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ABSTRACT

Motivation: The inference of local ancestry of admixed individuals at

every locus provides the basis for admixture mapping. Local ancestry

information has been used to identify genetic susceptibility loci.

Results: In this study, we developed a statistical method, efficient

inference of local ancestry (EILA), which uses fused quantile regres-

sion and k-means classifier to infer the local ancestry for admixed

individuals. We also conducted a simulation study using HapMap

data to evaluate the performance of EILA in comparison with two

competing methods, HAPMIX and LAMP. In general, the performance

declined as the ancestral distance decreased and the time since ad-

mixture increased. EILA performed as well as the other two methods in

terms of computational efficiency. In the case of closely related

ancestral populations, all the three methods performed poorly. Most

importantly, when the ancestral distance was large or moderate, EILA

had higher accuracy and lower variation in comparison with the other

two methods.

Availability and implementation: EILA is implemented as an R pack-

age, which is freely available from the Comprehensive R Archive

Network (http://cran.r-project.org/).

Contact: jyangstat@gmail.com
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1 INTRODUCTION

Since the completion of human genome project in 2003 (Collins
et al., 2003), it is feasible to conduct a case–control study to

identify disease-susceptible loci using millions of single-nucleo-
tide polymorphisms (SNPs). Unlike the family-based linkage

analysis, the case–control design provides an easier way to
access large samples for studying complex diseases. The case–

control design is especially useful when dealing with a late

onset disease in which the parental genotype is usually difficult
to obtain. However, a genome-wise association study based on

the case–control design may yield false-positive findings because
of population admixture that is attributed to individuals des-

cended from multiple ancestral population groups. Specifically,
alleles that differ in frequency between ancestral populations

may be falsely found to be associated with diseases that are

also more prevalent in one ancestral population than the other.
Several approaches have been developed to account for popu-

lation admixture in genetic association studies. One approach is

the genomic control (Devlin and Roeder, 1999), which calculates

an inflation factor to adjust the testing statistic and hence the

P-value. Another approach is to identify the genetic background

using principle component analysis and then adjust the testing

statistic using significant eigenvectors (Price et al., 2006).

However, it is challenging to infer local ancestry for admixed

individuals because the true ancestral information is a mixture

of haplotypes with varied lengths, each of which can be traced

back to its original ancestry.
To infer local ancestry using SNP data, we face the following

challenges. First, given that most SNPs only have three different

genotypes, if we only use the genotype information at a given

locus, we would have limited power to infer local ancestry for

that locus and also such power would depend on whether the

SNPs differ in frequency between the ancestral groups. Second,

the number of generations since admixture occurred must be

taken into account in this kind of analysis because it is inversely

related to the length of genomic regions derived from any given

group. Although the number of generations is rarely known, we

can infer the boundaries of these ancestral blocks by identifying

regions where the ancestral haplotypes differ on either side.

Therefore, the challenge becomes how to identify the breakpoint

or transition point for ancestral blocks within an individual’s

genome. Third, the majority of existing models assume linkage

equilibrium under which the analysis only needs to use unlinked

markers but is at risk of losing power because of excluding po-

tential ancestral informative markers. This simple approach is

particularly questionable for the SNPs that are genotyped on

platforms with dense coverage.
In this study, we developed a new method for efficient infer-

ence of local ancestry (EILA) in admixed individuals based on

three steps that were designed to deal with the existing methodo-

logical challenges. The first step assigns a numerical score (with a

range of 0–1) to genotypes in admixed individuals to better quan-

tify the closeness of the SNPs to a certain ancestral population.

The second step uses fused quantile regression to identify break-

points of the ancestral haplotypes. In the third step, the k-means

classifier is used to infer ancestry at each locus. The major

strength of EILA is that it relaxes the assumption of linkage

equilibrium and uses all genotyped SNPs rather than only un-

linked loci to increase the power of inference. Another important

strength of this method is its higher accuracy and lower variation

in comparison with competing methods. These strengths are

demonstrated by the simulation study in Section 4.

2 THE EILA METHOD

In this section, we consider an admixed population descended

from two ancestral populations. Extension to more than two*To whom correspondence should be addressed.
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ancestral populations is discussed in Section 3.3. We also assume

the samples of ancestral populations are available so that we can

infer ancestral genotype distributions. Based on these assump-

tions, we infer local ancestry using three samples: one study

sample of admixed individuals with unknown local ancestry

and two reference samples from different ancestral populations.

