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ABSTRACT

Motivation: Recently, mapping studies of expression quantitative loci

(eQTL) (where gene expression levels are viewed as quantitative traits)

have provided insight into the biology of gene regulation. Bayesian

methods provide natural modeling frameworks for analyzing eQTL

studies, where information shared across markers and/or genes can

increase the power to detect eQTLs. Bayesian approaches tend to be

computationally demanding and require specialized software. As a

result, most eQTL studies use univariate methods treating each

gene independently, leading to suboptimal results.

Results: We present a powerful, computationally optimized and free

open-source R package, iBMQ. Our package implements a joint hier-

archical Bayesian model where all genes and SNPs are modeled con-

currently. Model parameters are estimated using a Markov chain

Monte Carlo algorithm. The free and widely used openMP parallel

library speeds up computation. Using a mouse cardiac dataset, we

show that iBMQ improves the detection of large trans-eQTL hotspots

compared with other state-of-the-art packages for eQTL analysis.

Availability: The R-package iBMQ is available from the Bioconductor

Web site at http://bioconductor.org and runs on Linux, Windows and

MAC OS X. It is distributed under the Artistic Licence-2.0 terms.

Contact: christian.deschepper@ircm.qc.ca or rgottard@fhcrc.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Recently, eQTL mapping studies (where gene expression levels

are viewed as quantitative traits) have provided insight into the

biology of gene regulation. Among eQTLs, it is customary to
distinguish cis-eQTLs from trans-eQTLs. The former share the

same locus as the expressed gene, whereas the latter are located
on loci different from the expressed gene. Many eQTLs, particu-

larly trans-eQTLs, form trans-eQTL hotspots where one single

nucleotide polymorphism (SNP) is linked to the expression of
several genes across the genome. Despite this observation, most

available eQTL analysis tools treat genes as independent, and as

such these methods are underpowered to detect trans-eQTL hot-

spots (Gilad et al., 2008). Likewise, some available packages

[such as GGtools (Carey et al., 2009)] allow for data analysis

and visualization of results, but are currently limited to univari-

ate analyses.
We present an integrated hierarchical Bayesian model that

jointly models all genes and SNPs to detect eQTLs. The iBMQ

R/Bioconductor package incorporates genotypic and gene ex-

pression data into a single model while (i) coping with the high

dimensionality of eQTL data (large number of genes), (ii) bor-

rowing strength from all gene expression data for the mapping

procedures and (iii) controlling the number of false positives to a

desirable level.

2 METHODS

The main iBMQ function is written in C for computational efficiency and

wrapped in convenient R code. iBMQ uses the OpenMP API to perform

modeling operations in parallel, facilitating the analysis of large datasets.

A sparse matrix representation enables efficient matrix calculations (see

Supplementary Material). iBMQ adopts object-oriented programming,

making use of existing S4 classes (e.g. eSet and SNPSet). The main func-

tions are as follows:

� eqtlMcmc: This function takes gene expression values (an eSet

object) and genomic map data (a SNPSet object) as input, then

generates posterior samples from our model (Scott-Boyer et al.,

2012) via Markov chain Monte Carlo. Additional arguments include

the number of Markov chain Monte Carlo iterations, number of

burn-in iterations and whether sampled nuisance parameters

should be saved to disk. The output is a matrix of marginal posterior

probability of associations (PPAs), which is used for eQTL inference

(See Supplementary Material for details). An eQTL for gene g at

SNP j is declared significant if its corresponding PPA exceeds a given

threshold.

� calculateThreshold: This function calculates the PPA threshold for

eQTL significance corresponding to a given false discovery rate

based on the approach of Newton et al. (2004).

� eqtlFinder: This function applies the calculated threshold to PPAs

and identifies significant SNPs.

� eqtlClassifier: Given the genomic position of each probe and SNP as

input, this function classifies the eQTLs as either cis-eQTLs or trans-

eQTL.
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� hotspotFinder: This function identifies single markers associated with

several genes, and thus identifies trans-eQTL ‘hotspots’ (see

Supplementary Material for details).

3 RESULTS

We applied iBMQ to data generated by Scott-Boyer and
Deschepper (2013), available at GeneNetwork (accession

number GN421). The data comprise 8725 genes and 977 markers

in cardiac tissue from 24 AXB-BXA recombinant inbred strain

mice, as measured using Illumina microarrays. We used 1 million

iterations with 50 000 burn-in iterations as suggested in previous

studies Scott-Boyer et al. (2012), which took�19h using an Intel

Xeon E5-2690 8-core processor. Using a false discovery rate

threshold of 10%, iBMQ detected 1652 significant eQTLs, of

which 278 were cis-eQTLs (where gene start is 51Mb from

eQTL peak) and 1357 were trans-eQTLs. The cis-eQTLs align

along a diagonal in Figure 1. Among trans-eQTLs, iBMQ de-

tected three clusters of�50 genes forming ‘trans-eQTL hotspots’,

represented by vertically aligned dots. To verify whether the hot-

spots detected by iBMQ showed biological relevance and coher-

ence, we tested whether corresponding groups of trans-eQTLs

showed enrichment in genes from Gene Ontology (GO) term

categories, using the DAVID Bioinformatics Resources

(Table 1). In each case (i) there was significant enrichment for

particular GO terms and (ii) iBMQ detected more trans-eQTL

genes than the univariate R/QTL method (Broman et al., 2003).

For the three trans-eQTLs hotspots, both methods detected sig-

nificant enrichment for the following GO terms: GO:0012505

(cellular component), GO:0007167 (enzyme-linked receptor pro-

tein signaling pathway) and GO:0006955 (immune response).

According to the method used, these GO terms ranked as

either the top or the second most enriched category.

Consequently, the significance of GO term enrichment was

higher for trans-eQTL hotspots detected by iBMQ than for the

corresponding hotspots detected by R/QTL. iBMQ appears to

show greater sensitivity to detect trans-eQTL hotspots containing

large number of genes.
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Fig. 1. Genome-wide distribution of eQTLs found by iBMQ for mice

cardiac tissue. The X-axis gives eQTL genomic position; the Y-axis

gives the genomic positions of probe sets. Chromosome numbers are

given in the gray box strips. cis-QTLs align along the diagonal line.

Vertical bands represent groups of transcripts linked to one trans-

eQTL. eQTL points are color-coded by PPA value (see PPA color

scale). The Supplementary Material presents the code used in the analysis

Table 1. Positions of iBMQ-detected trans-eQTL hotspots containing

�50 genes, and comparisons with corresponding hotspots detected by

the univariate R/QTL method

SNP GO term iBMQ R/QTL

#GO/Total P-val #GO/Total P-val

1@94.8 0012505 14/173 2.4e-4 5/27 4.0e-3

12@103.5 0007167 5/53 1.5e-3 3/24 6.9e-3

17@72.4 0006955 26/192 2.7e-13 6/49 2.5e-3

0017076 40/192 3.3e-7 10/49 0.015

Note: In the first column, a position identified as 1@94.8 refers to a SNP at position

94.8 Mb on chromosome 1. Columns list the GO term ID, and for each method, the

number of trans-eQTL genes belonging to the GO term category, the total number

of genes in the hotspot and the enrichment P-value (see Supplementary Material for

details).

2798

G.C.Imholte et al.

S
(RIS) 
,000,000
,
about 
ours
an
FDR
less than 
3
or more 
s
:
1
2
enzyme 
), 
.
RG and GI were funded by 

