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Abstract: Diffuse optical tomography is highly sensitive to measurement
and modeling errors. Errors in the source and detector coupling and posi-
tions can cause significant artifacts in the reconstructed images. Recently
the approximation error theory has been proposed to handle modeling er-
rors. In this article, we investigate the feasibility of the approximation error
approach to compensate for modeling errors due to inaccurately known
optode locations and coupling coefficients. The approach is evaluated with
simulations. The results show that the approximation error method can
be used to recover from artifacts in reconstructed images due to optode
coupling and position errors.
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1. Introduction

Diffuse optical tomography (DOT) is a non-invasive soft tissue imaging modality with appli-
cations for example in breast and brain imaging [1-3]. It involves the use of near-infrared light
for probing and determining spatially distributed optical parameters. The image reconstruction
problem in DOT isill-posed The ill-posedness means that even small errors in measurements
or modeling can cause large errors in the reconstructions. In contact based DOT measurement
setup, lasers are coupled to fiber optodes and these are used to direct light into the tissue.
The transmitted light is collected using another set of optodes coupled to photo-multipliers. In
practical experiments, the positions of the source and detector optodes are not always known
accurately. There are also other uncertain model parameters such as coupling coefficients that
include source strength, coupling losses of the optodes and detector efficiency or gain. It has
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previously been observed that small errors in source and detector positions and coupling coef-
ficients can cause large artifacts in the reconstructed images [4, 5].

Various approaches for reduction of errors caused by inaccurately known optode coupling
have been developed. Difference imaging can reduce measurement artifacts to an extent in the
reconstructed images [6]. Difference imaging requires a reference measurement with known
optical properties and provides information about changes in the optical properties of the tar-
get between the reference and measurement states. However, this technique only works when
the changes in the optical properties are not very large. A modified technique based on the
same idea that differential changes are less susceptible to surface errors was developed in [7].
This technique uses a contrast agent that needs to be injected during imaging which may not
always be appropriate. A similar technique [8] uses the differences between measurements at
two separate wavelengths to reduce the coupling errors. A calibration method using a homoge-
neous diffusive phantom with source placed at the center and optodes placed equidistant from
the center to calibrate relative optode sensitivities was used in [6]. Furthermore, a calibration
method based on rotational symmetry of source and detector positions in a measurement setup
was utilized in [5, 9, 10]. Difference imaging and calibration approaches assume that the source
and detector coupling coefficients do not change after the calibration. This may not always be
a realistic assumption since coupling coefficients are dependent on the statistical fluctuations
of the source and detectors and may also change due to movement of the patient or the optode
fibers. Therefore, approaches in which the errors caused by coupling coefficients are handled
during the image reconstruction have been developed. A regularizing functional which sup-
presses variation of the optical parameters near the boundary was utilized in [11]. The weigh-
ing function method uses priori constraints at image boundary without actual evidence from
data. Simultaneous image reconstruction and optode calibration was performed in [12] and
was further extended to include phase errors in experiments [13]. An extension to time domain
measurements can be found in [14]. This method solves the optode coupling coefficients along
with the optical parameters. A Bayesian approach to solve the coupling coefficients along with
the optical coefficients was used in [15].

While performing corrections for source and detector coupling related errors, the position
errors are usually not considered. A calibration technique where the signal distortions due to
optode position errors were approximated as coupling coefficients was presented in [4, 16].
However, the effects due to position shifts are different from those of coupling losses and hence
this approximation may only work for small distortions. To our knowledge modeling and esti-
mation of optode position errors has not been performed.

Recently a theory known as the approximation error (AE) theory [17,18] has been developed
to handle modeling errors. The approach is based on the Bayesian inversion paradigm, where
all the unknowns including primary unknowns (absorption, scatter) as well as the unknown
nuisance parameters such as the optode positions and coupling coefficients are modeled as
random variables. The key idea in the approximation error approach is to represent the modeling
errors caused by uncertainly known nuisance parameters as an additive modeling error noise
in the observation model. The realization of the modeling error is obviously unknown and can
not be computed without knowing the realizations of the unknowns and nuisance parameters.
However, given the prior probability density models of all the uncertainly known parameters,
one can carry out an approximate marginalization of the problem over the nuisance parameters
and model reduction errors by using a Gaussian approximation for the joint statistics of the
primary unknowns and the modelling error noise [19]. In DOT, the approximate marginalization
by the approximation error approach has proven successful in recovery from modeling errors
caused by coarse finite element discretization [17, 20], geometric mis-modeling and domain
truncation [21-23], using approximate physical models [24, 25], and treatment of scatter as
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fixed nuisance parameter while estimating absorption image only [19].