Sections 2.1–2.3 describe technical details of the EILA method.

2.1 Mapping admixed genotypes onto continuous scores

Define gj, ið¼ 0, 1, or 2Þ as the number of reference alleles for an

individual i at locus j. Genotypes from the reference ancestral

populations are denoted by the superscript A and B. Given a

collection of n1 individuals from Ancestry A and n2 individuals

from Ancestry B, we define a score ej, i for the observed admixed

genotype gj, i as the probability that gj, i is descended from

Ancestry A:

ej, i ¼ Pr gj, i 2 A g
ðAÞ
j, 1 , . . . , g

ðAÞ
j, n1

and g
ðBÞ
j, 1 , . . . , g

ðBÞ
j, n2

���
h i

:

Unlike gj, i that is a discrete variable with little information

about the closeness of the SNPs to a certain ancestral population,

ej, i is a continuous variable (with the range 0–1) that has an

intuitive interpretation. Suppose that we have a set of closely

linked SNPs from an admixed individual and that the two seg-

ments flanking these SNPs are descended from Ancestry A, the

majority of ej, i would be close to 1. However, if the segments are

descended from Ancestry B, the majority of ej, i would be close to

0. In another situation where one segment is descended from

Ancestry A and the other segment from Ancestry B, the average

of ej, i would be �0.5. Because the event gj, i 2 A is binary, the

logistic regression is a natural choice for calculating the score ej, i.

2.2 Using fused quantile regression to identify breakpoints

of the ancestral haplotypes

For an admixed individual i, the first step of EILA generates a

sequence of scores ej, i, j ¼ 1, . . . ,m. Define �j, i to be a smooth

series. Using the fused quantile regression proposed by Eilers and

de Menezes (2005), we can estimate �j, i by finding the value that

minimizes

Xm
j¼1

jej, i � �j, ij þ l
Xm
j¼2

j�j, i � �j�1, ij: ð1Þ

Equation (1) contains two terms: the first term is a median re-

gression that is robust to outliers; the second term is a penalty

that determines the smoothness of �j, i using the tuning parameter

l40. When l is small, the effect of the penalty is small, so the

fitted value of �j, i is very close to the observed ej, i. On the other

hand, when l is large, the penalty term dominates, so the �j, i’s in
proximity are similar. The choice of l is discussed in detail in

Section 3.2.
In summary, the fitted curve has plateaus and sudden jumps

between them. The plateau indicates that all of the SNPs within

this region are in one of three cases: (i) descended from Ancestry

A, (ii) descended from Ancestry B or (iii) equally admixed. The

jumps between plateaus are possible breakpoints between ances-

tral blocks. The fused quantile regression is used in this step to

achieve two goals: one is to smooth SNP scores within admixed

individuals and the other is to infer the location of breakpoints

for ancestral blocks.

2.3 Using k-means classifier to infer local ancestry

Given the breakpoints for each admixed individual identified in

the previous step, we propose to infer the local ancestry for each

segment between breakpoints using the k-means classifier be-

cause of its efficiency and accuracy in assigning local ancestry.

It is important to note that all SNPs in each segment are used in

this step to achieve high power of inference.
To classify genomic segments into Ancestry A, Ancestry B or

equally admixed, we need the corresponding three types of SNP

distributions. Although we have samples from ancestral popula-

tions A and B, we do not have samples that are known to have

equal admixture from these two ancestral populations at every

locus. Our approach for dealing with this issue is to simulate

first-generation admixed individuals through random mating of

two individuals of whom one is randomly selected from Ancestry

A and the other from Ancestry B. The random mating process is

repeated many times to generate a sample of equally admixed

individuals. In practice, the number of simulated admixed indi-

viduals would be equal to the average number of individuals in

populations A and B.

To infer local ancestry for each segment between breakpoints

using unsupervised k-means classification, we define the test set

as all SNPs within the segment being studied. The training set

consists of the corresponding segments from the simulated

sample of equally admixed individuals along with the two refer-

ence samples from the ancestral populations A and B. Note that

the ancestral statuses for the training set are known but the an-

cestral status for the test set is unknown. We use the k-means

classifier to train the three reference samples in the training set

and to identify the three centroids (or means) corresponding to

the three reference populations. To infer the local ancestry of the

test segment, we find the centroid nearest to the test segment.

