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Abstract: Diffuse optical tomography is highly sensitive to measurement
and modeling errors. Errors in the source and detector coupling and posi-
tions can cause significant artifacts in the reconstructed images. Recently
the approximation error theory has been proposed to handle modeling er-
rors. In this article, we investigate the feasibility of the approximation error
approach to compensate for modeling errors due to inaccurately known
optode locations and coupling coefficients. The approach is evaluated with
simulations. The results show that the approximation error method can
be used to recover from artifacts in reconstructed images due to optode
coupling and position errors.
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1. Introduction

Diffuse optical tomography (DOT) is a non-invasive soft tissue imaging modality with appli-
cations for example in breast and brain imaging [1–3]. It involves the use of near-infrared light
for probing and determining spatially distributed optical parameters. The image reconstruction
problem in DOT isill-posed. The ill-posedness means that even small errors in measurements
or modeling can cause large errors in the reconstructions. In contact based DOT measurement
setup, lasers are coupled to fiber optodes and these are used to direct light into the tissue.
The transmitted light is collected using another set of optodes coupled to photo-multipliers. In
practical experiments, the positions of the source and detector optodes are not always known
accurately. There are also other uncertain model parameters such as coupling coefficients that
include source strength, coupling losses of the optodes and detector efficiency or gain. It has
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previously been observed that small errors in source and detector positions and coupling coef-
ficients can cause large artifacts in the reconstructed images [4,5].

Various approaches for reduction of errors caused by inaccurately known optode coupling
have been developed. Difference imaging can reduce measurement artifacts to an extent in the
reconstructed images [6]. Difference imaging requires a reference measurement with known
optical properties and provides information about changes in the optical properties of the tar-
get between the reference and measurement states. However, this technique only works when
the changes in the optical properties are not very large. A modified technique based on the
same idea that differential changes are less susceptible to surface errors was developed in [7].
This technique uses a contrast agent that needs to be injected during imaging which may not
always be appropriate. A similar technique [8] uses the differences between measurements at
two separate wavelengths to reduce the coupling errors. A calibration method using a homoge-
neous diffusive phantom with source placed at the center and optodes placed equidistant from
the center to calibrate relative optode sensitivities was used in [6]. Furthermore, a calibration
method based on rotational symmetry of source and detector positions in a measurement setup
was utilized in [5,9,10]. Difference imaging and calibration approaches assume that the source
and detector coupling coefficients do not change after the calibration. This may not always be
a realistic assumption since coupling coefficients are dependent on the statistical fluctuations
of the source and detectors and may also change due to movement of the patient or the optode
fibers. Therefore, approaches in which the errors caused by coupling coefficients are handled
during the image reconstruction have been developed. A regularizing functional which sup-
presses variation of the optical parameters near the boundary was utilized in [11]. The weigh-
ing function method uses priori constraints at image boundary without actual evidence from
data. Simultaneous image reconstruction and optode calibration was performed in [12] and
was further extended to include phase errors in experiments [13]. An extension to time domain
measurements can be found in [14]. This method solves the optode coupling coefficients along
with the optical parameters. A Bayesian approach to solve the coupling coefficients along with
the optical coefficients was used in [15].

While performing corrections for source and detector coupling related errors, the position
errors are usually not considered. A calibration technique where the signal distortions due to
optode position errors were approximated as coupling coefficients was presented in [4, 16].
However, the effects due to position shifts are different from those of coupling losses and hence
this approximation may only work for small distortions. To our knowledge modeling and esti-
mation of optode position errors has not been performed.

Recently a theory known as the approximation error (AE) theory [17,18] has been developed
to handle modeling errors. The approach is based on the Bayesian inversion paradigm, where
all the unknowns including primary unknowns (absorption, scatter) as well as the unknown
nuisance parameters such as the optode positions and coupling coefficients are modeled as
random variables. The key idea in the approximation error approach is to represent the modeling
errors caused by uncertainly known nuisance parameters as an additive modeling error noise
in the observation model. The realization of the modeling error is obviously unknown and can
not be computed without knowing the realizations of the unknowns and nuisance parameters.
However, given the prior probability density models of all the uncertainly known parameters,
one can carry out an approximate marginalization of the problem over the nuisance parameters
and model reduction errors by using a Gaussian approximation for the joint statistics of the
primary unknowns and the modelling error noise [19]. In DOT, the approximate marginalization
by the approximation error approach has proven successful in recovery from modeling errors
caused by coarse finite element discretization [17, 20], geometric mis-modeling and domain
truncation [21–23], using approximate physical models [24, 25], and treatment of scatter as
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fixed nuisance parameter while estimating absorption image only [19].
In this work we propose the approximation error approach for recovery from modeling errors

caused by inaccurately known source and detector coupling coefficients and locations. The
remainder of the paper is organized as follows. In Section 2, we review the light transport
model we use and describe the modeling of the coupling coefficients. We also review the usual
image reconstruction using the conventional measurement error model and then describe how
the approximation error approach can be used to compensate for the uncertainty in the optode
coupling and locations. Results using simulated measurement data are presented in Section 3.
Finally the conclusions are given in Section 4.