In this work we propose the approximation error approach for recovery from modeling errors
caused by inaccurately known source and detector coupling coefficients and locations. The
remainder of the paper is organized as follows. In Section 2, we review the light transport
model we use and describe the modeling of the coupling coefficients. We also review the usual
image reconstruction using the conventional measurement error model and then describe how
the approximation error approach can be used to compensate for the uncertainty in the optode
coupling and locations. Results using simulated measurement data are presented in Section 3.
Finally the conclusions are given in Section 4.

2. Diffuseoptical tomography

2.1. Diffusion approximation model

In a typical DOT measurement setup visible/near infra-red light is injected to an object from
the object surface. L& c R", wheren is the dimension of the medium & 2, 3), model this
object domain. In a diffusive medium like soft tissue, the commonly used light transport model
for DOT is the diffusion approximation (DA) for the radiative transport equation (RTE) [26].

In this paper the frequency domain version of the diffusion approximation model is used as the
model for light propagation in tissues [27]

(-okO0+ w0+ L) o an) e o)

where®;(r) := ®; is the photon density for theth sourcepa(r) := g is the absorption coeffi-
cient, i is the imaginary unitp is the angular modulation frequency of the input signad, the
speed of light in the medium argdi(r) := qo is the source within object domafn operating
at frequencyw. k(r) := k is the diffusion coefficient. The diffusion coefficietis given by
K(r)=1/(n(pa(r) + ps(r))), whereps(r) := s is the reduced scattering coefficient.

Let us for now assume that all sources and detectors are ideally coupled, i.e. there are no
unknown amplitude loss or phase delays occurring in the source and detector optodes. Let us
denote the location of the source optodespy” dQ, i = 1...Ns and the location of detector
optodes byn; € Q, j =1...Ng. When the source is modeled as diffuse boundary source,
o,i(r) = 0 and the source term can be written in the boundary condition

1 ad)i(r){—iyi rem
10

cDi(r)Jrz_yKO{ R redQ\m ’

whereris the outward normal to the boundary at painty; is the strength of the boundary
source at locatiomy, y is dimension dependent constapt=f 1/ whenQ c R?, y = 1/2
whenQ c R3) anda is a parameter governing the internal reflection at the boun@@ryThe
measurable quantity, the exitan€g; at detectorj under illumination from sourceis defined

by

(2)

AI()) "2y
M :/ kP2 W gs— [ Yy(ryds 3
b Jn; JNn Jn; a l() ()
Letl € CNNa denote vector of complex valued measurement data corresponding to measure-
ment between all source-detector paitiswith single indexation

Me=TG-1ng+j = Tij-

A typical frequency domain DOT measurement setup collects the amplitude and phase as

measurement data
RelogT)

y—< Imlog(I") ) (4)
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where ye R?Nd js data vector that contains the measured log amplitude and phase for all
source-detector pairs.

The source and detector locatiamsandn; are surface patches of known length in 2D and
areain 3D. We parameterize the locations by the center point of the source and detector optodes
and use notation

E=mnT cR%MN m=(mg,....my), n=(ng,...,nN,)

for the vector of source and detector location parameters. Using this notation, the observation
model is

y=AKx¢) +e (5)

wheree € R?NNd models the random noise in measurements(psps) " € R? is discretized
optical coefficients and the mappidgis typically based on the finite element method (FEM)
solution of Eqg. (1-3).

2.2. Source and detector coupling coefficients

Consider now a practical situation where there are coupling losses in the source and detector
optodes. Following [13], we model the coupling losses in sograe (2) by a complex valued
multiplicative coupling coefficiend; € C, leading to photon density

®i(r) =§Pi(r), (6)
where

S =sexpid)
is the source coupling coefficient with amplitude factoand phase factod. Similarly the
coupling losses in measurement optodes are modeled with multiplicative coupling coefficients

dj = dj exp(inj),
leading to exitance [13]:
- 2 A
ri,j :de/ —yCDi(I')dS:deriJ (7)
nj a
Let
d:(dla"'7de)7 ’7:(’717---7’7Nd)
denote vectors of the detector amplitude and phase coupling factors, and similarly let
S=(St;--»SN), 0=(01,...,0n)
denote vectors of the source coupling factors. Further, let
{=(s6,d,n)" € RANN
and define vector valued mappigg]) € CNaMs such that
ok(Q) :=§d; = disjexp(i(ni +5;)), k= (i—1)Ng+ ] (8)