This procedure is repeated until every segment of unknown local

ancestry SNPs for every admixed individual in the study sample

has been classified.

3 IMPROVEMENT AND EXTENSION OF THE EILA
METHOD

The direct implementation of the EILA method for high-

throughput arrays requires a huge amount of computer

memory and computation time. For example, we found that

when the total number of SNPs was 20000, the fused quantile

regression implemented in R required4192-GB RAM, which is

beyond the capacity of most computers. For 10 000 SNPs, it took

10h on 2.53GHz Intel(R) Xeon(R) CPU running R under

Linux. Thus, for Genome-Wide Human SNP Array 6.0

(Affymetrix Inc., Santa Clara, CA) that contains470 000 SNPs

on chromosome 1, the required computer memory and compu-

tation time are not practically feasible. Sections 3.1 and 3.2 de-

scribe our approaches to drastically improve the computational

efficiency (it took only 0.6 s rather than 10h for 10000 SNPs on

the same machine). Section 3.3 extends the EILA to the case of

three ancestral populations.
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3.1 Improving fused quantile regression

The simplest way to improve computational efficiency is to

adopt the Frisch–Newton method following the recommenda-

tion of Eilers and de Menezes (2005) and Koenker (2005). The

computation time of this method is, however, proportional to the

third power of the number of SNPs. In addition, the required

computer memory for the Frisch–Newton method at the scale of

high-throughput arrays is not feasible in most settings. Thus, we

propose the following two approaches to increase the computa-

tional efficiency without losing accuracy of breakpoint identifi-

cation. First, we used the Wilcoxon rank-sum test to compare the

distributional difference between the two reference samples at

each locus. For every M base pairs, we selected 1 SNP with

the smallest P-value. Our preliminary analysis found that

M ¼ 50, 000 is sufficient for fused quantile regression to identify

the breakpoints without missing any potential ones. Second, be-

cause even 1 SNP per 50 000bp requires a lot of computation

time to fit the fused quantile regression on one whole chromo-

some, we further improved the algorithm by fitting the fused

quantile regression piecewise. That is, we partitioned the whole

chromosome into several segments, each of which has a length

between 10 and 25MB. As our purpose is to identify break-

points, fitting fused quantile regression in each partition does

not affect breakpoint identification.

3.2 Choice of the tuning parameter

In Section 2.2, we briefly explain that the function of the tuning

parameter l of the fused quantile regression is to control the

smoothness of the fitted curve. In this section, we provide the

technical details of how to choose the tuning parameter.

One approach commonly adopted in quantile regression is the

Schwarz information criterion [SIC; (Schwarz, 1978)] under

which the optimal value of l (i.e. the one that minimizes SIC)

can only be determined empirically. This is, however, a time-

consuming process, especially for a large number of SNPs, and

thus is not practical in genetic data analysis. Furthermore, we

conducted a simulation study fitting the fused quantile regression

with various values of l on simulated admixed samples (see

Section 4.2 for the detailed procedure of data generation) and

found that SIC is not an effective approach to determine the

optimal l. For example, Figure 1 based on our simulation results

shows that any l value48 could be the optimal value.

Instead of the SIC approach, we propose a simulation ap-

proach to find the optimal l. We evaluated the relationship be-

tween l and breakpoints by using the fused quantile regression

with various values of l to fit simulated data resulting from the

procedure described in Section 4.2. Figure 2 displays the simu-

lation results based on three values of l: 5, 15, 50 in the top,

middle and bottom panels, respectively. The blue points indicate

that both alleles of the corresponding SNP were descended from

AncestryA; the green points indicate that both alleles were des-

cended from Ancestry B; and the brown points indicate that two

alleles were descended from Ancestries A and B. The red lines are

the fitted lines of fused quantile regression that are between the 0

and 0.5 horizontal lines in the region of blue points, between the

0.5 and 1 horizontal lines in the region of green points and in

proximity to the 0.5 horizontal line in the region of brown points.

