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Abstract: This paper describes an extension of the perturbation Monte
Carlo method to model light transport when the phase function is arbitrarily
perturbed. Current perturbation Monte Carlo methods allow perturbation of
both the scattering and absorption coefficients, however, the phase function
can not be varied. The more complex method we develop and test here
is not limited in this way. We derive a rigorous perturbation Monte Carlo
extension that can be applied to a large family of important biomedical light
transport problems and demonstrate its greater computational efficiency
compared with using conventional Monte Carlo simulations to produce
forward transport problem solutions. The gains of the perturbation method
occur because only a single baseline Monte Carlo simulation is needed
to obtain forward solutions to other closely related problems whose input
is described by perturbing one or more parameters from the input of the
baseline problem. The new perturbation Monte Carlo methods are tested
using tissue light scattering parameters relevant to epithelia where many
tumors originate. The tissue model has parameters for the number density
and average size of three classes of scatterers; whole nuclei, organelles
such as lysosomes and mitochondria, and small particles such as ribosomes
or large protein complexes. When these parameters or the wavelength is
varied the scattering coefficient and the phase function vary. Perturbation
calculations give accurate results over variations of∼15-25% of the
scattering parameters.
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1. Introduction

Recently, there has been interest in analyzing optical reflectance spectra to obtain information
about tissue microstructure. Light which enters tissue can be elastically scattered, inelastically
scattered (Raman or fluorescence) or absorbed. Some of the light will return to the tissue sur-
face and properties of this light including its wavelength dependent intensity can be measured.
In this paper we focus on spectral measurements of elastically scattered light without consid-
eration of the coherence properties. These techniques frequently use fiber optic probes and a
variety of probe configurations have been developed to provide information about different
light scattering properties and/or the tissue absorption. By adjusting probe parameters such as
source-detector separations, numerical apertures, angle of fiber orientation, and fiber diame-
ter, the depth of tissue sampled can be varied [1–5] sometimes with a concominant variation
in what scattering properties are sampled [6]. Accurate modeling of light transport relevant to
these probes would enable better recovery of optical properties and/or recovery of parameters
that describe microstructure.

Light transport in tissue is described by the radiative transport equation (RTE). There are
solutions to this equation for special cases such as the diffusion approximation that can be
used when the source and detector are well-enough separated. However, the source-detector
separations in optical reflectance measurements to study tissue microstructure are frequently
small enough to preclude the use of diffusion theory. When source-detector separations are 200
µm or less, the reflectance depends on the form of the phase function [6,7]. Solutions of the RTE
can be obtained through Monte Carlo (MC) simulations. These MC simulations can provide
RTE solutions for any set of boundary conditions, light source and detector configurations and
arbitrary tissue properties including any phase function. However, obtaining accurate solutions
to the RTE with Monte Carlo simulations typically uses much more computer time than, say,
diffusion-based modeling. Because of this, conventional Monte Carlo simulations often serve
as a “gold standard” to validate new biophotonic models, but researchers are often unwilling
to use Monte Carlo methods in clinical settings due to the increased computational time. As a
result, faster but less accurate computational models (e.g., based on diffusion theory) are often
used instead of Monte Carlo simulations [8,9].

Methods for increasing the computational efficiency of Monte Carlo calculations include
perturbation Monte Carlo (pMC) methods, scaling or condensed MC methods [10], as well
as a combination of pMC and scaling methods [11]. Condensed MC simulations have been
developed for a two-layer tissue model [12] and potential applications include using the sim-
ulations to train a neural network [13] or create a database [12] for optical tissue parameter
determination. Examples of applications of pMC include the inverse problem for two-layered
media [14, 15], accurate and rapid tissue image reconstruction [16], optical tomography [17],
and time-resolved functional imaging [18,19].

The condensed MC methods scale the photon weight and collection distance from the source
using original and altered values of the scattering and absorption coefficients [12]. Scaling re-
sults have been compared to independent simulations run with identical phase functions, but
varying scattering and absorption properties. Errors in reflectance were about 2% when scat-
tering coefficients were varied by about±15% along with some changes in absorption [12].
However, when the form of the phase function or the anisotropy coefficient was altered in
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the independent simulations much larger errors were found for small source detector separa-
tion [12].

This paper focuses on the extension of perturbation Monte Carlo methods [14] to arbitrary
variations of the phase function. In this initial work, scattering through all azimuthal angles is
assumed to be equally likely in both the baseline and perturbed simulations. Only the probabil-
ity of scattering through the polar angle,θ , is perturbed. In other words, the MC simulations
are restricted to unpolarized scattering from spherical particles.