Using these notations and taking the log transform of vector of data of the form (7) leads to the
separation of coupling coefficients into additive components

_ ( RelogT (x,€)) Relogg({))
y_<lmbMN&ﬁ))+<lmbmmO)>+Q ®)
A(x,¢) £1(Q)
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leading to observation model
y=A(x¢) + &l(l) +e (10)

whereg; (¢) € RN js the discrepancy in the log transformed measurement compared to the
ideal (no coupling losses) model (5) for given realizatfomMotice that when ideal sources and
detectors are assumed (no losses), we Bavel, § =0 foralli,dj =1, nj=0forall j and

& =0, i.e., model (10) becomes equal to (5).

2.3. Statistical inversion in DOT
2.3.1. Posterior model

In the Bayesian approach to inverse problems, the principle is that all unknowns and measured
guantities are considered as random variables and the uncertainty of their values are encoded
into their probability distribution models [17, 18, 20, 23]. The information on the unknown
parameters (and the related uncertainty) given the measurements is embedded in the posterior
model, given by the Bayes theorem as

ni(y|x,e {,&)m(x,{,&,e)
m(y) '

Here ri(y|x,{, &, e) is the likelihood density modeling the probability of the measurenyent
when the realizations of, {, £ ande are given.n(x,{, &, e) is the prior density model and it
models our information on the unknown parameters before the actual measurements.

To handle the uncertainty related to the unknown but uninteresting measuremengahers
posterior (11) is usually marginalized with respeets

n(x, ¢, & ely) = (11)

mx 2. &ly) = [ mixd. € ely)de 12)

For details how the marginalization integration is obtained analytically in the case of the addi-
tive error model = A(x) + e with Gaussian statistics fe see section 2.3 in [19].

The posterior modeti(x, {,&y) is a probability density on a high-dimensional space. In
computation of point estimate(s) from the posterior model, the most common choice is the
maximum a posterioliMAP) estimate. In principle, one could attempt to compute MAP esti-
mate for all the unknown model parameters

(%€, )map = argxngz%m(x, &, qly). (13)

However, this would lead to computationally extensive and complicated problem, and to our
knowledge the simultaneous estimation(xfé,{) has not been performed (for estimation of

x and coupling coefficientd, see [12,13, 15]). Alternatively, one could treat the uncertainty in
the values of nuisance parametgfs() in a similar manner than treating the uncertaintg,in

that is, by marginalizing the posterior model as

nixy) = [ [ mixg.cly)acde (14)

and then compute estimate for the primary unknowns from the postepity). However, the
solution of the integratior{14) has closed form solution only in case of purely linear and
Gaussian models. In case of non-linear problems such as DOT, the solution of (14) would
require Markov chain Monte Carlo integration which would in most cases be infeasible for
practical applications.
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The key idea in the approximation error approach is to find approximat{gjy) for the
posterior model (14) such that the marginalization over the uncertainty in the val(és{of
is carried ouapproximatelybut in a computationally feasible way.

Before introducing the approximation error approach for treating the uncertainty in the op-
tode coupling and location parametéés ), we first review the standard DOT reconstruction
approach wheré = &y and{ = {p are treated as known and fixed conditioning variables.

2.3.2. Conventional measurement error modehifd¢ treated as known fixed parameters)

In most of DOT reconstruction schemes, the optode paramgterdé are treated as known de-
terministic parameters and independent of the optical coefficients. Within the Bayesian frame-
work, anyknownparameter (whether measured or otherwise known) is interpreted as a condi-
tioning variable. In the case at hand, if we takandé to be known, we would haveande as

the only unknowns, and would obtain the conditional density

mi(y|x,e,¢ = {o.& = §o)m(x)71(€)

m(y) 15)

n(x.ey,{ ={o,& = o) =

Given the observation model (10) with= & and{ = {p the observation model becomes
y =A(x,&o) + €1({o) + €. Using Gaussian prior models for the unknown optical paramaters
and the random measurement nase

X N (%) e~ (&) (16)

wherex € R? ande e R2NNd gre the means, arfd, € R%Wx2Nn gnd e € RMNsNax2NsNa gre
the covariance matrices, and marginalizing over the unknown measuremeneersors