2. Diffuse optical tomography

2.1. Diffusion approximation model

In a typical DOT measurement setup visible/near infra-red light is injected to an object from
the object surface. LetΩ ⊂ Rn, wheren is the dimension of the medium (n= 2,3), model this
object domain. In a diffusive medium like soft tissue, the commonly used light transport model
for DOT is the diffusion approximation (DA) for the radiative transport equation (RTE) [26].
In this paper the frequency domain version of the diffusion approximation model is used as the
model for light propagation in tissues [27]

(

−∇ ·κ(r)∇+ µa(r)+
iω
c

)

Φi(r) = q0,i(r) r ∈ Ω, (1)

whereΦi(r) := Φi is the photon density for thei:th source,µa(r) := µa is the absorption coeffi-
cient, i is the imaginary unit,ω is the angular modulation frequency of the input signal,c is the
speed of light in the medium andq0,i(r) := q0 is the source within object domainΩ operating
at frequencyω . κ(r) := κ is the diffusion coefficient. The diffusion coefficientκ is given by
κ(r) = 1/(n(µa(r)+ µs(r))), whereµs(r) := µs is the reduced scattering coefficient.

Let us for now assume that all sources and detectors are ideally coupled, i.e. there are no
unknown amplitude loss or phase delays occurring in the source and detector optodes. Let us
denote the location of the source optodes bymi ⊂ ∂Ω, i = 1. . .Ns and the location of detector
optodes byn j ⊂ ∂Ω, j = 1. . .Nd. When the source is modeled as diffuse boundary source,
q0,i(r) = 0 and the source term can be written in the boundary condition

Φi(r)+
1
2γ

κα
∂Φi(r)

∂ n̂
=

{
− qi

γ r ∈ mi

0 r ∈ ∂Ω\mi
, (2)

wheren̂ is the outward normal to the boundary at pointr, qi is the strength of the boundary
source at locationmi , γ is dimension dependent constant (γ = 1/π when Ω ⊂ R

2, γ = 1/2
whenΩ ⊂ R3) andα is a parameter governing the internal reflection at the boundary∂Ω. The
measurable quantity, the exitance,Γi, j at detectorj under illumination from sourcei is defined
by

Γi, j =

∫

n j

−κ
∂Φi(r)

∂ n̂
dS=

∫

n j

2γ
α

Φi(r)dS (3)

Let Γ∈CNsNd denote vector of complex valued measurement data corresponding to measure-
ment between all source-detector pairsi, j with single indexation

Γk = Γ(i−1)Nd+ j := Γi, j .

A typical frequency domain DOT measurement setup collects the amplitude and phase as
measurement data

y=

(
Relog(Γ)
Imlog(Γ)

)

(4)
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where y∈ R
2NsNd is data vector that contains the measured log amplitude and phase for all

source-detector pairs.
The source and detector locationsmi andn j are surface patches of known length in 2D and

area in 3D. We parameterize the locations by the center point of the source and detector optodes
and use notation

ξ = (m,n)T ∈ R
Ns+Nd, m= (m1, . . . ,mNs), n= (n1, . . . ,nNd)

for the vector of source and detector location parameters. Using this notation, the observation
model is

y= A(x,ξ ) + e (5)

wheree∈R2NsNd models the random noise in measurements, x =(µa,µs)
T ∈R2Nn is discretized

optical coefficients and the mappingA is typically based on the finite element method (FEM)
solution of Eq. (1-3).

2.2. Source and detector coupling coefficients

Consider now a practical situation where there are coupling losses in the source and detector
optodes. Following [13], we model the coupling losses in sourceqi in (2) by a complex valued
multiplicative coupling coefficient ˆsi ∈ C, leading to photon density

Φ̃i(r) = ŝiΦi(r), (6)

where
ŝi = si exp(iδi)

is the source coupling coefficient with amplitude factorsi and phase factorδi . Similarly the
coupling losses in measurement optodes are modeled with multiplicative coupling coefficients

d̂ j = d j exp(iη j ),

leading to exitance [13]:

Γ̃i, j = ŝi d̂ j

∫

n j

2γ
α

Φi(r)dS= ŝi d̂ jΓi, j (7)

Let
d = (d1, . . . ,dNd), η = (η1, . . . ,ηNd)

denote vectors of the detector amplitude and phase coupling factors, and similarly let

s= (s1, . . . ,sNs), δ = (δ1, . . . ,δNs)

denote vectors of the source coupling factors. Further, let

ζ = (s,δ ,d,η)T ∈ R
2(Nd+Ns)

and define vector valued mappingg(ζ ) ∈ CNdNs such that

gk(ζ ) := ŝi d̂ j = disj exp(i(ηi + δ j)), k= (i −1)Nd+ j (8)

Using these notations and taking the log transform of vector of data of the form (7) leads to the
separation of coupling coefficients into additive components

y=

(
Relog(Γ(x,ξ ))
Imlog(Γ(x,ξ ))

)

︸ ︷︷ ︸

A(x,ξ )

+

(
Relog(g(ζ ))
Imlog(g(ζ ))

)

︸ ︷︷ ︸

ε1(ζ )

+e, (9)
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leading to observation model
y= A(x,ξ ) + ε1(ζ ) + e (10)

whereε1(ζ ) ∈ R2NsNd is the discrepancy in the log transformed measurement compared to the
ideal (no coupling losses) model (5) for given realizationζ . Notice that when ideal sources and
detectors are assumed (no losses), we havesi = 1, δi = 0 for all i, d j = 1, η j = 0 for all j and
ε1 ≡ 0, i.e., model (10) becomes equal to (5).