2. Theory and methods

2.1. Model of the scattering parameters of tissue

The sizes and indices of refraction of the tissue constituents that scatter light span a wide range
[20–23]. Previously, we have shown that the distribution of scatter sizes can be modeled with
three log normal distributions [24]. Each distribution models a different class of scatterers with
different refractive indices. The parameters of these log-normal distributions, Eq. (1), have
been modified slightly to obtain a value of the anisotropy coefficient,g closer to that reported
in the literature for bronchial epithelium [25] and used in modeling cervical epithelium [26]
and are given in Table 1. The smallest distribution models scattering from very small objects
such as protein complexes. An index of 1.46 is appropriate for protein (or lipid) and an index
of 1.33 is used for the medium. The second distribution models organelles such as lysosomes
and mitochondria. The ratio ofnscatterer to nmedium is smaller for these particles. The third
distribution represents the nuclei. The size was obtained from microscopy and the index of
refraction values are taken from the literature [27]. The values for number density demonstrate
that there are many more organelles than there are nuclei in the cell and that there are orders
of magnitude more of the smallest class of scatterers than there are organelles. The scatter
distribution is plotted in Fig. 1(a) and the phase function at 620 nm in Fig. 1(b). For this model,
the scattering coefficientµs = 126.3 cm−1, g = 0.954, and the reduced scattering coefficientµ ′

s
= 5.84 cm−1 at 620 nm.

Table 1. Distributions of scatter sizes in the tissue model

Distribution x̄ ± σ (µm) N, number density (cm−3) nmedium nscatterer

1 0.03± 0.4 4×1013 1.33 1.46
2 0.45± 0.3 5 × 1010 1.35 1.40
3 4.8± 0.1 5× 108 1.37 1.39

A scattering coefficient can be calculated for each distribution,k, according to Eqs. 1 and 2,
whereLk(x) is the log normal distribution andCsca is the cross section calculated from Mie
theory for a particle of radiusx [28].

Lk(x) =
1

xσk
√

2π
e
−
(lnx− ln x̄k)

2

2(σk)
2

(1)

µs,k = Nk

∫ b

a
Lk(x)Csca(x)dx (2)

When there are multiple scatterers (or groups of scatterers) each with their own phase func-
tion then:
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Fig. 1. a) Scatterers per volume as a function of scatter radius. b) The phase function for
the baseline MC simulation of epithelial tissue at 620 nm.

f =
m

∑
k=1

µs,k

µs
fk (3)

wherefk is the phase function for thekth scattering type (or group),m is the number of scatterer
types or groups and has a value of 3 for the model used here, andµs,k is the scattering coefficient
of thekth group of scatterers [29]. The scattering coefficient is:

µs =
m

∑
k=1

µs,k. (4)

2.2. Measurement geometry

All of the simulations use the probe geometry shown in Fig. 2 at the surface of a semi-infinite
medium. This source-detector configuration is composed of one source fiber and four detection
fibers. Unpolarized light is launched into the tissue under investigation via the center fiber. The
distance between the source fiber and the collection fiber is the same for all collection fibers.
Therefore, to within statistical variation, the amount of light collected by each fiber is the same.
The center-to-center distance between the source and any of the 4 detector fibers is 550µm.
The half angle for light delivery/collection is 21.7o for all source and collection fibers and the
radius of the light cone at the sample surface is 240µm for each fiber. The collection fibers are
tilted at an angle of 20o from normal towards the collection fiber. This tilting increases sampling
of the clinically relevant surface epithelium and also increases the number of collected photons.

2.3. The connection between the RTE and Monte Carlo simulations

In biophotonics problems, the RTE is commonly used to describe interactions of light with
tissue. Derivation of pMC equations requires an understanding of the equivalence between
the equation-based analytic model that describes the physics and the probabilistic model that
describes how to generate photon random walks and uses them to estimate the measurements
desired.

We begin with the time-independent integro-differential form of the RTE:

∇Φ(r,ω) ·ω =−µtΦ(r,ω)+ µs

∫

4π
Φ(r,ω ′) f (ω ′ → ω)dω ′+Q(r,ω) (5)

whereΦ is the photon radiance (#/area/sr), r is position,ω is a unit direction vector,µt is the
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Fig. 2. Source and detector setup for this study. The yellow fiber in the middle represents
the photon source and 1, 2, 3, 4 represent detectors.

optical interaction coefficient,µs is the optical scattering coefficient,f is the single-scattering
phase function that scatters photons fromω ′ to ω , andQ is the volumetric source.