1(xy. = Lo, & = &) = / (X, ely, = 2o, € = &)de

the posterior model becomes [19]

Ty, € = £0.0 = do) 0 exp{—3(y— A &) — €1(do) T "y~ Alx, &0) — 1(do) ~ 9

SR ) an

The MAP estimate corresponding to the posterior (17) is obtained as
Xuap = arg maxmn(xy,{ = {o.& = &)
= arg min{||Le(y — A(x, &) — &1({o) — )| + [|Lu(x— X[}, (18)
where the Cholesky factors ar@ly =Mt andLlLe = gL
If the coupling coefficientgy are not estimated by the pre-calibration techniques [5,6,9,10],

they are typically fixed to the ideal “no losses” values, eg({o) = 0. In addition, if the random
measurement errors have zero meas (), the MAP estimate (18) has the usual form

Xwap = arg min{|[Le(y — A(X, &))[[* +|Lx(x— X)[|?}, (19)

that is similar to the Tikhonov regularized least squares estimation, except that here the terms
Le, Lx andx would be derived from the related probabilistic models. We refer to the solution of
(19) as the MAP estimate with the conventional measurement error model (CEM) approach.
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2.4. Approximation error model

Consider now a practical situation where the detector and source locations and coupling co-
efficient may not be accurately known. L& and {y be the fixed realizations of the optode
locations and coupling parameters that are to be used in estimation of the optical properties
Evidently, if these fixed values are erroneous, these errors will lead to artefacts in the estimate
of x.

To recover from these errors, we write the accurate measurement model (10) as

y = AX¢)+e(l)+e
= AX&o) +&1(o) +[AX &) +&1({) — (A(x, &o) + €1({o))] + €
= A(X&)+{AX, &) —Ax, &)} +e1({) +e
&(x,€)
= Axé)+&a(l)+e(xé)+e (20)

whereg; and e, areapproximation errorghat describe the discrepancy between the accurate
model and the target model in which the optode parameters have the fixed §alaed .
The measurement model (20) is called the approximation error model.

In addition to marginalizing the problem over the uninteresting and unknown measurement
noisee, the objective in the approximation error approach is to use measurement model (20) and
treat the uncertainty related to the valueq&f{) by carrying out arapproximatemarginal-
ization of the posterior over the noise proces&gse,). Following [19], we make Gaussian
approximations for the density @f({) and the joint density ofx, &2(x,£)) and denote the
total additive noise by

n=¢&({)+&xé) +e

Further, if we make a technical approximation tk@nde, are mutually uncorrelated, we get
an approximation that is referred to as th#hanced error mod¢17, 18]

F(xly) O expl— 5y — Al &0) — )T (y— Al &) )~ 5 (-~ X" (-} (21)
where the mean and covarianc€, are
N=&8+&+86 Tn=rg+le+Te (22)
andgy, & andl,,l¢, are the means and covariances of the Gaussian approximations
81~«/V(§1,|'el), 52”«/’/(52ar62)- (23)
The MAP estimate with the enhanced error model is obtained as
Xwap = arg min{||Ln(y — A(X, &) — M)||* + ||Lx(x— X][|*} (24)

WhereLL, = 'L In the following sections, we refer to the solution of (24) as the MAP
estimate with the approximation error model (AEM) approach.

Notice that the estimate (24) leads to a similar form of minimization problem than the MAP
estimate with the conventional error model (19) (only the noise mean and Cholesky factoriza-
tion of the noise precision matrix are different due to the different overall error model). Thus,
the estimate fox can be efficiently computed by using the existing optimization codes for
conventional measurement error model or Tikhonov regularized least squares.
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2.5. Estimation of approximation error statistics

In the computation of MAP estimate (24), one has to have estimates for the ea@ats, and

the covarianceB, andl ¢, in equation (22). Closed form solutions for these are only available

in purely linear and Gaussian case. In case of non-linear models, the means and covariances of
&1 andg; have to be estimated numerically by a simple Monte Carlo integration procedure. The
following gives the outline of this estimation procedure.