The true breakpoints are at the boundary of regions with differ-

ent colors.
The top panel of Figure 2 shows that the fitted fused quantile

regression with a small value of l (e.g. 5) detected all true break-

points and yet had short segments that tended to result in low

power in local ancestry inference because very few SNPs can be

used in the k-means clustering. On the other hand, the bottom

panel shows that the fitted fused quantile regression with a large

value of l (e.g. 50) had long segments and also tended to miss

many breakpoints. The middle panel, otherwise, shows a com-

promise between the two when l ¼ 15, which was the largest

value at which all true breakpoints can be identified in the simu-

lation and thus was chosen to be the optimal value. The results in

Section 4 show that the EILA method with this particular l
value performs well in comparison with two competing methods,

HAPMIX and LAMP, under different ancestral distributions

and number of generations.

3.3 Extension to three ancestral populations

It is straightforward to extend our method to the case of three

ancestral populations (e.g. A, B and C) for which there are three

possible pairs (i.e. A–B, B–C, and A–C). Following the steps in

Sections 2.1 and 2.2, we can identify a set of breakpoints for each

pair of ancestral populations. For example, the breakpoints SAB

of the A–B pair can be identified using the admixed sample and

ancestral samples from populations A and B. For the other two

ancestral pairs, the breakpoints SBC and SAC can be identified in

similar ways. The set of breakpoints for these three ancestral

populations, SABC, is thus the collection of breakpoints from

the three sets, SAB,SBC,SAC.

To infer local ancestry for each segment specified by the break-

points SABC, we can follow the procedure in Section 2.3 to simu-

late an admixed sample from each pair of the three reference

samples. Using the k-means classifier with k ¼ 6 based on the

three reference samples and three simulated admixed samples, we

can assign each unknown segment for each individual in the

study sample to one of the six possible ancestral populations.

4 SIMULATION STUDY

We evaluated the performance of the proposed EILA method in

comparison with two existing methods for inference of local

Fig. 1. The relationship between SIC and l based on simulation
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ancestry, the LAMP and Hapmix, by conducting a simulation

study based on ancestral data from the International HapMap

Project http://www.hapmap.org/. The two competing methods

are described in Section 4.1. Section 4.2 delineates the procedure

for simulating admixed samples. The results of the simulation

study are presented in Section 4.3.

4.1 The LAMP and Hapmix methods

The first competing method is the LAMP (Sankararaman et al.,

2008) that was shown to have higher efficiency and accuracy

than older methods such as the SABER (Tang et al., 2006)

and the Structure (Pritchard et al., 2000). The LAMP method

is based on sliding windows of contiguous SNPs across the entire

chromosome. In each window, a cluster algorithm is used to

estimate the probability that an SNP is descended from

Ancestry A, Ancestry B or the admixed population. The majority

vote among all windows covering this SNP is then used to infer

its local ancestry.
Another competing method used to compare with the pro-

posed method is the HAPMIX (Price et al., 2009). Unlike the

LAMP that uses ancestral frequencies for local ancestry

inference, HAPMIX assumes that the phased samples from

unadmixed populations are available. The inference method

builds on the Hidden Markov Model where the hidden state

represents the ancestral status based on phased data.

HAPMIX estimates the likelihood of the observed admixed seg-

ment that is a better match with one ancestral population than

the other. The central idea is to use dense SNPs to model linkage

disequilibrium in the ancestral populations to improve the local

ancestry inference. However, this method may be sensitive to the

accuracy of phased ancestral data.

4.2 Procedure of simulating admixed samples

Our simulation study was designed based on the publicly access-

ible data from ancestral samples of the International HapMap

Project so that the results can be easily generalized to real data

situations. We used the Affymetrix Genome-Wide Human SNP

Array 6.0 for chromosome 1 as the SNP set. There are 11 popu-

lations in HapMap, which are listed in Table 1. The upper tri-

angle of Table 1 shows the abbreviations of population names

and the distance between each pair of populations using the root-

mean-square difference (RMSD) of the reference alleles; the

Fig. 2. The relationship between l and breakpoint identification based on a simulation study (the red lines are the fitted fused quantile regression with

l ¼ 5, 15, and 50; the blue points indicate both alleles were descended from Ancestry A; the green points indicate both alleles were descended from