It is useful to convert the integro-differential RTE to integral equation form when setting up
for the Monte Carlo (probabilistic) mode. The integral equation for particle collision density
is [30]:

Ψ(P) =
∫

Γ
K(P,P′)Ψ(P′)dP′+ S(P) (6)

whereP = (r,ω) is a point in the phase space,Γ. The kernel,K, describes both the positional
and directional changes involved in scattering and transporting photons atr′ with directionω ′

to r with directionω . In the case ofno absorption, it is composed of the probability density for
scattering fromω ′ to ω , f (ω ′ ·ω), and the transport kernelT as shown in Eq. (7). The transport
kernel,T , describes transport of photons in the directionω from r′ to r [31] with l being the
distance fromr′ to r, as in Eq. (8).Ψ(P) is the collision density as shown in Eq. (9). Lastly,
S(P) is the density of first collisions and Eq. (10) shows that the density of first collisions,S(P),
is obtained by transporting each photon along its initial directionω from the physical sourceQ
to its collision locationr.

K(r′,ω ′ → r,ω) = f (ω ′ ·ω)T (r′ → r,ω ′) (7)

T (r′ → r,ω) = µs(r
′)e−µs(r′)l (8)

Ψ(r,ω) = µt(r)Φ(r,ω). (9)

S(r,ω) =
∫

T (r′ → r,ω)Q(r′,ω)dr′ (10)

Researchers are often interested in the reflectance or transmittance; this is expressed as the
integral:

I =
∫

Γ
d(P)Ψ(P)dP (11)

whered(P) is a “detector function” that describes the spatial locations and the unit direction
vectors that characterize the physical detector, including its numerical aperture. Together, Eqs. 6
and 11 form the analytic model of the problem.
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For our description of the probabilistic model we need to define the sample spaceB whose
elements describe all of the possible photon biographies [31]. Their likelihoods are described
by a probability measureM on B (so thatM(B) =1). The simplest choice forM is the ana-
log measureMA that is induced when the starting location and direction of each biography is
generated by sampling from a normalized version of the source function,S, and the transport
kernel is used to move the photon to the first collision point, and additional collision points are
generated by using the kernelK to change direction usingf , and then move the photon to a new
location using the transport kernel,T (r′ → r,ω). The final component of the probability model
is an unbiased estimatorξ on B that designates the contribution of every photon biography,
Ci ∈B, to estimate the integral (11). The simplest example of such an unbiased estimator is the
binomial estimatorξ whose value on the photon biographies is:

ξ (Ci) =

{
1 if Ci results in a detected photon
0 otherwise.

(12)

For these analog choices of the measureM and unbiased estimator,ξ , it is intuitively clear (and
rigorously shown in [31]) that

I =
∫

Γ
d(P)Ψ(P)dP =

∫

B

ξ dM. (13)

The importance of Eq. (13) is that it establishes the equivalence of the analytic model, Eqs.
(6), (11), and the probabilistic model (B, M, ξ ). The right side of Eq. (13) may also be written

I =
n

∑
i=1

ξ (Ci)M(Ci) (14)

where there aren possible photon biographies.

2.4. Perturbation Monte Carlo

The underlying idea of perturbation Monte Carlo, pMC, is to generate a single set of photon
biographies according to the probability measureM and then define a new estimator that can
be used to estimate collected light intensityusing the same photon biographies for different
(perturbed) conditions. For the perturbed conditions, Eq. (14) becomes Eq. (15) where hats
denote perturbed conditions.

Î =
n

∑
i=0

ξ (Ci)M̂(Ci) (15)

A new estimator,̂ξ (Ci) can be defined such that

ξ̂ (Ci) = ξ (Ci)
M̂(Ci)

M(Ci)
(16)

then

Î =
n

∑
i=0

ξ̂ (Ci)M(Ci). (17)

The interpretation of (17) is that the expected value ofξ̂ with respect to the baseline measureM
is identical to the expected value of the original variableξ with respect to the modified measure
M̂.
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Here we want to draw attention to the benefits of using pMC to estimate detection in a
physical system that has been perturbed - for example cancerous tissue or precancerous tissue.
The conventional way to do this is to generate a new set of photon biographies in the perturbed
system. The measurêM that is used to generate the biographies in the tumorogenic system is
different from the measureM used to generate the biographies in the original system. For this
work we assume all tissue systems are homogeneous, although that assumption can be easily
relaxed [14]. If one is interested in estimating the reflection in a family of such perturbed tissue
systems one would need to generate a different set of biographies for each member of the family,
Mα . Calculating the photon trajectories for each precancerous and cancerous condition could
be a prohibitively costly process. Instead, with pMC a single set of biographies is generated
using the baseline measureM, and for each tumor condition the pMC estimator in Eq. (16) is
used to estimate the collected intensity, Eq. (17).