2.5.1. Estimation of; andlg,

For the estimation of the mean and covariance for the optode coupling approximation error
&1((), we specify prior modelsi(s) andr(d) for the vectors of amplitude and phase coupling
coefficients of the sources and prior modgl(sl) andi(n) for the amplitude and phase cou-
pling coefficients of the detectors, respectively. The prior models are used for drawing sets of
N random samples of each of the coefficient vec{afS,/ =1...,N}, {6,/ =1... N} and
and{d®),/=1...,N}, {n¥ ¢ =1... N}. These sets are used to construct a s&t sémples
of ( as

720 = (50,80 dO nnHT

Given the samples, we computesamples of the detector and source coupling earf@r::
£1(Z")) by equations (8-9)) and estimate the mean and covariargeasf

-_13
g==>y& (25)
N =1
1 8,007 557
Mo = g — &g (26)
1 TRN-1R,

2.5.2. Estimation o, andrlg,

For the estimation of the mean and covariance of the optode position approximation error
&(x, &), we drawM random samples

X9 e=12..M}, {£9r=12..M} (27)

from prior modelst(x) and (&) = r(m)7(n). The samples are used to generate samples of
as

gl = A, 80y — A, &) (28)
The mean and covariances are estimated as
_ 1M,
&= l:lg; ) (29)
1 X o1t ==
Mo, = 51 1/;% R (30)

Notice that, whereas the estimation of mean and covariangeisitomputationally fast since

it requires only evaluations of the mappig{) (equations (8-9)), the estimation of the mean

and covariance of, is computationally somewhat intensive dd #orward solutions need to

be evaluated. However, these computations need to be done only once for a fixed measurement
setup and this estimation can be done off-line.
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3. Results
3.1. Simulation of the measurement data

In the numerical studies, the domahc R? was a disk with radius = 25mm. The measure-

ment setup consisted df = 16 sources anblly = 16 detectors. The source and detector op-
todes were modeled as 1 mm wide surface patches located at equi-spaced angular intervals on
the boundary?Q. With this setup, the vector of DOT measurements (4) wasR®'2, A tar-

get with background optical propertigg= 0.01mnm !, s = 1mm* containing an absorption
inclusion with u; = 0.02mnm* and scatter inclusion witpis = 2mn1* was constructed. The
simulated measurement data was generated using FE approximation of the DA in a mesh with
33806 nodes and 67098 triangular elements. Random measuremeng,ribigewas drawn

from a zero-mean Gaussian distribution

me) =4 (0,Fe), Te=diagod;,..., ogmsNd)

where the standard deviatioag, were specified as 1% of the absolute value of simulated noise
free measurement data, was added to the simulated measurement data.

In the computation of the MAP estimates (19) and (24) a FE mesh with 26075 nodes and
51636 elements was used. The MAP estimation problems were solved by a Gauss-Newton
algorithm with an explicit line search algorithm [28]. The meaa 0 and covariancEe were
assumed known.

3.2.  Prior models and computation of approximation error statistics

A proper (integrable) Gaussian smoothness prior was used as the prior model for the primary
unknownsx = (L, tis)". The same prior model was used both in the construction of the en-
hanced error model fag and all the MAP estimates based on the conventional measurement
error model (19) and the approximation error model (24).

The absorption and scatter imagesand us were modeled as mutually independent Gaus-
sian random fields with a joint prior model

() Dexpl 3 L(x- AP}, LL=T! (31)

— [ Ua (T, O
~(8) (7 &)

In the construction of the mean vectqrs s and covarianceE,, andrl , the random field,
sayf (i.e., eitherug or Us), is considered in the form

where

f == fin + fbg
wherefi, is a spatially inhomogeneous parameter with zero mean,
fin ~ A47(0,Fin 1)

and fyg is a spatially constant (background) parameter with non-zero mean. For the latter, we
can write f,g = ql, wherel € RN is a vector of ones andis a scalar random variable with
distributionq ~ A/ (f,, ogg,f). In the construction of i, f, the approximate correlation length

can be adjusted to match the size of the expected inhomogeneities and the marginal variances
of fy:s are tuned based on the expected contrast of the inclusions. We model the distributions
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fin and fog as mutually independent, that is, the background is mutually independent with the
inhomogeneities. Thus, we have

f=fL T[¢="Cing+ 02"

See [17, 19, 20] for further details, and see [29] for an alternative construction of a proper
smoothness prior.