2.3. Statistical inversion in DOT

2.3.1. Posterior model

In the Bayesian approach to inverse problems, the principle is that all unknowns and measured
quantities are considered as random variables and the uncertainty of their values are encoded
into their probability distribution models [17, 18, 20, 23]. The information on the unknown
parameters (and the related uncertainty) given the measurements is embedded in the posterior
model, given by the Bayes theorem as

π(x,ζ ,ξ ,e|y) =
π(y|x,e,ζ ,ξ )π(x,ζ ,ξ ,e)

π(y)
. (11)

Here π(y|x,ζ ,ξ ,e) is the likelihood density modeling the probability of the measurementy
when the realizations ofx, ζ , ξ ande are given.π(x,ζ ,ξ ,e) is the prior density model and it
models our information on the unknown parameters before the actual measurements.

To handle the uncertainty related to the unknown but uninteresting measurement errorse, the
posterior (11) is usually marginalized with respecte as

π(x,ζ ,ξ |y) =
∫

π(x,ζ ,ξ ,e|y)de. (12)

For details how the marginalization integration is obtained analytically in the case of the addi-
tive error modely= A(x)+ewith Gaussian statistics fore, see section 2.3 in [19].

The posterior modelπ(x,ζ ,ξ |y) is a probability density on a high-dimensional space. In
computation of point estimate(s) from the posterior model, the most common choice is the
maximum a posteriori(MAP) estimate. In principle, one could attempt to compute MAP esti-
mate for all the unknown model parameters

(x,ξ ,ζ )MAP = argmax
x,ξ ,ζ

π(x,ξ ,ζ |y). (13)

However, this would lead to computationally extensive and complicated problem, and to our
knowledge the simultaneous estimation of(x,ξ ,ζ ) has not been performed (for estimation of
x and coupling coefficientsζ , see [12,13,15]). Alternatively, one could treat the uncertainty in
the values of nuisance parameters(ξ ,ζ ) in a similar manner than treating the uncertainty ine,
that is, by marginalizing the posterior model as

π(x|y) =
∫ ∫

π(x,ξ ,ζ |y)dζdξ (14)

and then compute estimate for the primary unknowns from the posteriorπ(x|y). However, the
solution of the integration(14) has closed form solution only in case of purely linear and
Gaussian models. In case of non-linear problems such as DOT, the solution of (14) would
require Markov chain Monte Carlo integration which would in most cases be infeasible for
practical applications.
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The key idea in the approximation error approach is to find approximationπ̃(x|y) for the
posterior model (14) such that the marginalization over the uncertainty in the values of(ξ ,ζ )
is carried outapproximatelybut in a computationally feasible way.

Before introducing the approximation error approach for treating the uncertainty in the op-
tode coupling and location parameters(ξ ,ζ ), we first review the standard DOT reconstruction
approach whereξ = ξ0 andζ = ζ0 are treated as known and fixed conditioning variables.

2.3.2. Conventional measurement error model (ζ andξ treated as known fixed parameters)

In most of DOT reconstruction schemes, the optode parametersζ andξ are treated as known de-
terministic parameters and independent of the optical coefficients. Within the Bayesian frame-
work, anyknownparameter (whether measured or otherwise known) is interpreted as a condi-
tioning variable. In the case at hand, if we takeζ andξ to be known, we would havex andeas
the only unknowns, and would obtain the conditional density

π(x,e|y,ζ = ζ0,ξ = ξ0) =
π(y|x,e,ζ = ζ0,ξ = ξ0)π(x)π(e)

π(y)
(15)

Given the observation model (10) withξ = ξ0 andζ = ζ0 the observation model becomes
y = A(x,ξ0)+ ε1(ζ0)+e. Using Gaussian prior models for the unknown optical parametersx
and the random measurement noisee

x∼ N (x̄,Γx) e∼ N (ē,Γe) (16)

wherex̄ ∈ R2Nn andē∈ R2NsNd are the means, andΓx ∈ R2Nn×2Nn andΓe ∈ R2NsNd×2NsNd are
the covariance matrices, and marginalizing over the unknown measurement errorseas

π(x|y,ζ = ζ0,ξ = ξ0) =

∫

π(x,e|y,ζ = ζ0,ξ = ξ0)de

the posterior model becomes [19]

π(x|y,ξ = ξ0,ζ = ζ0) ∝ exp{−
1
2
(y−A(x,ξ0)− ε1(ζ0)− ē)TΓ−1

e (y−A(x,ξ0)− ε1(ζ0)− ē)

−
1
2
(x− x̄)TΓ−1

x (x− x̄)} (17)

The MAP estimate corresponding to the posterior (17) is obtained as

xMAP = arg max
x

π(x|y,ζ = ζ0,ξ = ξ0)