The measure,M, is composed of the source term multiplied by a kernel term for every colli-
sion, i.e.S(P0)T (P0→P1)K(P1→P2)K(P2→P3)... When the source does not change, Eq. (18)
holds for photons that enter a scattering medium, wherej is the number of collisions undergone
by the photon in the scattering medium.Kα andK are different for each scattering event,m,
because they depend on the scattering angle.

M̂α(Ci)

M(Ci)
=

(
T̂α
T

)
j

∏
m=1

(
K̂α ,m

Km

)
(18)

This reweighting can be performed by a postprocessing algorithm that is quite inexpensive
compared to the cost of generating different photon biographies for each set of tissue conditions.
Explicit formulas will be given in the next section that make these ideas concrete.

2.5. Implementation of perturbation Monte Carlo

In our application of pMC, both the scattering coefficient and the phase function are perturbed.
However, no absorption is used. Consequently, the correspondingK andK̂ are:

K = f (ω ′ → ω)µs exp(−µsl) (19)

K̂ = f̂ (ω ′ → ω)µ̂s exp(−µ̂sl). (20)

Using Eqs. (16) and (18) an estimator for the perturbed weight can be derived. In performing
this derivation, the subtleties of the exit event must be considered. The exit or collection step of
a photon transport Monte Carlo simulation is different than the others in that the photon does
not go from one point to another point location, but rather must travel a distance at least as far
as the distance to the collection surface. The probability of not reaching the detector is:

∫ Ls

0
µse−µsldl =−e−µsLs +1 (21)

whereLs is the distance from the last (jth) collision inside the tissue to the point of photon
exit out the tissue surface. Therefore, the probability of reaching the detector ise−µsLs . The
estimator in Eq. (16) is then obtained using Eq. (18) and the expressions forT , Eq. (8), andK,
Eq. (7). The entrance and collection events are separated out in the expression for the estimator
in Eq. (22).

ξ̂ = ξ
(

µ̂s

µs

)
e−(µ̂s−µs)l0

(
j−1

∏
m=1

f̂ (θm)

f (θm)

µ̂s

µs
e−(µ̂s−µs)lm

)
f̂ (θ j)

f (θ j)
e−(µ̂s−µs)Ls (22)
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wherej is the number of collisions inside the medium,lm is the length of stepm in the medium.
The phase functions,f and f̂ are functions of scattering anglesθ andφ . Eq. (22) can be rewrit-
ten as

ξ̂ = ξ
(

µ̂s

µs

) j
exp[−(µ̂s − µs)L]

(
j

∏
m=1

f̂ (θm)

f (θm)

)
(23)

where L is the total distance traveled inside the scattering medium.
Before the perturbation Monte Carlo calculations are performed a baseline simulation is per-

formed and several parameters are recorded for each collected photon. These are: the number of
collisions; the total distance travelled by the photon; the number of the detector which collected
the photon; and an array ofθ values which is composed of theθ angle through which the pho-
ton scattered at every collision. To perform the perturbation calculation, Eq. (23) is evaluated
for each photon using the tissue scattering parameters and the stored photon parameters.

A potential application of pMC is to understand the sensitivity of a particular optical
measurement to tissue microarchitecture. If tissue is modeled as a distribution of scatterers,
then parameters of interest are the mean radius, ¯xk, of a scatter size distribution and the number
density,Nk, of each scatter size distribution. For example, in the tissue model of this paper, the
effects of an increase in the number of very small scatterers without any changes in the number
or sizes of the nuclei and organelles could be determined by changing the number density of
the smallest size distribution in Table 1.

Another feature of interest may be wavelength. For example, if multiple wavelengths are to
be measured, then a pMC in which wavelength is varied could allow more rapid calculation of
wavelength dependent simulation results for comparison of a tissue model and a measurement.

3. Testing of the pMC method

In this section, we examine the application of the phase function generalization of pMC to two
problems that feature spherical scatterers with scattering properties representative of tissue, but
with no absorption. In the first, simpler problem, concentration, radius, and incident light wave-
length are varied for a suspension of single size scatterers. In the second problem, parameters
of the tissue model in Table 1 and wavelength are altered.