The parameters in the prior mode(x) were selected as follows. The mean for background
absorption and scatter were setas = 0.01mn1 ! and s, = 1mnmr ! and the standard devi-
ationsopg , andoypg s Of the background values were chosen such that 2 s.t.d. limits equaled
25% of the mean valugs, . andps .. In the construction of i, ¢ the correlation length for both
Uz and s was set as 16 mm. The marginal standard deviations were set to equal values in each
pixel andai, ;,, andoin ;s Were chosen such that 2 s.t.d. limits equaled 50% of the mean values
Hax andpis .. Thus, the overall marginal standard deviations ( i.e., square root of diagonal ele-
ments ofl" ,, andrl" ;) were such that@,, = 0.0056mn1* and 2, = 0.56mn1 L. This gives
overall 2 s.t.d. intervalg, € [0.00440.0156mm ! andys € [0.44,1.56lmm %, i.e., the values
of absorption and scatter are expected to lie within theses intervalgwiith probability of
95%.

In the prior model for the optode coupling parametérs (s, ,d,n)T, all the optode pa-
rameters were considered as mutually independent

() = n(s)r(d)m(d)m(n),
where

n(s) =M*n(s), n(d)=n*n(a), n(d)=nnd), mn(n)=nnn;).

We modeled the amplitude parameters by uniform prior distributions
n(s) = U(smin, 1), 7(dj) = U(dmin, 1)

between a selected minimum value and the ideal value 1, and for the phase parameters we used
uniform prior models between ideal value of zero and a selected maximum phase shift

(&) = U(0,0max), 71(nj) = U(0, Nmax)-

In the construction of the prior modei(&) for the optode location vectdr = (m,n)T, we
modeled the locations of the optodes mutually independent and used parameterization

¢k = ok + A6«

whereéy is the angular location of the center point of optdda the fixed parameterization
o that is to be used in the inverse problems & ~ U(—d6max, 8max) models an error in
the angular location.

To study the robustness of the approximation error model with respect specification of the
prior model, the mean and covariance of the approximation ef(dr were estimated using
four different values ofSmin, dmin, dmax, Mmax) N the prior models. Similarly, the mean and co-
variance ofe;(x, &) was estimated using four different settings &@nax. The different values
that were used are tabulated in Table 3.2. In the estimation of the statistégs exfuations
(25-26),N = 10000 random samples of the optode coupling parameters were used. In the con-
struction of the statistics of,, equations (29-30)M = 2000 random samples ofand the
optode location vector were used. The correlation structure of the covariance matriges
andl ¢, corresponding to prior parameters in the first row of Table 3.2 are displayed in Fig. 1.
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Table 1. Prior models for coupling coefficients and optode positiofia, ) denotes the
uniform density betweefs, b]. The perturbatiod6 in the location is given in degrees.
The width of one source or detector fiber corresponds3oand the separation of adjacent
optodes in the equiangular caggis 11.25°. (1° is equivalent to 844mm along the domain

boundarydQ)
Coupling coefficients Optode angular locations
(1) s,dj ~U(0.9,1) &,n; ~ U(0, 1/360) 06 ~ U (—2°+2°)
2 U(0.7,1) U(0,11/180) U (—4°,+4°)
3) U(0.5,1) U(0,11/90) U (—8°,+8°)
(4) U(0.2,1) U(0, 31/45) U(12,+12)
r

Phase block

1.28e-05

(b)

Log(Amp) block Phase block

© ’

Fig. 1. Covariance matrices for optode coupling approximation egrétop row) and op-

tode position approximation err@p (bottom row). (a) Covariance matrix of coupling co-
efficient errors[,. (b) and (c) are Log Amplitude and Phase blocks gf (d) Covariance
matrix of optode position error§,g,. () and (f) are Log Amplitude and Phase blocks of
Ie,. The colors in &) and d) were scaled to highlight the different correlation structures of
the approximation errorg; ande,.

0.00025

0

®
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3.3. Case 1: Separated and combined approximation errors

To study the effect of unknown optode coupling coefficients and locations, we considered the
cases of i) pure coupling errors, ii) pure location errors and iii) combination of the coupling and
location errors. The results are shown in Fig. 2.

The first column in Fig. 2 shows the true absorption and scatter imagéesy, Us bottom).

The second column in Fig. 2 shows the MAP estimatg dndps with conventional measure-

ment error model (CEM), equation (19), when there are no optode coupling or location errors
present. This estimate gives the reference estimate with the conventional model in the ideal case
that there are no optode errors present.

Next, we generated a data where optode coupling losses were present but the optode locations
were known exactly. The realization gfthat was used for simulating the measurement data
with coupling losses was drawn from the prior modgl ) using the parameters in the first
row of Table 3.2. The images on the first and second row of column three in Fig. 2 show the
conventional MAP estimate (19) when the optode coupdinig modeled (incorrectly) as ideal
(measurement modgl= A(x,&) + €). The images on the first and second row of column 4
in Fig. 2 show the MAP estimate (24) with the approximation error mgdelA(x, &) + &1 +
e where the approximation err@; due to unknown optode coupling coefficients has been
accounted for.

