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Abstract: Spectrally encoded confocal microscopy (SECM) is a form of 
reflectance confocal microscopy that can achieve high imaging speeds 
using relatively simple probe optics. Previously, the feasibility of 
conducting large-area SECM imaging of the esophagus in bench top setups 
has been demonstrated. Challenges remain, however, in translating SECM 
into a clinically-useable device; the tissue imaging performance should be 
improved, and the probe size needs to be significantly reduced so that it can 
fit into luminal organs of interest. In this paper, we report the development 
of new SECM endoscopic probe optics that addresses these challenges. A 
custom water-immersion aspheric singlet (NA = 0.5) was developed and 
used as the objective lens. The water-immersion condition was used to 
reduce the spherical aberrations and specular reflection from the tissue 
surface, which enables cellular imaging of the tissue deep below the 
surface. A custom collimation lens and a small-size grating were used along 
with the custom aspheric singlet to reduce the probe size. A dual-clad fiber 
was used to provide both the single- and multi- mode detection modes. The 
SECM probe optics was made to be 5.85 mm in diameter and 30 mm in 
length, which is small enough for safe and comfortable endoscopic imaging 
of the gastrointestinal tract. The lateral resolution was 1.8 and 2.3 µm for 
the single- and multi- mode detection modes, respectively, and the axial 
resolution 11 and 17 µm. SECM images of the swine esophageal tissue 
demonstrated the capability of this device to enable the visualization of 
characteristic cellular structural features, including basal cell nuclei and 
papillae, down to the imaging depth of 260 µm. These results suggest that 
the new SECM endoscopic probe optics will be useful for imaging large 
areas of the esophagus at the cellular scale in vivo. 
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1. Introduction 

Spectrally encoded confocal microscopy (SECM) is a form of reflectance confocal 
microscopy that can achieve very high imaging speeds [1]. In SECM, light with a broad 
spectral bandwidth is delivered by an optical fiber to the distal optics. At the distal optics, the 
light is first collimated and then incident on a diffraction grating. Each wavelength of the 
collimated light is diffracted by the grating at a unique angle and is subsequently focused by 
an objective lens on a distinct point on the sample. Therefore, there is a one-to-one 
relationship between the wavelength and transverse coordinate of the sample plane. Light 
reflected by the sample is coupled back to the optical fiber and then delivered to the proximal 
detection optics. The detection optics rapidly acquires the spectrum of the reflected light, 
which is also the line image of the sample. Since SECM can acquire line confocal microscopy 
images of the sample using only a stationary optical element, the diffraction grating, it can 
acquire images at a very high imaging rate [2, 3] and is well suited for being implemented in 
a small diameter endoscopic probe. 
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One promising clinical application for endoscopic SECM is large-area confocal 
endomicroscopy of the esophagus in vivo. While confocal laser endomicroscopy (CLE) has 
been successfully used to visualize cellular details of various gastrointestinal diseases in vivo 
[4–6], the area of the tissue that can be imaged with CLE is typically small (<0.25 mm2). Due 
to its small imaging area, CLE like biopsy is prone to have sampling error by missing regions 
that are important for patient diagnosis. The FOV for CLE can be increased by manually 
moving the CLE probe and by mosaicking the CLE images [7], but the resulting FOV is still 
not large enough to examine the entire distal esophagus. While SECM also has a small FOV 
due to the use of a high-NA objective lens, the SECM FOV can be rapidly moved to image 
the entire distal esophagus by helically scanning the SECM optics within the probe. 

We have previously developed SECM bench top scanning systems and have demonstrated 
the feasibility of conducting large-area SECM imaging of luminal organs [8, 9]. A side-
looking SECM bench top probe mockup was demonstrated that helically scanned the SECM 
optics to image large areas of a cylindrical sample [8]. With this bench top system, a 2.5-cm 
segment of a tissue phantom (diameter = 2.0 cm) was imaged within 100 seconds. Another 
SECM bench top probe mockup was demonstrated that can conduct adaptive focusing. The 
results from this device demonstrated that a cylindrical sample with an irregular surface can 
be imaged over a large area [9]. 