In both cases pMC estimates of reflectance over a range of values of a given parameter are
compared with conventional Monte Carlo (cMC) simulations. The cMC estimates are found
by independent, conventional simulations, one for each value of the parameter in the range
chosen, while pMC estimates are obtained from a single set of Monte Carlo biographies at the
baseline value and estimates at other parameter values are determined using Eq. (23). We use
the standard error of the mean to describe the stochastic variation of both cMC and pMC output
values. A lack of overlap of the standard-error-of-the-mean error-bars does not imply that the
means are different. However, these error bars should overlap most of the time.

To perform the most stringent test of the range of parameters over which pMC is accurate,
the whole tissue will be perturbed rather than just a small tumorigenic region. The scattering
medium is assumed to be semi-infinite with source and detector fibers on top, as described in
Section 2.2.

For all simulations, the Bohren and Huffman [28] implementation of Mie theory, which uses
the indices of refraction of the medium and the scatterers, the radius of the scatterers, and the
wavelength of light as inputs, was used to generate tables for the phase functions,f (θ ) and
f̂ (θ ) for the full range ofθ values. These tables of 720 elements are used for rapid sampling of
the phase function both in the cMC simulations and the pMC calculations. The pMC calculation
uses unperturbed as well as perturbed scattering parameters. These parameters as well as the
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Fig. 3. Comparison of pMC estimates of reflectance with independent cMC simulations
results when theconcentration of single size scatterers is perturbed. Each panel is for a
different collection fiber shown in Fig. 2. Error bars are standard errors of the mean.

saved trajectories are used according to Eq. (23) to reweight the photons. A separate set of
trajectories is used for each collection fiber. Therefore, there are effectively four replicates of
each pMC calculation.

The computers used for the simulations were: 1) 2× 2.66 GHz Quad-Core Intel Xenon
processors and 16 GB 1066MHz DDR3 RAM running Mac OS X 10.6.2; 2) 6× 3.33 GHz
Quad-Core Intel Xenon processors and 32 GB 1333 MHz DDR3 RAM running Mac OS X
10.8.2; and all code was compiled using gcc-4.2.

3.1. The simpler problem: one size of scatterers

Figure 3 compares pMC and cMC results when the concentration of single size scatterers is
perturbed. The parameter values for the baseline simulation were: the radius of the scatterers,r
= 0.4475µm, the number density,Ns = 1.27×1012 particles/cm3, the wavelength,λ = 620 nm,
the index of the medium was 1.332, the index of the scatterers was 1.390 and 20 million photons
were incident through the delivery fiber. Particle concentration was perturbed by±25% for the
pMC calculations. Each cMC simulation took 10 min. and the pMC calculations took∼1 min
using computer 2. Consequently, the pMC results were obtained in 11 min., much shorter than
the 130 min. needed for the cMC calculations. The agreement between cMC and pMC results
is quite good as seen in Fig. 3. By varying the concentration, the sensitivity of the perturbed
reflectance to the weight factors described in Eq. (23) are determined without the phase function
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Fig. 4. Comparison of pMC estimates of reflectance with estimates of reflectance obtained
from independent cMC simulations when theradius of a single size distribution is per-
turbed. Error bars are standard errors of the mean.

contribution.
Varying the radius,r, will vary the phase function along withµs. Figure 4 shows the results

of varyingr using the same baseline simulation used for Fig. 3. There is good agreement from
0.4175 to 0.4775µm, with some variation in the pMC results atr = 0.4775µm.

size parameter= 2πrnmedium/λ (24)

Similar to varying the radius, varying the wavelength changes both the phase function and
µs, because the phase function andµs depend on the size parameter which is a function of
wavelength as shown in Eq. (24). In Fig. (5), pMC and cMC results are compared for varying
values of wavelength and constant values for other parameters. The parameters for the baseline
simulation are the same as for Figs. 3 and 4. The agreement between pMC and cMC is excellent
over the range 580 nm to 650 nm. However, for wavelengths of 550 nm and below, the pMC
calculations underestimate the reflectance. Interestingly, large standard errors of the mean are
not found in all cases, e.g. the results for fiber 4 at 520 nm. At wavelengths above 650 nm pMC
results for one fiber over estimate reflectance while pMC results for the other three collection
fibers under estimate the reflectance. Nonetheless, in most cases the standard error of the mean
overlaps with the cMC result. The cMC results are nearly identical for each fiber. (When plotted
on the same graph, the symbols overlap.) The pMC results, however, show a different trend for