= arg min
x

{||Le(y−A(x,ξ0)− ε1(ζ0)− ē)||2+ ||Lx(x− x̄)||2}, (18)

where the Cholesky factors areLT
x Lx = Γ−1

x andLT
eLe = Γ−1

e .
If the coupling coefficientsζ0 are not estimated by the pre-calibration techniques [5,6,9,10],

they are typically fixed to the ideal “no losses” values, i.e.,ε1(ζ0)≡ 0. In addition, if the random
measurement errors have zero mean (¯e= 0), the MAP estimate (18) has the usual form

xMAP = arg min
x

{||Le(y−A(x,ξ0))||
2+ ||Lx(x− x̄)||2}, (19)

that is similar to the Tikhonov regularized least squares estimation, except that here the terms
Le, Lx andx̄ would be derived from the related probabilistic models. We refer to the solution of
(19) as the MAP estimate with the conventional measurement error model (CEM) approach.
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2.4. Approximation error model

Consider now a practical situation where the detector and source locations and coupling co-
efficient may not be accurately known. Letξ0 andζ0 be the fixed realizations of the optode
locations and coupling parameters that are to be used in estimation of the optical propertiesx.
Evidently, if these fixed values are erroneous, these errors will lead to artefacts in the estimate
of x.

To recover from these errors, we write the accurate measurement model (10) as

y = A(x,ξ )+ ε1(ζ )+e

= A(x,ξ0)+ ε1(ζ0)+ [A(x,ξ )+ ε1(ζ )− (A(x,ξ0)+ ε1(ζ0))]+e

= A(x,ξ0)+ {A(x,ξ )−A(x,ξ0)}
︸ ︷︷ ︸

ε2(x,ξ )

+ε1(ζ )+e

= A(x,ξ0)+ ε1(ζ )+ ε2(x,ξ )+e (20)

whereε1 andε2 areapproximation errorsthat describe the discrepancy between the accurate
model and the target model in which the optode parameters have the fixed valuesζ0 andξ0.
The measurement model (20) is called the approximation error model.

In addition to marginalizing the problem over the uninteresting and unknown measurement
noisee, the objective in the approximation error approach is to use measurement model (20) and
treat the uncertainty related to the values of(ξ ,ζ ) by carrying out anapproximatemarginal-
ization of the posterior over the noise processes(ε1,ε2). Following [19], we make Gaussian
approximations for the density ofε1(ζ ) and the joint density of(x,ε2(x,ξ )) and denote the
total additive noise by

n= ε1(ζ )+ ε2(x,ξ )+e.

Further, if we make a technical approximation thatx andε2 are mutually uncorrelated, we get
an approximation that is referred to as theenhanced error model[17,18]

π̃(x|y) ∝ exp{−
1
2
(y−A(x,ξ0)− n̄)TΓ−1

n (y−A(x,ξ0)− n̄)−
1
2
(x− x̄)TΓ−1

x (x− x̄)} (21)

where the mean ¯n and covarianceΓn are

n̄= ε̄1+ ε̄2+ ē, Γn = Γε1 +Γε2 +Γe (22)

andε̄1, ε̄2 andΓε1,Γε2 are the means and covariances of the Gaussian approximations

ε1 ∼ N (ε̄1,Γε1), ε2 ∼ N (ε̄2,Γε2). (23)

The MAP estimate with the enhanced error model is obtained as

xMAP = arg min
x

{||Ln(y−A(x,ξ0)− n̄)||2+ ||Lx(x− x̄)||2} (24)

WhereLT
nLn = Γ−1

n . In the following sections, we refer to the solution of (24) as the MAP
estimate with the approximation error model (AEM) approach.

Notice that the estimate (24) leads to a similar form of minimization problem than the MAP
estimate with the conventional error model (19) (only the noise mean and Cholesky factoriza-
tion of the noise precision matrix are different due to the different overall error model). Thus,
the estimate forx can be efficiently computed by using the existing optimization codes for
conventional measurement error model or Tikhonov regularized least squares.
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2.5. Estimation of approximation error statistics

In the computation of MAP estimate (24), one has to have estimates for the meansε̄1 andε̄2 and
the covariancesΓε1 andΓε2 in equation (22). Closed form solutions for these are only available
in purely linear and Gaussian case. In case of non-linear models, the means and covariances of
ε1 andε2 have to be estimated numerically by a simple Monte Carlo integration procedure. The
following gives the outline of this estimation procedure.