The third and fourth row in Fig 2 show results from a case where the optode coupling is
exactly known (ideal coupling) but the optode locations are inaccurately known. For the sim-
ulation of the measurement data, a realizafoof optode locations was drawn from the prior
(&) with the parameters given in the first row of Table 3.2, and measurement data was simu-
lated asyy = A(x, &) +e. The third column shows the conventional MAP estimate (19) using the
incorrect fixed realizatiodg that corresponds to the equispaced locations (i.e., measurement
modely = A(x, &o) + €). The fourth column shows the MAP estimate (24) using the approx-
imation error model = A(x, &) + £2(&) 4+ e where the approximation err@s due to poorly
known locations is taken into account.

Finally, the fifth and sixth row in Fig. 2 show a case where both, optode coupling and lo-
cations, are poorly known. The simulated measurement data was generated by drawing re-
alizations ofé and { from the their prior models using the parameters in the first row of
Table 3.2 and then the data was computed/as A(x,&) + €1({) +e. The third column
shows the conventional MAP estimate (19) using the inexact fixed realizg§en®), where
&o correspond to equispaced locations afgdto ideal coupling (i.e., measurement model
y = A(x, &o) + €). The fourth column shows the MAP estimate (24) using the approximation
error modely = A(x, &o) + €1+ &2 + e where both approximation errors are taken into account.

Evidently, as can be seen from the third column in Fig. 2, the conventional MAP estimates
contain errors and distortions when optode coupling, optode locations or both are inaccurately
known. Notice that the errors are especially severe in the absorptionimages, which is usually the
parameter of main interest in medical applications. The MAP estimates with the approximation
error model are basically free of these artefacts in all three situations and very similar to the
reference MAP estimates in the second column that are conventional estimates in the ideal
case that optode coupling and locations are exactly known. Thus, the reconstruction errors
due to modeling errors in optode coupling and locations were efficiently removed using the
approximation error approach.

To study the performance of the approximation error model in the ideal case when there
are no actual modelling errors present in the data, we computed the reconstructions with the
approximation error model from the data that was used for computing the reference reconstruc-
tion in the second column of Fig. 2. The reconstructions are shown in Fig. 3. The first column
shows the estimate using the pure optode coupling error nyed@i(x, &) + £ + €, the second
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Fig. 2. From left: (a) First column: Target optical properties (top: scattering, bottom: ab-
sorption coefficients). (b) Second column: Reconstructions using CEM with no modeling
errors {cpy = 431s). (c) Third column: Reconstructions using CEM with incorrect optode
coupling coefficients (rows 1 and &py = 514s), incorrect optode locations (rows 3 and
4,tcpy = 677s) and a combination of these both (rows 5 angdfy = 2321s). (d) Fourth
column: Reconstructions using AEM with incorrect optode coupling coefficigpty(=
490s), optode locationsdpy = 519s) and a combination of these bditp(; = 500s).
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column shows the reconstruction using the optode location error gedAlx, &) + &(&) +e

and the third column show the estimate with the combined coupling and location error model
y=A(x, &)+ €1+ & +e. As can be seen, the approximation error model estimates are similar
to the reference estimate in the second column of Fig. 2, which corresponds to correct noise
model in this case. The difference in the estimates against the reference estimate is slightly
larger in the cases of optode coupling error model and combined model than in the pure optode
location error model. This discrepancy arises from the selection of the prior models for the op-
tode coupling parameters; with the prior models used in the present case, the mean of optode
coupling errorgg is non-zero and consequently the noise realizatiene+ & with &g =0

has relatively low probability density with respect the actual noise model. The results indicate
that the approximation error model performs also robustly in the ideal case when there are no
optode coupling or location errors present in the measurement data.

0.02

ﬂ u u |
0
Fig. 3. Reconstructions using approximation error model when no modelling errors are
present. Top: absorption, Bottom: scattering. First column: reconstructions using pure op-
tode coupling approximation error modei£ A(x, &) + € + €). Second column: recon-
structions using optode location approximation error mogte: (A(x, &) + €2(§) + €).

Third column: reconstructions using combined optode coupling and location approxima-
tion error model Y = A(X, &o) + €1+ &2+ €).