#192575 - $15.00 USD Received 19 Jun 2013; revised 2 Aug 2013; accepted 8 Aug 2013; published 4 Sep 2013
(C) 2013 OSA 1 October 2013 | Vol. 4,  No. 10 | DOI:10.1364/BOE.4.001946 | BIOMEDICAL OPTICS EXPRESS  1956



1.0x10
-3

0.8

0.6

0.4

0.2

0.0

F
ra

c
ti

o
n
 o

f 
P
h
o
to

n
s 

C
o
lle

c
te

d

0.700.650.600.55
Wavelength (µm )

r = 0.4475 µm 

fiber 1

 cMC

 pMC

1.0x10
-3

0.8

0.6

0.4

0.2

0.0

F
ra

c
ti

o
n
 o

f 
P
h
o
to

n
s 

C
o
lle

c
te

d

0.700.650.600.55
Wavelength (µm )

r = 0.4475 µm 

fiber 2

 cMC

 pMC

1.0x10
-3

0.8

0.6

0.4

0.2

0.0

F
ra

c
ti

o
n
 o

f 
P
h
o
to

n
s 

C
o
lle

c
te

d

0.700.650.600.55
Wavelength (µm )

r = 0.4475 µm

fiber 3

 cMC

 pMC

1.0x10
-3

0.8

0.6

0.4

0.2

0.0F
ra

c
ti

o
n
 o

f 
P
h
o
to

n
s 

C
o
lle

c
te

d

0.700.650.600.55
Wavelength (µm )

r = 0.4475 µm

fiber 4

 cMC

 pMC

Fig. 5. Comparison of pMC estimates of reflectance with independent cMC simulations
results whenwavelength is perturbed. The scattering particles had a radius of 447.5 nm.
Each panel is for a different collection fiber shown in Fig. 2. Error bars are standard errors
of the mean.

each fiber in Fig. 5 as a function of wavelength. The different trends for each fiber are due to
the fact the pMC calculations for each fiber use a different base set of trajectories.

To investigate further the effects of the phase function on the accuracy of pMC, simulations
varying wavelength were run with scatterers of 100 nm in radius. Excellent agreement between
cMC and pMC was obtained as shown in Fig. 6. The baseline simulation usedr = 0.100µm,
Ns = 1.83×1010 particles/cm3, λ = 620 nm,nmedium = 1.332 andnscatterer = 1.390. Twenty
million photons were incident for the baseline and cMC simulations.

The results of Figs. 3, 4, 5, and 6 can be placed in a broader context by examination of
the scattering parameters used in the simulations. Figure 7 shows these scattering parameters
plotted versus the percent change in the varied parameter. When three sets of pMC simulations
use the same baseline simulation such as the simulations varyingNs, radius, andλ of the 447.5
nm radius spheres, the parameters all overlap at the 0% point as in the top left graph forµs.

The reflectance results whenNs and radius were varied are quite similar as shown in Figs. 3,
and 4. This similarity is because the scattering parameters for the two sets of simulations were
nearly the same. The range ofµs values, shown in the top left panel of Fig. 7 is nearly the
same. The anisotropy factor,g, was 0.933 for the set of simulations in whichNs was varied.
For the set of simulations for which the radius was varied,g ranged from 0.927 to 0.939. Given

#192575 - $15.00 USD Received 19 Jun 2013; revised 2 Aug 2013; accepted 8 Aug 2013; published 4 Sep 2013
(C) 2013 OSA 1 October 2013 | Vol. 4,  No. 10 | DOI:10.1364/BOE.4.001946 | BIOMEDICAL OPTICS EXPRESS  1957



2.0x10
-3

1.8

1.6

1.4

1.2

1.0

F
ra

c
ti

o
n
 o

f 
P
h
o
to

n
s 

C
o
lle

c
te

d

0.700.650.600.55

Wavelength (µm )

radius = 0.1 um

 cMC fiber1

 cMC fiber2

 cMC fiber3

 cMC fiber4

 pMC all fibers

Fig. 6. Comparison of pMC estimates of reflectance with independent cMC simulations
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these similarities in scattering parameters it is not surprising that the results in Figs. 3 and 4
are similar.