2.5.1. Estimation of̄ε1 andΓε1

For the estimation of the mean and covariance for the optode coupling approximation error
ε1(ζ ), we specify prior modelsπ(s) andπ(δ ) for the vectors of amplitude and phase coupling
coefficients of the sources and prior modelsπ(d) andπ(η) for the amplitude and phase cou-
pling coefficients of the detectors, respectively. The prior models are used for drawing sets of
N random samples of each of the coefficient vectors{s(ℓ), ℓ= 1. . . ,N}, {δ (ℓ), ℓ= 1. . . ,N} and
and{d(ℓ), ℓ= 1. . . ,N}, {η(ℓ), ℓ= 1. . . ,N}. These sets are used to construct a set ofN samples
of ζ as

ζ (ℓ) = (s(ℓ),δ (ℓ),d(ℓ),η(ℓ))T

Given the samples, we computeN samples of the detector and source coupling errorε(ℓ)1 :=
ε1(ζ (ℓ)) by equations (8-9)) and estimate the mean and covariance ofε1 as

ε̄1 =
1
N

N

∑
ℓ=1

ε(ℓ)1 (25)

Γε1 =
1

N−1

N

∑
ℓ=1

ε(ℓ)1 ε(ℓ) T
1 − ε̄1ε̄T

1 (26)

2.5.2. Estimation of̄ε2 andΓε2

For the estimation of the mean and covariance of the optode position approximation error
ε2(x,ξ ), we drawM random samples

{x(ℓ), ℓ= 1,2, . . . ,M}, {ξ (ℓ), ℓ = 1,2, . . . ,M} (27)

from prior modelsπ(x) andπ(ξ ) = π(m)π(n). The samples are used to generate samples ofε2

as
ε(ℓ)2 = A(x(ℓ),ξ (ℓ))−A(x(ℓ),ξ0) (28)

The mean and covariances are estimated as

ε̄2 =
1
M

M

∑
ℓ=1

ε(ℓ)2 (29)

Γε2 =
1

M−1

M

∑
ℓ=1

ε(ℓ)2 ε(ℓ) T
2 − ε̄2ε̄T

2 (30)

Notice that, whereas the estimation of mean and covariance ofε1 is computationally fast since
it requires only evaluations of the mappingg(ζ ) (equations (8-9)), the estimation of the mean
and covariance ofε2 is computationally somewhat intensive as 2M forward solutions need to
be evaluated. However, these computations need to be done only once for a fixed measurement
setup and this estimation can be done off-line.
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3. Results

3.1. Simulation of the measurement data

In the numerical studies, the domainΩ ⊂ R2 was a disk with radiusr = 25mm. The measure-
ment setup consisted ofNs = 16 sources andNd = 16 detectors. The source and detector op-
todes were modeled as 1mm wide surface patches located at equi-spaced angular intervals on
the boundary∂Ω. With this setup, the vector of DOT measurements (4) wasy ∈ R512. A tar-
get with background optical propertiesµa= 0.01mm−1, µs= 1mm−1 containing an absorption
inclusion withµa = 0.02mm−1 and scatter inclusion withµs = 2mm−1 was constructed. The
simulated measurement data was generated using FE approximation of the DA in a mesh with
33806 nodes and 67098 triangular elements. Random measurement noisee, that was drawn
from a zero-mean Gaussian distribution

π(e) = N (0,Γe), Γe = diag(σ2
e,1, . . . ,σ

2
e,2NsNd

)

where the standard deviationsσe,k were specified as 1% of the absolute value of simulated noise
free measurement data, was added to the simulated measurement data.

In the computation of the MAP estimates (19) and (24) a FE mesh with 26075 nodes and
51636 elements was used. The MAP estimation problems were solved by a Gauss-Newton
algorithm with an explicit line search algorithm [28]. The mean ¯e= 0 and covarianceΓe were
assumed known.

3.2. Prior models and computation of approximation error statistics

A proper (integrable) Gaussian smoothness prior was used as the prior model for the primary
unknownsx = (µa,µs)

T. The same prior model was used both in the construction of the en-
hanced error model forε2 and all the MAP estimates based on the conventional measurement
error model (19) and the approximation error model (24).

The absorption and scatter imagesµa andµs were modeled as mutually independent Gaus-
sian random fields with a joint prior model

π(x) ∝ exp{−
1
2
‖Lx(x− x̄)‖2}, LT

x Lx = Γ−1
x (31)

where

x̄=

(
µ̄a

µ̄s

)

, Γx =

(
Γµa 0
0 Γµs

)

.

In the construction of the mean vectorsµ̄a, µ̄s and covariancesΓµa andΓµs, the random field,
say f (i.e., eitherµa or µs), is considered in the form

f = fin + fbg

where fin is a spatially inhomogeneous parameter with zero mean,

fin ∼ N (0,Γin, f )

and fbg is a spatially constant (background) parameter with non-zero mean. For the latter, we
can write fbg = qI, whereI ∈ RNn is a vector of ones andq is a scalar random variable with
distributionq∼ N ( f∗,σ2

bg, f ). In the construction ofΓin, f , the approximate correlation length
can be adjusted to match the size of the expected inhomogeneities and the marginal variances
of fk:s are tuned based on the expected contrast of the inclusions. We model the distributions
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fin and fbg as mutually independent, that is, the background is mutually independent with the
inhomogeneities. Thus, we have

f̄ = f∗I, Γ f = Γin, f +σ2
bg, f II

T

See [17, 19, 20] for further details, and see [29] for an alternative construction of a proper
smoothness prior.

