are independent from each other, even though the correlation

between neighboring probes is near 0 on average.

4 DISCUSSION

In this study, we have demonstrated the use of ASP in DNA

copy number analysis. The issue of interdependence of probes

has been largely ignored in the existing methods. We argue this is

an important issue and show that there are elevated ASPs that

can be frequently observed in published datasets. Elevated ASPs

mean that one cannot assume that the microarray probes meas-

ure the copy number data independently. The elevated ASPs

inflate the FPs in the identification of aberrant segments because

they increase the probability of multiple probes having common

biases. From the results of our computer simulations, we found

that FPs in segmentation rise rapidly when the median

Fig. 1. Typical ASP patterns. (A) Piecewise-constant CNP; (B) High ASP throughout genome; (C) Gradual changes in CNP; (D) CNP fluctuates rapidly.

Data source: Case A is from sample GSM315239 in GEO dataset GSE12532 (Hallor et al., 2009); Case B from sample GSM487724 in GSE19574

(Uchida et al., 2010); Case C from sample GSM315235, GEO accession number is GSE12532 (Hallor et al., 2009); and Case D is from GSM535545,

GEO accession number is GSE21420 (Barrow et al., 2011). In each case, the top shows the log-transformed CNP. The red points and the black points in

the CNP profile show the copy number data of individual SNP sites. The green curve shows denoised CNP using Tukey’s running median smoothing.

The bottom shows the ASP. The horizontal black line, around 0.2, marks the threshold value obtained from random permuted data. Points above the

line have P50.01. All data presented in this figure are from the same microarray platform CGH 244A manufactured by Agilent technologies

Fig. 2. Boxplots of ASPs. (A) FFPE samples; (B) Fresh-frozen samples.

Data source: GEO accession number GSE17047 (stage II colorectal

cancer, tissue samples) for the A and B set. The data are generated

using Agilent HD CGH Microarray 2� 105k array. The boxplots

show the inter-quartile ranges
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ASP40.4. Thus, one may regard the samples with median

ASP40.4 as bad samples that are to be discarded.
Spurious results of copy number changes have been found

experimentally. Mc Sherry et al. (2007) reported a dramatic

increase in the absolute number of genetic alterations in all

FFPE tissues relative to their matched fresh-frozen counterparts,

suggesting that FFPE samples are more prone to produce spuri-

ous results of copy number changes. These results are similar to

our current study, which showed that FFPE samples tend to

have higher median ASPs than fresh-frozen samples (Fig. 2).
Our ASP method provides a much needed tool for quality

control. Existing tools such as the NanoDrop spectrophotometer

aim to ensure that DNA samples to be hybridized onto the

arrays are in sufficient quantity and have the appropriate

length. There are also metrics commonly used to assess data

quality, such as the derivative log-ratio spread (DLRS; Largo

et al., 2007) and genotyping call rate on SNP arrays. The

DLRS estimates the log-ratio noise by calculating the spread

of log-ratio differences between consecutive probes along all

chromosomes. The genotyping call rate of a sample is the frac-

tion of probes that have passed the detection filter. The DLRS

and genotype call rate are correlated, both reflecting measure-

ment noises on individual probes. ASP is conceptually different,

as it measures the correlation of noises between neighboring

probes. Hence, we recommend the use of ASP in addition to

existing quality measures.

It is interesting to note that the ASPs show several distinct

patterns (Fig. 1). When only a localized region has a high ASP

(Fig. 1D), the phenomenon is similar to that reported as chromo-

thripsis (Maher and Wilson, 2012) or firestorm (Hicks et al.,

2006). The CNP pattern seen in Figure 1C contains gradual

changes, which poorly fit the piecewise-constant model. The piece-

wise-constant model is expected to hold under the condition that

there is only one tumor clone in the tissue and the number of aber-

rant segments is less than the number of probe sites. The latter

condition usually holds except in the case of chromothripsis.

When there is only one tumor clone, the denoised copy number

should take integer values after adjusting the scale. The gradual

changes that fall between the level of single copy gain or loss (such

as in Fig. 1C) cannot result from a single tumor clone, and

Fig. 3. Simulation results. (A) Relationship between median of ASP and

number of segments according to CBS algorithm. (B) Relationship

between median of ASP and FP rate, FN rate, TP rate and TN rate.

CNP data are generated using random values with no significant copy

number changes. The size of each CNP is 100 000. Autocorrelation is

incorporated through coupling the signals of neighboring probes (see

Methods)

Fig. 5. Distribution of correlation of measurement errors between neigh-

boring probes. The raw data are from GEO Web site with accession

number GSE5173. The dataset is from a healthy population and is

used as normal controls for normalization. Array platform: Affymetrix

Mapping 250k Nsp SNP array. Black line denotes the distribution of

correlation of errors in the copy number estimates between neighboring

SNP sites. The red line shows the distribution of correlation using ran-

domly permuted residuals

Fig. 4. High ASP corresponds to hypersegmentation. The relationship

between median ASP and number of segments identified by the CBS

algorithm is shown. Data source: the data are from Thompson et al.

(2011)

2681

Use of autocorrelation scanning in DNA copy number analysis

-wise 
-wise 


therefore must come from the contribution of multiple clones.

Tumor tissues containing multiple clones are commonly observed,

which is recognized as another hallmark of cancer (Hanahan and

Weinberg, 2011). Taken together, our results show that ASP pro-

vides a useful tool in DNA copy number analysis.
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