When λ is varied withr = 447.5 nm, the range of scattering coefficients, 78-153 cm−1,
is slightly larger than when radius is varied, 80-139 cm−1. The variation inµs is nearly the
same for the two sets of simulations when the wavelength range is restricted to 550-710 nm
for simulations varying wavelength. However, Fig. 5 shows that pMC and cMC results are not
the same over this range. Examination of the bottom right panel shows thatg is varying more
when wavelength is varied than when radius is varied even when only the range 550 to 710
nm is considered. Not until the wavelength range is reduced to 580 to 670 nm is the variation
in g the same. This corresponds to the same range of wavelengths over which good agreement
is found between the cMC and pMC results in Fig. 5. Clearly, the variation ing reduces the
accuracy of the pMC results wheng is large. However, ifg is smaller, a much bigger variation
in g can be tolerated as can be seen for the results using 100nm radius spheres in Fig. 6 and the
bottom left panel of Fig. 7. Lastly, we note that variations inµ ′

s are not a good predictor of the
accuracy of pMC for this geometry where delivery and collection fibers are close together. The
top right panel shows that varying lambda resulted in the smallest variation inµ ′

s, while varying
the concentration resulted in the largest variation ofµ ′

s.
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Fig. 8. The number density of each of the distributions in Table 1 is varied. a)Ns for the
smallest size distribution is varied. b)Ns for the middle size distribution is varied. c)Ns

for the large size distribution is varied. Errors are standard error of the mean. Only cMC
results for fiber 1 are shown for clarity. Similarly, only pMC results for one or two fibers
are shown.
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3.2. A more complex problem: three lognormal distributions of radii

The tissue model described in Section 2.1 is used for these simulations, with the parameters for
the baseline simulation given in Table 1. As was done with the single size scatterers, concen-
tration, radii, and wavelength are varied. However, rather than varying the concentration and
mean radius of the entire suspension, the concentrations and mean radii of each distribution in
Table 1 are varied. Consequently all perturbations in parameters modified the phase function.

Figure 8 shows how varying the number density of each distribution affects the fraction of
collected photons as well as the accuracy of the pMC results. Figure 8(a) demonstrates that
when the concentration of the smallest distribution is varied by± 50%, there is a large change
in photon collection efficiency and the pMC results are very accurate. When the concentrations
of distributions 2 and 3 are varied, there is very little change in photon collection efficiency. For
larger changes in concentration, the standard errors of the mean increase for pMC. pMC results
are shown for two fibers which are representative of the range of results obtained.

1.3x10
-3

1.2

1.1

1.0

0.9

0.8

F
ra

c
ti

o
n
 o

f 
P
h
o
to

n
s 

C
o
lle

c
te

d

5.55.04.54.0
mean radius (µm) of largest distribution

 cMC fiber 1

 pMC fiber 1

 pMC fiber 2

c)

1.6x10
-3

1.4

1.2

1.0

0.8

0.6

F
ra

c
ti

o
n
 o

f 
P
h
o
to

n
s 

C
o
lle

c
te

d

0.520.480.440.40
mean radius (µm) of middle distribution

 cMC fiber 1

 pMC fiber 1

 pMC fiber 2

 pMC fiber 3

b)
2.0x10

-3

1.5

1.0

F
ra

c
ti

o
n
 o

f 
P
h
o
to

n
s 

C
o
lle

c
te

d

0.0360.0320.0280.024
mean radius (µm) of smalllest distribution

 cMC fiber 1

 pMC fiber 1

 pMC fiber 2

a)

Fig. 9. The mean radii of individual groups of scatterers are perturbed; a) distribution 1, b)
distribution 2, and c) distribution 3 in Table 1. Only cMC results for fiber 1 are shown for
clarity. Similarly, pMC results are shown for only some fibers. The range of the ”Fraction
of Photons Collected” is different in panel a) from all other graphs of ”Fraction of Photons
Collected”. The error bars are standard errors of the mean.

In Fig. 9, the mean radii of each individual distribution was varied. Figure 9(a) shows results
for the variation of the smallest radius from a baseline value of 0.030µm. The pMC and cMC
results overlap for all radii and results are quite accurate at the smallest radius used,r = 0.024
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µm. Figure 9(b) are results when the mean radius of the middle size distribution is varied from
the baseline value of 0.045µm. The pMC and cMC results agree well from about 0.42µm to
0.49µm, but the pMC results differ greatly from the cMC results for smaller radii in one case.
Similar results were obtained when the radius of the largest distribution was varied, Fig. 9(c).
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Fig. 10. Comparison of pMC estimates of reflectance across wavelengths with calculations
of reflectance obtained from independent cMC simulations of tissue.