The parameters in the prior modelπ(x) were selected as follows. The mean for background
absorption and scatter were set asµa,∗ = 0.01mm−1 andµs,∗ = 1mm−1 and the standard devi-
ationsσbg,µa andσbg,µs of the background values were chosen such that 2 s.t.d. limits equaled
25% of the mean valuesµa,∗ andµs,∗. In the construction ofΓin, f the correlation length for both
µa andµs was set as 16mm. The marginal standard deviations were set to equal values in each
pixel andσin,µa andσin,µs were chosen such that 2 s.t.d. limits equaled 50% of the mean values
µa,∗ andµs,∗. Thus, the overall marginal standard deviations ( i.e., square root of diagonal ele-
ments ofΓµa andΓµs) were such that 2σµa = 0.0056mm−1 and 2σµs = 0.56mm−1. This gives
overall 2 s.t.d. intervalsµa ∈ [0.0044,0.0156]mm−1 andµs ∈ [0.44,1.56]mm−1, i.e., the values
of absorption and scatter are expected to lie within theses intervals withprior probability of
95%.

In the prior model for the optode coupling parametersζ = (s,δ ,d,η)T, all the optode pa-
rameters were considered as mutually independent

π(ζ ) = π(s)π(δ )π(d)π(η),

where

π(s) = ΠNs
i π(si), π(δ ) = ΠNs

i π(δi), π(d) = ΠNd
j π(d j), π(η) = ΠNd

j π(η j).

We modeled the amplitude parameters by uniform prior distributions

π(si) = U(smin,1), π(d j) = U(dmin,1)

between a selected minimum value and the ideal value 1, and for the phase parameters we used
uniform prior models between ideal value of zero and a selected maximum phase shift

π(δi) = U(0,δmax), π(η j) = U(0,ηmax).

In the construction of the prior modelπ(ξ ) for the optode location vectorξ = (m,n)T, we
modeled the locations of the optodes mutually independent and used parameterization

ξk = ξ0,k+ δθk

whereξ0,k is the angular location of the center point of optodek in the fixed parameterization
ξ0 that is to be used in the inverse problems andδθk ∼ U(−δθmax,δθmax) models an error in
the angular location.

To study the robustness of the approximation error model with respect specification of the
prior model, the mean and covariance of the approximation errorε1(ζ ) were estimated using
four different values of(smin,dmin,δmax,ηmax) in the prior models. Similarly, the mean and co-
variance ofε2(x,ξ ) was estimated using four different settings forδθmax. The different values
that were used are tabulated in Table 3.2. In the estimation of the statistics ofε1, equations
(25-26),N = 10000 random samples of the optode coupling parameters were used. In the con-
struction of the statistics ofε2, equations (29-30),M = 2000 random samples ofx and the
optode location vectorsξ were used. The correlation structure of the covariance matricesΓε1

andΓε2 corresponding to prior parameters in the first row of Table 3.2 are displayed in Fig. 1.
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Table 1. Prior models for coupling coefficients and optode positions. U(a,b) denotes the
uniform density between[a, b]. The perturbationδθ in the location is given in degrees.
The width of one source or detector fiber corresponds to 2.3◦ and the separation of adjacent
optodes in the equiangular caseζ0 is 11.25◦. (1◦ is equivalent to 0.44mm along the domain
boundary∂Ω)

Coupling coefficients Optode angular locations
(1) si ,d j ∼ U(0.9,1) δi ,η j ∼ U(0,π/360) δθ ∼ U (−2◦,+2◦)
(2) U(0.7,1) U(0,π/180) U (−4◦,+4◦)
(3) U(0.5,1) U(0,π/90) U (−8◦,+8◦)
(4) U(0.2,1) U(0, 3π/45) U (−12◦,+12◦)
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Fig. 1. Covariance matrices for optode coupling approximation errorε1 (top row) and op-
tode position approximation errorε2 (bottom row). (a) Covariance matrix of coupling co-
efficient errors,Γε1. (b) and (c) are Log Amplitude and Phase blocks ofΓε1. (d) Covariance
matrix of optode position errors,Γε2. (e) and (f) are Log Amplitude and Phase blocks of
Γε2. The colors in a) and d) were scaled to highlight the different correlation structures of
the approximation errorsε1 andε2.

#189942 - $15.00 USD Received 2 May 2013; revised 25 Jul 2013; accepted 29 Aug 2013; published 6 Sep 2013
(C) 2013 OSA 1 October 2013 | Vol. 4,  No. 10 | DOI:10.1364/BOE.4.002015 | BIOMEDICAL OPTICS EXPRESS  2026



3.3. Case 1: Separated and combined approximation errors

To study the effect of unknown optode coupling coefficients and locations, we considered the
cases of i) pure coupling errors, ii) pure location errors and iii) combination of the coupling and
location errors. The results are shown in Fig. 2.

The first column in Fig. 2 shows the true absorption and scatter images (µa top, µs bottom).
The second column in Fig. 2 shows the MAP estimate ofµa andµs with conventional measure-
ment error model (CEM), equation (19), when there are no optode coupling or location errors
present. This estimate gives the reference estimate with the conventional model in the ideal case
that there are no optode errors present.