While these two papers demonstrated the principles of helically scanning comprehensive 
confocal microscopy with SECM, they were far from being suitable for implementation in 
luminal organs in vivo. First, the optics of the bench top probe demonstrations were too large 
to be practical for endoscopic devices. The previous devices had a diameter of 15 mm; 
miniaturization by a factor of approximately 3 is required for a clinically useful probe. In 
addition, the tissue imaging performance for these devices was not adequate for diagnosis. In 
previous bench top probe setups, off-the-shelf aspheric singlets were used as the objective 
lenses. These aspheric singlets were designed to be used with the dry-immersion condition. 
Having the dry-immersion condition made the tissue imaging difficult in two different ways: 
1) the spherical aberrations generated by the mismatch of refractive index between the air and 
tissue reduced the resolution when imaging deep inside the tissue, and (2) the specular 
reflection from the tissue surface overwhelmed the signal generated from the superficial 
region of the tissue and prevented the illumination light from reaching deep into the tissue. As 
a result, previous SECM probe demonstrations were limited in their capability to visualize 
cellular and sub-cellular features of the tissue. 

In this paper, we report the development of new probe optics that are specially tailored for 
endoscopic SECM imaging of the esophagus. The overview of the SECM endoscopic probe 
optics is described first, and the details of the key design features are covered. The results 
from the optical performance test and tissue imaging performance test are presented. 

2. Methods 

2.1 SECM probe optics and system 

Figure 1 shows the schematic of the SECM probe optics and system. Light from a 
wavelength-swept source (central wavelength = 1297 nm; bandwidth = 91 nm; output power 
= 80 mW; repetition rate = 100 kHz) [10] was coupled to a single-mode fiber (SMF28, 
Corning) and then to a circulator. The light coming out from the second arm of the circulator 
was collimated by a collimation lens (CL; focal length = 11 mm), and the collimated light 
was delivered to a beam splitter (BS). Approximately half of the collimated light was 
transmitted by the beam splitter and was coupled to the core of a dual clad fiber (DCF; core 
diameter = 7.18 µm; inner clad diameter = 29.1 µm; core NA = 0.123; inner clad NA = 0.124; 
length = ~2m). The specifications of the DCF were determined by the numerical and 
experimental analyses of the speckle contrast and axial resolution. The numerical and 
experimental analysis results showed that the core-to-inner clad ratio of this DCF, ~4, 
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significantly reduces the speckle contrast while maintaining good enough axial resolution for 
cellular imaging [11]. The other half of the collimated light was reflected by the beam splitter 
and was not used for SECM imaging. 

The light coupled to the core of the DCF was delivered to the probe optics. The light 
coming out from the DCF was collimated by a lens and then illuminated a diffraction grating 
(groove density = 1144 line/mm). The diffracted light was focused into a focal line inside the 
tissue by a water-immersion objective lens. We specially designed and fabricated the 
collimation lens, diffraction grating, and objective lens to achieve good microscopic tissue 
imaging performance and to reduce the probe size. These optical components will be 
described in more detail in the following sections. 

Light reflected by the tissue was delivered back to the DCF and was coupled to both the 
core and inner clad of the DCF. The inner clad light coupling was used to reduce the speckle 
noise [12]. At the proximal end of the DCF, the light returning from the probe was collimated 
by another collimation lens (focal length = 11 mm) and was divided by the beam splitter into 
two beams. Half of the light was coupled to the circulator and was used for the single-mode 
detection. The other half was coupled to a multi-mode fiber (MMF; core diameter = 62.5 µm) 
and used for the multi-mode detection. Two photo detectors were used: the first detector 
received the single-mode light coming from the circulator, and the second detector the multi-
mode light coming from the MMF. 