Ancestry B; the brown points indicate the two alleles were descended from Ancestries A and B)
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values listed in the lower triangle are the ratio of the RMSD of a

particular pair to the RMSD of the reference pair CHB/CHD

(Han Chinese in Beijing/Chinese in Metropolitan Denver), which

has the smallest value of RMSD among all pairs. We simulated

all pairwise admixed samples from the HapMap ancestral sam-
ples. Among them, the following six pairs have been chosen to be

the focus of the simulation experiments because of the common

interest in studying them and the wide range of differences rep-

resented by them: CEU/YRI and GIH/YRI represent the high

level of difference; CEU/MEX, GIH/MEX and GIH/CEU are at

the moderate level; and CEU/TSI represents the low level (CEU:
Utah residents with Northern and Western European ancestry

from the CEPH collection; GIH: Gujarati Indians in Houston,

Texas; MEX: Mexican ancestry in Los Angeles, California; TSI:

Toscani in Italia; YRI: Yoruba in Ibadan, Nigeria).
To simulate ancestral samples, the genotypes at each locus

were generated using the allele frequencies estimated from

HapMap ancestral populations. We simulated 60 ancestral sam-

ples on chromosome 1 for each ancestry. For each pair of an-
cestral samples from HapMap, we defined one as Ancestry A

and the other as Ancestry B. To generate one admixed individual

from Ancestries A and B for g generations, we simulated 2g in-

dividuals with the probability � from Ancestry A and the prob-

ability 1� � from Ancestry B. The resulting 2g individuals thus

served as the ancestry of the admixed individual. The next gen-
eration of size 2g�1 was derived by randomly pairing the 2g in-

dividuals and having each pair generate one child. This process

of random mating was executed recursively to simulate g gener-

ations. We simulated 30 admixed individuals from Ancestries A

and B by repeating the process of generating one admixed indi-

vidual 30 times. We also set the recombination rate at the com-
monly adopted level of 10�8/bp (Nachman and Crowell, 2000).

4.3 Simulation results

This section compares the performance of three competing meth-

ods (EILA, HAPMIX and LAMP) when � ¼ 0:25 and the time

since admixture (measured in the number of generations) is

varied: g ¼ 1, 5, 10. The accuracy of local ancestry inference

for each method was calculated for each admixed individual.

Figure 3 shows the boxplots of the accuracy rates among the

simulated 30 admixed individuals from the same ancestral pair

under each configuration of the method and the number of gen-

erations. This figure consists of six panels, each of which corres-

ponds to an ancestral pair including CEU/YRI, CEU/MEX,

CEU/TSI, GIH/YRI, GIH/MEX and GIH/CEU.
The major factor that affects the accuracy of local ancestry

inference is the ancestral distance (i.e. RMSD). For ancestral

populations with a large RMSD such as CEU/YRI

(RMSD¼ 0.237), all three programs had high average accuracy

rates (40:90). For moderately related ancestral populations such

as CEU/MEX (RMSD¼ 0.108), the average accuracy rates

ranged from 0.62 to 0.86 across the methods. For closely related

ancestral populations such as CEU/TSI (RMSD¼ 0.051), the

average accuracy rates of local ancestry inference ranged from

0.35 to 0.60 across the methods.
In comparison with HAPMIX and LAMP, EILA had higher

accuracy and lower variation when the ancestral distance was

large or moderate (i.e. all ancestral pairs but CEU/TSI). In the

case of closely related ancestral populations such as CEU/TSI,

all the three methods performed poorly (the average accuracy

rate 50:60). Although HAPMIX performed slightly better

than the other two methods for the CEU/TSI pair, its perform-

ance appeared to be heavily dependent on the quality of phased

ancestral samples. Particularly, for any simulated admixed sam-

ples involving GIH ancestral population, HAPMIX had lower

accuracy and higher variation in comparison with the other two

methods. We also conducted paired t-tests to compare the dif-

ferences in average accuracy between EILA and LAMP and be-

tween EILA and HAPMIX. The results show that the average

accuracy of EILA was significantly higher than the other two

methods (P50:05) for all the ancestral pairs, except for the pairs
of CEU/YRI and CEU/TSI. To benchmark the computational

efficiency of the three programs, we measured the total time to

infer local ancestry for the 30 admixed individuals simulated in

Table 1. The RMSD values based on chromosome 1 using independent samples from HapMap