Figure 10 compares pMC and cMC results when the wavelength is perturbed from a baseline
value of 620 nm. From 580 to 720 nm all of the pMC and cMC results are the same within
errors. And for 3 of the 4 replicates, the agreement extends down to 560 nm.

Figure 11 shows the parameters used in the MC simulations of tissue. Combining these data
with those in Fig. 7 for single size scatterers with r = 447.5 nm, 4 classes of simulations can
be examined; 1)µs varies, whileg is constant or nearly constant, 2)g varies whileµs is nearly
constant, 3) bothg andµs vary for nearly constantµ ′

s, and 4)g, µs andµ ′
s all vary. For each

of these classes, there are 2 or 3 relevant simulations. By examining the pMC results for these
simulations we can determine the range of scattering parameters over which the pMC and cMC
results agree to within 1% of the cMC results. The results of this analysis are shown in Table 2.
When onlyµs varied, pMC results are accurate over a range of±15% the original value of
µs. When onlyg varied, pMC results are accurate over a range of±25% the original value of
(1− g). When bothg andµs varied, then the variation ofµs + 0.5(1− g) can be±20% when
µ ′

s is constant and slightly less ifµ ′
s varies.
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Fig. 11. Scattering parameters for the simulation results shown in Figs. 8, 9 and 10.

4. Discussion

The pMC method developed and tested in this paper allows for perturbation of the scatte-
ring coefficient and the probablility density function for scattering through the polar angle,θ .
Testing of the pMC method used homogeneous, realistic epithelial tissue properties and probe
geometries identical or similar to that being used by many groups to develop optical methods
of precancer and cancer detection. Absorption was set to 0 and not varied in order to focus on
testing the new aspects of this method which relate to the scattering properties.

The pMC method developed provides accurate estimates of reflectance with changes in scat-
tering coefficient of±15% when the changes in anisotropy coefficient are negligible. These
results are similar in accuracy to those obtained with the scaling/condensed MC method that
does not allow for perturbation of the phase function. Liu and Ramachandran obtained errors
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Table 2. Range of parameter variation for<1% error in pMC reflectance calculation

simulation types varing
variation of only µs only g only g and µs g, µs andµ ′

s
µs ±15% NA – –

(1− g) NA ±25% – –
µs + 0.5(1− g) NA NA ±20% ±18%

in reflectance of about 2% with 200µm source-detector separation when scattering coeffi-
cients were varied by about±15% along with some changes in absorption using the scaling
model [12]. The advantage of the pMC method developed here, is that it retains its accuracy
even when the phase function is varied as shown by Table 2. Lui and Ramachandran found that
substituting a Mie phase function for a Henyey-Greenstein phase function led to significant
errors for source-detector separations of 200 and 0µm, 13.5% and 40%, respectively [12].

To accurately study tissue microstructure it seems prudent to measure as many light scat-
tering parameters as possible; details of the scattering phase function can potentially provide
information to distinguish different tissue microarchitectures that may be relevant to distinct
disease states. The ability to model tissue with different phase functions can be utilized to de-
sign spectroscopic measurements with optimal sensitivity to changes in scattering properties.
While that is an important application of the pMC code developed here, there are two potential
extensions of the work described here that will lead to additional more far-reaching applica-
tions; 1) pMC methods can be used to solve the inverse problem and determine scattering prop-
erties from reflectance measurements [14] and the pMC method described here has the potential
to determine parameters, such as the size distribution, of the light scattering particles. For ex-
ample, when the model employed here is used, changes in the mean radius or number density
of the scatter distributions could be determined. 2) Extension of the pMC method described
here can allow for perturbation of the azimuthal scattering angle. This change would facilitate
perturbations of scattering parameters when the incident light is polarized. Measurements with
linearly polarized incident light using crossed or parallel detection can provide information not
available when only unpolarized measurements are made [3,32,33].

5. Summary and conclusions

We have developed a new pMC algorithm that takes into account phase function perturbations
due to varying scatterer parameters values or incident wavelength, and we have applied the
new algorithm to two problems using spherical scatterers to simulate the scattering properties
of tissue. For both problems, the ability of the new pMC algorithm to predict reflectance for
moderate perturbations in parameter values (wavelength, number density, scatterer radii) was
demonstrated. It is our hope that the work outlined in this study will provide a computationally
efficient framework for researchers interested in modeling transport in media with arbitrary
groups of scatterers.
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