In the future, when performing endomicroscopic imaging within the human esophagus in 
vivo, the probe will be designed to operate similarly to other helically scanning probes that we 
have developed in our laboratory [13], as described below. The optical probe will be inserted 
into a transparent sheath (inner diameter = 5.96 mm; outer diameter = 6.93 mm). The 
transparent sheath will be closed at the distal end and prevents the probe from having any 
contact with the tissue. At the end of the SECM endoscopic imaging, the transparent sheath 
will be disposed, while the probe will be cleaned and re-used for the next human subject 
without posing any significant risk of infection. The probe will be rotated by a fiber optic 
rotary junction and pulled back by a translation stage to image a large area of the esophagus. 
Both the rotary junction and translation stage will be located outside the human subject. 

 

Fig. 1. Schematic of SECM probe optics and system. CL – collimation lens; and BS – beam 
splitter. 

2.2 Rod collimation lens and small-size grating 

We have developed a custom rod lens as the collimation lens in the SECM probe. The rod 
lens had a spherical surface at the distal end to collimate the beam. The shape of the spherical 
surface and the length of the rod lens were determined through iterative optimization via 
ZEMAX (Zemax, WA). The rod lens was made of BK7 and had a diameter of 2.0 mm, length 
of 16 mm, and radius of curvature of 5.44 mm. The designed rod lens generated a collimated 
beam with the diameter of 1.9 mm for the NA of 0.09, which was the Gaussian NA of the 
DCF core. The ZEMAX simulation showed that the collimated beam had the RMS wavefront 
error less than 0.02 over the entire source spectrum. The performance of the rod lens was 
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better than that of the collimation optics that we designed using the off-the-shelf GRIN lens 
and spacer with the same diameter. The proximal end of the rod lens was polished at 4° to 
reduce the back reflection. The rod lens was bonded to the DCF using a UV curing epoxy 
(OG172, Epoxy Technology, MA). 

We have made a small-size grating (diameter = 2.2 mm) for the SECM probe. The small-
size grating was made by machining an off-the-shelf fused silica grating (grating area = 14 
mm by 11.5 mm; thickness = 0.625 mm). First, the off-the-shelf grating was mounted on a 
milling machine. Then a diamond-coated core drill bit was used to cut the small-size grating. 
The core drill bit was mounted at 30° relative to the normal axis of the grating surface to 
generate the elliptical profile for the machined grating. In the probe, the small-size grating 
was assembled with a 2.0-mm-diameter spacer that was polished at 30° at the distal end. Use 
of the spacer changed the Littrow incidence angle at the central wavelength from 47.5° (when 
the incidence medium is air) to 30°. As a result, the propagation angle of the diffracted beam 
measured relative to the normal axis of the tissue surface was also changed from −5° to 12.5°. 
With the 12.5° propagation angle, we were able to place the objective lens closer to the 
grating than with the −5° propagation angle, which reduced the probe diameter. The 12.5° 
propagation angle induced more tilt of the focal line, which was beneficial in increasing the 
range of imaging depths. More details about the range of imaging depths will be covered in 
the next section. Finally, the 12.5° propagation angle reduced the collection of the specular 
reflection more than the −5° angle. 

 

Fig. 2. ZEMAX simulation of SECM objective lens. A – layout of the objective lens with ray 
tracing; and B – RMS wavefront error as a function of the field angle. 

2.3 Water-immersion objective lens 

We developed a water-immersion aspheric singlet as the objective lens for the SECM 
endoscopic probe. Water was chosen as the immersion medium between the objective lens 
and tissue, since the water-immersion condition provides less spherical aberrations than the 
dry-immersion case. Also, we have chosen to use an aspheric singlet based on the following 
advantages. The thickness of the aspheric singlet can be made significantly smaller than that 
of the multi-element objective lens. The aspheric singlet can achieve fairly large NA, 
typically up to 0.7, while maintaining diffraction-limited performance. The aspheric singlet 
can be made by a compression molding process, where a glass preform is placed in a 
precisely machined mold and compressed into the lens shape under high temperature and 
pressure. The cost of the compression molding process is low, about $35 per lens, after the 
initial cost for fabricating the mold. 