The CPU times for the estimates in Fig. 2 are listed the figure caption. The reference esti-
mate in the second column corresponding to the ideal case of no modelling errors present has
the shortestcpy of all the estimates. However, the computation times of the AEM estimates in
the fourth column are only moderately longer than in the ideal case. More importantly, com-
paring the computation times of the CEM estimates and AEM estimates in the third and fourth
columns, the AEM estimate has shorter computation time than the CEM estimate in all three
cases. This arises from faster convergence of the minimization when the noise model that is
employed in the MAP functional is more realistic.

3.4. Case 2: Magnitude of errors i, &) and sensitivity with respect the prior model

In the first test case, we used the same prior modg&f9 and r7(§) for estimation of the ap-
proximation error statistics and drawing the realization ahd¢ that were used in simulating

the measurement data with optode coupling or/and location errors. Basically, this case corre-
sponds to a situation in which we know the actual prior probability distribution of the nuisance
parameters. To investigate the impact of incorrect prior model§ &) and how large errors

the approximation error approach can tolerate in these parameters, we performed a test case
where we simulated measurement data and constructed the approximation error statistics for
&1 and & using the four different uniform prior distributions that are listed in Table 3.2. The
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results for the case of optode coupling errors are shown in Fig. 4 and for the case of optode
location errors in Fig. 5. Both of these figures show>a4itable of MAP estimates (24) with

the approximation error model such that in each image pair the left image ghoaved the

right image showsis. The support of the uniform prior models that were used for estimation of
the approximation error statistics grows wider column wise from left to right and the support
of the uniform prior that were used in the simulation of the measurement data increases from
top to bottom. In the estimates indicated with small arrows the approximation error was trained
with the same prior distribution that was used in the simulation of the measurement data, i.e.,
the image pairs on the diagonal of thex4 table correspond to the case that the actual prior
distribution of or & is known. We can see that using a prior that has a too restricted (too nar-
row) support compared to the actual distribution of the optode parameters leads to less efficient
recovery from the modeling errors. However, training the approximation error statistics with
a wider prior model than the actual distribution of the uncertainly known parameter does not
seem to lead to deterioration in the recovery from the modeling error. Thus, we can say that it
is safe to overestimate the uncertainty (up to a limit).

std AE model
std coupling
coeffecients IJa US “a us ue\ us ua us

(1) ¢

0 0.020 2 0 0.020 2 0 0.020 2 0 0.020 2

Fig. 4. AEM reconstructions using different optode coupling coefficient errors. In each of
the image pairsita is on the left andus on the right. The data at each of the four rows was
generated using the different prior distributions given in Table 1. The AE statistics at each
of the four columns was trained using the prior distributions in Table 1. The arrows denote
pairs(Ua, Us) Where the approximation error statistics was trained using the same prior that
was used in simulation of the data with optode coupling errors.

When the magnitude of the errors were incremented from the largest values used in Figures 4
and 5, the recovery from the errors started to deteriorate gradually. However, the approximation
error model was still able to give partial recovery even in the rather extreme case of having
coupling errors randomly drawn fros d; ~ U(0,1.5) for the amplitude (zero corresponds to
complete coupling failure!), and phase errors drawn fépm; ~ U(0,3r), and location errors
drawn fromd6 ~ U(—20°,+20°).

4. Conclusion

We have shown the feasibility of the approximation error approach for recovery from recon-
struction artifacts caused by unknown source and detector optode coupling and positions. The
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Fig. 5. AEM reconstructions using different optode position errors. In each of the image
pairs, 15 is on the left andis on the right. The data at each of the four rows was generated
using the prior distributions given in Table 1. The AE statistics in each of the four columns
was trained using the prior distributions given in Table 1. The arrows denote(paifss)

where the approximation error statistics was trained using the same prior distibution that
was used in simulation of the data with misplaced optodes.

approach was tested with 2D simulations with various coupling and position errors. The re-
sults show that the approximation error approach can recover from pure and combined optode
coupling and location errors. We also studied the performance using different magnitude of the
errors and sensitivity with respect the specification of the prior model in the estimation of the
approximation error statistics. The approach is robust for reasonably large range of errors as
long as the prior model in the construction of the error model does not correspond to a too
optimistic assumptions on the actual uncertainty related to the marginalized variables, in this
paper, the optode locations and the coupling coefficients. Based on these results, we suggest
that the approximation error approach could provide an efficient modeling protocol in practical
cases where the optode coupling and locations are poorly known.
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