Next, we generated a data where optode coupling losses were present but the optode locations
were known exactly. The realization ofζ that was used for simulating the measurement data
with coupling losses was drawn from the prior modelπ(ζ ) using the parameters in the first
row of Table 3.2. The images on the first and second row of column three in Fig. 2 show the
conventional MAP estimate (19) when the optode couplingζ0 is modeled (incorrectly) as ideal
(measurement modely = A(x,ξ ) + e). The images on the first and second row of column 4
in Fig. 2 show the MAP estimate (24) with the approximation error modely= A(x,ξ )+ ε1+
e where the approximation errorε1 due to unknown optode coupling coefficients has been
accounted for.

The third and fourth row in Fig 2 show results from a case where the optode coupling is
exactly known (ideal coupling) but the optode locations are inaccurately known. For the sim-
ulation of the measurement data, a realizationξ of optode locations was drawn from the prior
π(ξ ) with the parameters given in the first row of Table 3.2, and measurement data was simu-
lated asy= A(x,ξ )+e. The third column shows the conventional MAP estimate (19) using the
incorrect fixed realizationξ0 that corresponds to the equispaced locations (i.e., measurement
modely = A(x,ξ0)+ e). The fourth column shows the MAP estimate (24) using the approx-
imation error modely = A(x,ξ0)+ ε2(ξ )+e where the approximation errorε2 due to poorly
known locations is taken into account.

Finally, the fifth and sixth row in Fig. 2 show a case where both, optode coupling and lo-
cations, are poorly known. The simulated measurement data was generated by drawing re-
alizations ofξ and ζ from the their prior models using the parameters in the first row of
Table 3.2 and then the data was computed asy = A(x,ξ ) + ε1(ζ ) + e. The third column
shows the conventional MAP estimate (19) using the inexact fixed realizations(ξ0,ζ0), where
ξ0 correspond to equispaced locations andζ0 to ideal coupling (i.e., measurement model
y = A(x,ξ0) +e). The fourth column shows the MAP estimate (24) using the approximation
error modely= A(x,ξ0)+ ε1+ ε2+ewhere both approximation errors are taken into account.

Evidently, as can be seen from the third column in Fig. 2, the conventional MAP estimates
contain errors and distortions when optode coupling, optode locations or both are inaccurately
known. Notice that the errors are especially severe in the absorption images, which is usually the
parameter of main interest in medical applications. The MAP estimates with the approximation
error model are basically free of these artefacts in all three situations and very similar to the
reference MAP estimates in the second column that are conventional estimates in the ideal
case that optode coupling and locations are exactly known. Thus, the reconstruction errors
due to modeling errors in optode coupling and locations were efficiently removed using the
approximation error approach.

To study the performance of the approximation error model in the ideal case when there
are no actual modelling errors present in the data, we computed the reconstructions with the
approximation error model from the data that was used for computing the reference reconstruc-
tion in the second column of Fig. 2. The reconstructions are shown in Fig. 3. The first column
shows the estimate using the pure optode coupling error modely= A(x,ξ )+ ε1+e, the second

#189942 - $15.00 USD Received 2 May 2013; revised 25 Jul 2013; accepted 29 Aug 2013; published 6 Sep 2013
(C) 2013 OSA 1 October 2013 | Vol. 4,  No. 10 | DOI:10.1364/BOE.4.002015 | BIOMEDICAL OPTICS EXPRESS  2027



0   

0.02

0

2

0   

0.02

0

2

0   

0.02

0

2

AEMCEMCEM
Target n = e n=e+ε

1

n=e+ε
2

n=e+ε
1
+ε

2

Fig. 2. From left: (a) First column: Target optical properties (top: scattering, bottom: ab-
sorption coefficients). (b) Second column: Reconstructions using CEM with no modeling
errors (tCPU = 431s). (c) Third column: Reconstructions using CEM with incorrect optode
coupling coefficients (rows 1 and 2,tCPU = 514s), incorrect optode locations (rows 3 and
4, tCPU = 677s) and a combination of these both (rows 5 and 6,tCPU = 2321s). (d) Fourth
column: Reconstructions using AEM with incorrect optode coupling coefficient (tCPU =
490s), optode locations (tCPU = 519s) and a combination of these both (tCPU = 500s).
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column shows the reconstruction using the optode location error modely=A(x,ξ0)+ε2(ξ )+e
and the third column show the estimate with the combined coupling and location error model
y= A(x,ξ0)+ ε1+ ε2+e. As can be seen, the approximation error model estimates are similar
to the reference estimate in the second column of Fig. 2, which corresponds to correct noise
model in this case. The difference in the estimates against the reference estimate is slightly
larger in the cases of optode coupling error model and combined model than in the pure optode
location error model. This discrepancy arises from the selection of the prior models for the op-
tode coupling parameters; with the prior models used in the present case, the mean of optode
coupling errorε1 is non-zero and consequently the noise realizationn = e+ ε1 with ε1 = 0
has relatively low probability density with respect the actual noise model. The results indicate
that the approximation error model performs also robustly in the ideal case when there are no
optode coupling or location errors present in the measurement data.