The layout of the lens is shown in Fig. 2(a). L-LAH84 (refractive index at 1290 nm = 
1.78) was chosen as the lens material. Both surfaces of the lens were assigned to be 
aspherical. The thickness and the shapes of the two surfaces were determined using the 
optimization tool in ZEMAX. The designed lens had the focal length of 2.13 mm in water; 
working distance 1 mm; clear aperture 1.60 mm; and effective NA 0.5. Figure 2(b) shows the 
RMS wavefront error as a function of the field angle at the central wavelength of the source. 
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The lens had a diffraction-limited performance over the field angle of ± 6.2°, which 
corresponded to the field size of 460 µm. Anti-reflection (AR) coatings were placed on the 
two surfaces: the air-to-glass AR coating for the first surface; and the glass-to-water AR 
coating for the second surface. Both AR coatings had transmittance over 99%. A stainless 
steel housing (diameter = 3.0 mm; thickness = 1.4 mm) was used to protect the lens surfaces 
and to make it easy to assemble the objective lens with the probe housing. 

In the probe, the objective lens was tilted by 12.5° relative to the normal axis of the tissue. 
The titled arrangement of the objective lens generated a focal line that was not parallel to the 
tissue surface but spanned over a range of depths as shown in Fig. 1. The titled objective 
configuration enabled SECM imaging at multiple depth levels during a single helical scan [9]. 
With the given spectrum of the source and groove density of the grating, the width of the 
focal line was 255 µm. The focal line was centered at 100 µm below the tissue surface and 
extended over 54 µm. The 100 µm imaging depth was chosen because our previous study of 
imaging human esophageal tissues with SECM showed that the SECM images taken from the 
imaging depth between 50 and 150 µm can visualize key histomorphologic information 
associated with various epithelial diseases [14]. 

In order to maintain uniform refractive index between the objective lens and tissue, we 
made a careful selection of the sheath material and filled the space between the sheath and 
objective lens with water. Fluorinated ethylene polymer (FEP) was used as the sheath 
material, since its refractive index, 1.34, is very close to that of water. FEP also has other 
merits as the sheath material: it has high transmittance (over 90%) for the spectrum of the 
source; and it has low friction coefficient (0.25), which can facilitate the smooth scan of the 
probe inside the sheath [15]. 

2.4 Performance test 

The lateral resolution was tested by imaging a USAF resolution target and by measuring the 
FWHM of the line-spread function (LSF). The axial resolution was measured by obtaining 
multiple images of a mirror while axially scanning the mirror. An intensity curve was 
generated from the axial scan, and the FWHM of the intensity curve was calculated as the 
axial resolution. The resolutions were measured for both the single-mode and multi-mode 
detection modes. 

The field of view (FOV) was measured by imaging a Ronchi ruling glass slide (frequency 
= 400 lines/mm). The range of imaging depths was measured by obtaining three-dimensional 
image stack of a mirror while axially scanning the mirror. The three-dimensional image stack 
was resampled along the axial direction to produce cross-sectional images, which showed the 
mirror as a tilted line that spanned over a range of depths. From the cross-sectional image, the 
depth difference between the two focal points at the edges of the FOV was calculated as the 
range of the imaging depths. 

Tissue imaging performance was tested by imaging excised swine esophageal tissue. The 
swine tissue was treated with 6% acetic acid prior to the SECM imaging to increase the 
nuclear contrast. A thin FEP sheet (thickness = 250 µm) was placed on the tissue to simulate 
the use of the FEP sheath during in vivo endoscopic imaging. Water immersion was used 
between the objective lens and FEP sheet. The swine tissue was scanned using a two-axis 
translation stage to obtain large-area SECM images. Multiple depths of the tissue were 
imaged by translating the probe axially with a single-axis translation stage. 
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Fig. 3. Photographs of SECM endoscopic probe. A – collimation optics; and B – final probe 
assembly. Scale bar = 2 mm. 