Population ASW CEU CHB CHD GIH JPT LWK MEX MKK TSI YRI

ASW 0.1851 0.2232 0.2251 0.1803 0.2240 0.0753 0.1781 0.0776 0.1835 0.0720

CEU 4.79 0.2011 0.2043 0.1142 0.2022 0.2300 0.1083 0.1937 0.0515 0.2370

CHB 5.78 5.21 0.0386 0.1687 0.0588 0.2501 0.1590 0.2267 0.2047 0.2556

CHD 5.83 5.29 1.00 0.1701 0.0641 0.2516 0.1621 0.2291 0.2068 0.2576

GIH 4.67 2.96 4.37 4.40 0.1689 0.2184 0.1169 0.1859 0.1145 0.2264

JPT 5.80 5.24 1.52 1.66 4.37 0.2509 0.1595 0.2277 0.2056 0.2562

LWK 1.95 5.95 6.48 6.52 5.65 6.50 0.2177 0.0771 0.2279 0.0595

MEX 4.61 2.80 4.12 4.20 3.03 4.13 5.64 0.1845 0.1112 0.2253

MKK 2.01 5.01 5.87 5.93 4.81 5.89 2.00 4.78 0.1900 0.0942

TSI 4.75 1.33 5.30 5.35 2.96 5.32 5.90 2.88 4.92 0.2355

YRI 1.86 6.14 6.62 6.67 5.86 6.63 1.54 5.83 2.44 6.10

Note: Population descriptors.

ASW, African ancestry in Southwest USA; CEU, Utah residents with Northern and Western European ancestry from the CEPH collection; CHB, Han Chinese in Beijing,

China; CHD, Chinese inMetropolitan Denver, Colorado; GIH, Gujarati Indians in Houston, Texas; JPT, Japanese in Tokyo, Japan; LWK, Luhya inWebuye, Kenya; MEX,

Mexican ancestry in Los Angeles, California; MKK, Maasai in Kinyawa, Kenya; TSI, Toscani in Italia; YRI, Yoruba in Ibadan, Nigeria.
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our study. The total computation time was 332 s for EILA, 116 s

for HAPMIX and 552 s for LAMP. Thus, the computational

efficiency of EILA is comparable with that of the other two

programs in practical settings.
We also evaluated the effect of the time since admixture on the

accuracy of local ancestry inference. When g ¼ 1, all the simu-

lated admixed individuals had no breakpoints for ancestral seg-

ments (i.e. all SNPs were either descended from one ancestral

population or admixed from the two ancestral populations).

Thus, this situation was used to evaluate whether any of the

methods require the existence of breakpoints. The result shows

that none of the methods failed in such a situation. Overall, all

the three methods performed worse as the time since admixture

became longer (i.e. more generations). This effect was, however,

relatively small in comparison with the effects of ancestral dis-

tances and analytical methods.

5 CONCLUSIONS

This study contributes to the field by developing a statistical

method, EILA, to efficiently infer local ancestry in admixed in-

dividuals based on the three steps that were designed to deal with

the existing methodological challenges. The major strength of

EILA is that it relaxes the assumption of linkage equilibrium

and uses all genotyped SNPs rather than only unlinked loci to

increase the power of inference. We also propose new approaches

to improve the computational efficiency of the EILA method

drastically and extend it to the case of three ancestral popula-

tions. The R package EILA implementing the EILA method will

be available at http://cran.r-project.org/.
Our simulation results show that the ancestral distance is the

major factor affecting the accuracy of local ancestry inference.

The accuracy rates decreased as the ancestral distance decreased.

When the ancestral distance was large or moderate, EILA had

higher accuracy and lower variation in comparison with the two

competing methods, HAPMIX and LAMP. In the case of closely

related ancestral populations, all the three methods performed

poorly. In terms of computational efficiency, EILA performed as

well as the other two methods. Overall, all the three methods

performed worse as the time since admixture became longer. This

effect was, however, relatively small in comparison with the ef-

fects of ancestral distances and analytical methods.
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Fig. 3. The boxplots of the accuracy of local ancestry inference using EILA, HAPMIX and LAMP
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