0   

0.02

0

2

n = ε
1
 + e n = ε

2
 + e n = ε

1
 + ε

2
 + e

Fig. 3. Reconstructions using approximation error model when no modelling errors are
present. Top: absorption, Bottom: scattering. First column: reconstructions using pure op-
tode coupling approximation error model (y = A(x,ξ ) + ε1 + e). Second column: recon-
structions using optode location approximation error model (y = A(x,ξ0) + ε2(ξ ) + e).
Third column: reconstructions using combined optode coupling and location approxima-
tion error model (y= A(x,ξ0)+ ε1+ ε2+e).

The CPU times for the estimates in Fig. 2 are listed the figure caption. The reference esti-
mate in the second column corresponding to the ideal case of no modelling errors present has
the shortesttCPU of all the estimates. However, the computation times of the AEM estimates in
the fourth column are only moderately longer than in the ideal case. More importantly, com-
paring the computation times of the CEM estimates and AEM estimates in the third and fourth
columns, the AEM estimate has shorter computation time than the CEM estimate in all three
cases. This arises from faster convergence of the minimization when the noise model that is
employed in the MAP functional is more realistic.

3.4. Case 2: Magnitude of errors in(ζ ,ξ ) and sensitivity with respect the prior model

In the first test case, we used the same prior modelsπ(ζ ) andπ(ξ ) for estimation of the ap-
proximation error statistics and drawing the realizations ofζ andξ that were used in simulating
the measurement data with optode coupling or/and location errors. Basically, this case corre-
sponds to a situation in which we know the actual prior probability distribution of the nuisance
parameters. To investigate the impact of incorrect prior models of(ζ ,ξ ) and how large errors
the approximation error approach can tolerate in these parameters, we performed a test case
where we simulated measurement data and constructed the approximation error statistics for
ε1 andε2 using the four different uniform prior distributions that are listed in Table 3.2. The

#189942 - $15.00 USD Received 2 May 2013; revised 25 Jul 2013; accepted 29 Aug 2013; published 6 Sep 2013
(C) 2013 OSA 1 October 2013 | Vol. 4,  No. 10 | DOI:10.1364/BOE.4.002015 | BIOMEDICAL OPTICS EXPRESS  2029



results for the case of optode coupling errors are shown in Fig. 4 and for the case of optode
location errors in Fig. 5. Both of these figures show a 4×4 table of MAP estimates (24) with
the approximation error model such that in each image pair the left image showsµa and the
right image showsµs. The support of the uniform prior models that were used for estimation of
the approximation error statistics grows wider column wise from left to right and the support
of the uniform prior that were used in the simulation of the measurement data increases from
top to bottom. In the estimates indicated with small arrows the approximation error was trained
with the same prior distribution that was used in the simulation of the measurement data, i.e.,
the image pairs on the diagonal of the 4×4 table correspond to the case that the actual prior
distribution ofζ or ξ is known. We can see that using a prior that has a too restricted (too nar-
row) support compared to the actual distribution of the optode parameters leads to less efficient
recovery from the modeling errors. However, training the approximation error statistics with
a wider prior model than the actual distribution of the uncertainly known parameter does not
seem to lead to deterioration in the recovery from the modeling error. Thus, we can say that it
is safe to overestimate the uncertainty (up to a limit).
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Fig. 4. AEM reconstructions using different optode coupling coefficient errors. In each of
the image pairs,µa is on the left andµs on the right. The data at each of the four rows was
generated using the different prior distributions given in Table 1. The AE statistics at each
of the four columns was trained using the prior distributions in Table 1. The arrows denote
pairs(µa,µs) where the approximation error statistics was trained using the same prior that
was used in simulation of the data with optode coupling errors.

When the magnitude of the errors were incremented from the largest values used in Figures 4
and 5, the recovery from the errors started to deteriorate gradually. However, the approximation
error model was still able to give partial recovery even in the rather extreme case of having
coupling errors randomly drawn fromsi ,d j ∼ U(0,1.5) for the amplitude (zero corresponds to
complete coupling failure!), and phase errors drawn fromδi ,η j ∼ U(0,3π), and location errors
drawn fromδθ ∼ U(−20◦,+20◦).

4. Conclusion

We have shown the feasibility of the approximation error approach for recovery from recon-
struction artifacts caused by unknown source and detector optode coupling and positions. The
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Fig. 5. AEM reconstructions using different optode position errors. In each of the image
pairs,µa is on the left andµs on the right. The data at each of the four rows was generated
using the prior distributions given in Table 1. The AE statistics in each of the four columns
was trained using the prior distributions given in Table 1. The arrows denote pairs(µa,µs)
where the approximation error statistics was trained using the same prior distibution that
was used in simulation of the data with misplaced optodes.

approach was tested with 2D simulations with various coupling and position errors. The re-
sults show that the approximation error approach can recover from pure and combined optode
coupling and location errors. We also studied the performance using different magnitude of the
errors and sensitivity with respect the specification of the prior model in the estimation of the
approximation error statistics. The approach is robust for reasonably large range of errors as
long as the prior model in the construction of the error model does not correspond to a too
optimistic assumptions on the actual uncertainty related to the marginalized variables, in this
paper, the optode locations and the coupling coefficients. Based on these results, we suggest
that the approximation error approach could provide an efficient modeling protocol in practical
cases where the optode coupling and locations are poorly known.
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