3. Results 

3.1 Probe fabrication 

A photograph of the collimation optics is shown in Fig. 3(a). The ferrule, collimation lens, 
and spacer were housed inside a hypotubing, which provided mechanical integrity of the 
collimation optics. The grating was placed at the tip of the hypotubing. As shown in Fig. 3(a), 
the miniature grating had a clear aperture that had almost the same diameter as the physical 
diameter of the grating. For most of the cases, the machined grating had a clear aperture that 
was larger than 90% of the physical diameter. A photo of the assembled probe is shown in 
Fig. 3(b). The probe had an outer diameter of 5.85 mm and a length of 30 mm. The probe was 
completely sealed to water, and the optical performance of the probe did not degrade after 
multiple water-immersion imaging sessions. Back-reflection from the probe optics was 
measured to be −55 dB. 

 

Fig. 4. SECM images of USAF resolution target. A – single-mode detection; and B- multi-
mode detection. Scale bars = 50 µm. 

3.2 Resolution and FOV 

Figure 4 shows SECM images of the USAF resolution target using the single-mode and 
multi-mode detection methods. Both the single- and multi- mode detection methods were able 
to clearly visualize the smallest pattern at group 7, element 6. The FWHM’s of the LSF’s 
were measured as 1.8 and 2.3 µm for the single- and multi- mode detection methods, 
respectively. Figure 5 shows the axial response curves for the single- and multi- mode 
detection methods. The axial response curve for the single-mode detection (black curve) had a 
narrower main lobe than the curve for the multi-mode detection (red curve). The FWHM’s of 
the axial response curves were measured as 11 and 17 µm for the single- and multi- mode 

#194298 - $15.00 USD Received 22 Jul 2013; revised 28 Aug 2013; accepted 28 Aug 2013; published 3 Sep 2013
(C) 2013 OSA 1 October 2013 | Vol. 4,  No. 10 | DOI:10.1364/BOE.4.001925 | BIOMEDICAL OPTICS EXPRESS  1931



detection methods, respectively. FOV was measured to be 280 µm, and the range of imaging 
depths was measured to be 57 µm. 

 

Fig. 5. Axial response curves for the single-mode (black) and multi-mode (red) detection 
methods. 

3.3 Tissue imaging 

Figure 6 shows SECM images of the swine esophageal tissue taken with the single-mode 
(Fig. 6(a), 6(c), and 6(e)) and multi-mode (Fig. 6(b), 6(d), and 6(f)) detection methods. 
Images were taken at the same transverse location and at multiple imaging depths. Images 
taken at a depth of 130 µm (Fig. 6(a) and 6(b) enable clear visualization of basal cell nuclei 
(circles). Images taken at the depth of 160 µm (Fig. 6(c) and 6(d)) begin to reveal esophageal 
squamous papillae (arrows). Images taken at the depth of 260 µm (Fig. 6(e) and 6(f)) show 
bases of papillae (arrows). 

Differences between the single- and multi- mode detections were observed. The signal 
detected by the single-mode detection was smaller than that detected by the multi-mode 
detection by approximately a factor of five. Due to the small signal level, the single-mode 
image at the imaging depth of 260 µm (Fig. 6(e)) had poorer signal-to-noise ratio (SNR) than 
that of the multi-mode image (Fig. 6(f)). Difference in the speckle noise contrast was 
observed in higher-magnification images (Fig. 7). While the single-mode image (Fig. 7(a)) 
had apparent speckle noises with a contrast of 1, the multi-mode image (Fig. 7(b)) had less 
speckle noise with a contrast of 0.4. 

4. Discussion 

In this paper, we have reported the development of new SECM endoscopic probe optics. In 
the new probe optics, custom miniature optical components were designed and fabricated to 
reduce the probe size and to achieve good tissue imaging performance. The SECM probe 
optics was 5.85 mm in diameter, which is sufficiently small to be safe and comfortable for 
imaging the esophagus, considering the diameter of a typical video endoscope is larger than 
10 mm. The SECM probe optics were able to visualize characteristic cellular features of the 
swine esophageal tissue down to an imaging depth of 260 µm. These results suggest that the 
SECM probe optics will be capable of successfully imaging large areas of the esophagus in 
vivo. 
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Fig. 6. SECM images of swine esophageal tissue ex vivo taken from the imaging depths of 130 
µm (A, B), 160 µm (C, D), and 260 µm (E,F). A, C, E – single-mode images; and B, D, F – 
multi-mode images. circles – basal cell nuclei; and arrows – papillae. Size of each image = 700 
µm × 700 µm. 
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Fig. 7. High-magnification SECM images of swine esophageal tissue ex vivo. A – single-mode 
image; and B – multi-mode image. Size of each image = 350 µm × 350 µm. 

We did find areas where we can further improve the performance of the probe optics. The 
axial resolution of the probe optics (17 µm for the multi-mode detection) was worse than the 
axial resolution of the SECM bench top optics (10 µm for the multi-mode detection) [14]. 
The difference in the axial resolution was mainly caused by the difference in the objective 
lens NA: 0.5 for the probe optics and 0.7 for the bench top optics. The tissue imaging results 
in this paper showed that the probe optics, with the 17-µm axial resolution, can clearly 
visualize cellular features of the swine esophagus. We, therefore, expect the probe optics will 
be able to visualize key cellular features of the human esophagus during the in vivo human 
imaging. However, if we find that better resolution is needed, we will design a new custom 
aspheric singlet that has higher NA. There are several off-the-shelf aspheric singlets that have 
NA’s higher than 0.7. We expect that we will be able to design a water-immersion aspheric 
singlet that has NA of 0.7 or higher. The high NA lens, however, is likely to have a shorter 
focal length and a smaller FOV, which may increase the imaging time noticeably when 
imaging a large mucosal area. 

The axial response curve for the single-mode detection had noticeable side lobes. The side 
lobes were probably caused by the fabrication errors in the objective lens and by the 
alignment errors between the optical components. In the axial response curve, the area under 
the first side lobe, located 10 µm away from the main lobe, was approximately 10% of the 
area under the main lobe. This implies that the light reflected from the first side lobe 
contributed 10 times less to the detected signal than the light reflected from the main lobe did. 
The single-mode images of the swine esophagus showed that the signal from the nucleus was 
2 to 3 times stronger than that from the non-nuclear tissue elements. Therefore, it is unlikely 
that the side lobes affected the nuclear contrast significantly. The side lobes can be reduced 
by tightening tolerances on the objective lens fabrication and/or by constructing an alignment 
setup with higher precision. This remedy, however, is likely to increase the fabrication cost. 
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Fig. 8. SECM focal lines in the tissue space. The red line is shifted by 67 µm transversely from 
the blue line. Black areas show the overwrapping between the two focal lines. 

The aspheric singlet approach had limited performance in reducing the chromatic 
aberration and Petzval field curvature. Due to the longitudinal chromatic aberration and field 
curvature, the illumination beam was focused into a curved line rather than a straight line. 
From the same data set that was used for analyzing the imaging depth range, we obtained the 
profile of the focal line in the tissue space. Shown in Fig. 8 is the plot of the measured focal 
line (blue line) with a line width of 11 µm, the axial resolution for the single-mode detection. 
In the procedure of obtaining volumetric data [9], the SECM probe can be moved by 67 µm 
transversely to generate a shifted focal line (red line). While the bottom of the first focal line 
coincides with the top of the second focal line on the right side of the field, the two focal lines 
overwraps slightly (black area) on the left side of the field. Using the same image processing 
method as described in our previous work [9], we can obtain images from approximately four 
different depth levels ( = 280 µm / 67 µm). Due to the field curvature, the four imaging depth 
levels are not spaced uniformly. The depth difference between two neighboring imaging 
depth levels varies from 10 µm at the top to 13 µm at the bottom. The small amount of 
variation in the spacing, up to 3 µm, is not likely to affect the qualitative image analysis that 
we usually conduct with the SECM images. 

The speckle noise contrast of the multi-mode image, 0.4, was higher than the speckle 
noise contrast we previously had for the SECM bench top optics, 0.25 [16]. From our 
previous study of imaging esophageal tissues with the SECM bench top optics, we found that 
the SECM images with this speckle noise contrast, 0.25, appear natural and are easy to 
interpret. Others also found that reflectance confocal microscopy images with this speckle 
noise contrast are easy to read [17]. As shown in the results in this paper, the key cellular 
features of the swine esophageal tissue were easily identifiable with the speckle noise contrast 
of 0.4. There, however, might be a need to reduce the speckle noise contrast when imaging 
human esophageal tissues, closer to what is considered as the ideal value, 0.25. In order to 
achieve this lower speckle contrast value, we can increase the diameter of the DCF inner 
clading to reduce the speckle noise contrast. Increasing the inner clad diameter, however, has 
the tradeoff that it will worsen the axial resolution [17]. Therefore, the increase of the inner 
cladding diameter should be accompanied with an increase of the objective lens’ NA to 
maintain optimal axial resolution. 

Half of the illumination light was reflected at the beam splitter in the DCF coupling optics 
and was not used for SECM imaging. A fiber-based DCF coupler has been previously 
demonstrated for the DCF with the 105-µm-diameter inner clad [18]. With the fiber-based 
coupler, most of the illumination light can be delivered to the core of the DCF without 
significant loss, which can increase the signal level and subsequently increase the SNR of the 
image. The DCF we used in this paper had an inner cladding diameter of 29.1 µm, and the 
relatively small inner cladding diameter might make it difficult to develop a fiber-based DCF 
coupler. We will take various approaches to develop a fiber-based DCF coupler that works 
with our DCF, including the fusing and tapering approach [18] and the side-polishing 
approach [19]. 
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During the swine tissue imaging ex vivo, 6% concentration acetic acid was used. This is 
higher than the concentration that has been used for in vivo chromoendoscopy of the human 
esophagus, 1.5-3% [20, 21]. We used 6% concentration because the swine esophageal tissue 
images with this concentration showed a similar enhancement of nuclear contrast to the 
human esophageal tissue images with 0.6% concentration. The difference in the concentration 
might be due to the permeability difference between the swine and human esophageal tissues. 
In our previous study of imaging human esophageal tissues [9], we have shown that an acetic 
acid concentration of 0.6% can visualize key nuclear features associated with various 
esophageal diseases. Thus, we expect that a concentration of 0.6-3%, as typically used in the 
clinical setting, will be sufficient for the visualization of nuclear details of the human 
esophagus in vivo. 

As a next step, we will develop the mechanical parts that are needed to helically scan the 
SECM probe at a uniform speed, including the torque delivery mechanism and fiber optic 
rotary junction. Upon the completion of the mechanical components, we will conduct animal 
studies where we will deliver the SECM endoscopic probe to the esophagus of a living swine 
and will image large areas of the swine esophagus in vivo. In subsequent clinical studies, we 
will perform large-area SECM imaging of human subjects in vivo for the comprehensive 
diagnosis of esophageal disease. We believe that the large area capabilities of this SECM 
probe will minimize sampling error and will therefore allow patients to receive a more 
accurate diagnosis than that provided by the current standard of care. 
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