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Abstract: With the emergence of diffuse optical tomography (DOT) as
a non-invasive imaging modality, there is a requirement to evaluate the
performance of the developed DOT systems on clinically relevant tasks.
One such important task is the detection of high-absorption signals in
the tissue. To investigate signal detectability in DOT systems for system
optimization, an appropriate approach is to use the Bayesian ideal observer,
but this observer is computationally very intensive. It has been shown that
the Fisher information can be used as a surrogate figure of merit (SFoM)
that approximates the ideal observer performance. In this paper, we present
a theoretical framework to use the Fisher information for investigating
signal detectability in DOT systems. The usage of Fisher information
requires evaluating the gradient of the photon distribution function with
respect to the absorption coefficients. We derive the expressions to compute
the gradient of the photon distribution function with respect to the scattering
and absorption coefficients. We find that computing these gradients simply
requires executing the radiative transport equation with a different source
term. We then demonstrate the application of the SFoM to investigate signal
detectability in DOT by performing various simulation studies, which help
to validate the proposed framework and also present some insights on signal
detectability in DOT.

© 2013 Optical Society of America

OCIS codes: (110.3000) Image quality assessment; (110.3055) Information theoretical analy-
sis; (110.7050) Turbid media; (170.3880) Medical and biological imaging.

References and links
1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.

50, 1–43 (2005).
2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the

body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
3. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Tran. A. Math. Phys. Eng. Sci. 367, 3055–3072

(2009).
4. H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical modelling and image reconstruction in

diffuse optical tomography,” Phil. Trans. Royal Soc. A 367, 3073–3093 (2009).
5. H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared

tomography of the breast: initial simulation, phantom, and clinical results,” App. Optics 42, 135–146 (2003).
6. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack,

and K. D. Paulsen, “In vivo hemoglobin and water concentrations, oxygen saturation, and scattering estimates
from near-infrared breast tomography using spectral reconstruction,” Acad. Radiol. 13, 195–202 (2006).

#192172 - $15.00 USD Received 12 Jun 2013; revised 21 Aug 2013; accepted 26 Aug 2013; published 9 Sep 2013
(C) 2013 OSA 1 October 2013 | Vol. 4,  No. 10 | DOI:10.1364/BOE.4.002107 | BIOMEDICAL OPTICS EXPRESS  2107



7. T. Austin, A. P. Gibson, G. Branco, R. M. Yusof, S. R. Arridge, J. H. Meek, J. S. Wyatt, D. T. Delpy, and
J. C. Hebden, “Three dimensional optical imaging of blood volume and oxygenation in the neonatal brain,”
Neuroimage 31, 1426–1433 (2006).

8. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human
visual cortex with high-density diffuse optical tomography,” Proc. Nat. Acad. Sciences 104, 12169–12174 (2007).

9. A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal
laser optical tomography for imaging of rheumatoid finger joints,” Phys. Med. Biol. 49, 1147–1163 (2004).

10. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opinion in Biotech. 16, 79–88 (2005).
11. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H.

Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mam-
mography,” Appl. Opt. 42, 5181–5190 (2003).

12. X. Intes, J. Yu, A. Yodh, and B. Chance, “Development and evaluation of a multi-wavelength multi-channel
time resolved optical instrument for NIR/MRI mammography co-registration,” in “Proceedings of the IEEE 28th
Annual Northeast Bioengineering Conference,” (2002), pp. 91–92.

13. G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT)
and MRI system for cancer imaging in small animals,” Tech. Cancer Res. Treatment 5, 351–363 (2006).

14. N. Biswal, Y. Xu, and Q. Zhu, “Imaging tumor oxyhemoglobin and deoxyhemoglobin concentrations with
ultrasound-guided diffuse optical tomography.” Tech. Cancer Res. Treatment 10, 417 (2011).

15. S. van de Ven, S. Elias, A. Wiethoff, M. van der Voort, A. Leproux, T. Nielsen, B. Brendel, L. Bakker, M. van der
Mark, W. Mali, and P. Luijten, “Diffuse optical tomography of the breast: initial validation in benign cysts,” Mol.
Imaging Biol. 11, 64–70 (2009).

16. B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods
for diffuse optical tomography,” J. Biomed. Opt. 11, 33001 (2006).

17. V. C. Kavuri, Z. J. Lin, F. Tian, and H. Liu, “Sparsity enhanced spatial resolution and depth localization in diffuse
optical tomography,” Biomed. Opt. Express 3, 943–957 (2012).

18. H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse
optical tomography with depth compensation algorithm,” J. Biomed Opt. 15, 046005 (2010).

19. D. Kang and M. A. Kupinski, “Signal detectability in diffusive media using phased arrays in conjunction with
detector arrays,” Opt. Express 19, 12261–12274 (2011).

20. S. P. Morgan, “Detection performance of a diffusive wave phased array,” Appl. Opt. 43, 2071–2078 (2004).
21. Y. Chen, C. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing

heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9, 212–224 (2001).
22. S. Morgan and K. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express

7, 540–546 (2000).
23. J. P. Culver, A. M. Siegel, J. J. Stott, and D. A. Boas, “Volumetric diffuse optical tomography of brain activity,”

Opt. Lett. 28, 2061–2063 (2003).
24. H. Niu, P. Guo, X. Song, and T. Jiang, “Improving depth resolution of diffuse optical tomography with an expo-

nential adjustment method based on maximum singular value of layered sensitivity,” Chin. Opt. Lett. 6, 886–888
(2008).

25. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004), 1st ed.
26. F. Shen and E. Clarkson, “Using Fisher information to approximate ideal-observer performance on detection

tasks for lumpy-background images,” J. Opt. Soc. Am. A 23, 2406–2414 (2006).
27. E. Clarkson and F. Shen, “Fisher information and surrogate figures of merit for the task-based assessment of

image quality,” J. Opt. Soc. Am. A 27, 2313–2326 (2010).
28. Y. Zhan, A. T. Eggebrecht, J. P. Culver, and H. Dehghani, “Image quality analysis of high-density diffuse optical

tomography incorporating a subject-specific head model,” Front Neuroenergetics 4, 6 (2012).
29. R. Ziegler, B. Brendel, A. Schipper, R. Harbers, M. v. Beek, H. Rinneberg, and T. Nielsen, “Investigation of

detection limits for diffuse optical tomography systems: I. Theory and experiment,” Phys. Med. Biol. 54, 399–
412 (2009).

30. R. Ziegler, B. Brendel, H. Rinneberg, and T. Nielsen, “Investigation of detection limits for diffuse optical to-
mography systems: II. Analysis of slab and cup geometry for breast imaging,” Phys. Med. Biol. 54, 413–431
(2009).

31. S. Young, M. A. Kupinski, and A. K. Jha, “Estimating signal detectability in a model diffuse optical imaging
system,” in “Biomedical Optics,” (Optical Society of America, 2010), p. BSuD26.

32. A. K. Jha, M. A. Kupinski, T. Masumura, E. Clarkson, A. A. Maslov, and H. H. Barrett, “Simulating photon-
transport in uniform media using the radiative transfer equation: A study using the Neumann-series approach,” J.
Opt. Soc. Amer. A 29, 1741–1757 (2012).

33. A. K. Jha, M. A. Kupinski, H. H. Barrett, E. Clarkson, and J. H. Hartman, “Three-dimensional Neumann-series
approach to model light transport in nonuniform media,” J. Opt. Soc. Am. A 29, 1885–1899 (2012).

34. V. Toronov, E. D’Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, “Optimization of the signal-to-noise
ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain,” Opt. Express
11, 2717–2729 (2003).

#192172 - $15.00 USD Received 12 Jun 2013; revised 21 Aug 2013; accepted 26 Aug 2013; published 9 Sep 2013
(C) 2013 OSA 1 October 2013 | Vol. 4,  No. 10 | DOI:10.1364/BOE.4.002107 | BIOMEDICAL OPTICS EXPRESS  2108



35. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
36. M. Chu, K. Vishwanath, A. D. Klose, and H. Dehghani, “Light transport in biological tissue using three-

dimensional frequency-domain simplified spherical harmonics equations,” Phys. Med. Biol. 54, 2493–2509
(2009).

37. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Hybrid radiative-transfer-diffusion model for
optical tomography,” Appl. Opt. 44, 876–886 (2005).

38. T. Spott and L. O. Svaasand, “Collimated light sources in the diffusion approximation,” Appl. Opt. 39, 6453–6465
(2000).

39. Z. Q. Zhang, I. P. Jones, H. P. Schriemer, J. H. Page, D. A. Weitz, and P. Sheng, “Wave transport in random
media: the ballistic to diffusive transition,” Phys. Rev. E 60, 4843–4850 (1999).

40. E. Aydin, C. de Oliveira, and A. Goddard, “A finite element-spherical harmonics radiation transport model for
photon migration in turbid media,” J. Quant. Spectr. Rad. Trans. 84, 247–260 (2004).

41. A. Klose and E. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equa-
tions,” J. Comput. Phys. 220, 441–470 (2006).

42. A. H. Hielscher and R. E. Alcouffe, “Discrete-ordinate transport simulations of light propagation in highly for-
ward scattering heterogeneous media,” in “Advances in Optical Imaging and Photon Migration,” (Optical Society
of America, 1998), p. ATuC2.

43. S. R. Arridge and W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23,
882–884 (1998).

44. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon
transport in tissue,” Med. Phys. 20, 299–309 (1993).

45. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics
processing units,” Opt. Express 17, 20178–20190 (2009).

46. M. A. Kupinski, E. Clarkson, K. Gross, and J. W. Hoppin, “Optimizing imaging hardware for estimation tasks,”
in “Proc. SPIE Medical Imaging,” (2003), pp. 309–313.

47. A. K. Jha, “Retrieving Information from Scattered Photons in Medical Imaging,” Ph.D. thesis, College of Optical
Sciences, University of Arizona, Tucson, AZ, USA (2013).

48. B. W. Miller, “High-Resolution Gamma-Ray Imaging with Columnar Scintillators,” Ph.D. thesis, College of
Optical Sciences, University of Arizona, Tucson, AZ, USA (2011).

1. Introduction

Diffuse optical tomography (DOT) is emerging as a novel non-invasive medical imaging modal-
ity. The objective in DOT is to probe the tissue with near-infrared (NIR) light to determine the
absorption and scattering properties of the tissue, which can then be used by the physicians for
patient diagnosis [1–4]. DOT has found applications in breast-cancer detection and character-
ization [5, 6], in functional brain imaging [7, 8], in imaging of small joints for early diagnosis
of rheumatoid arthritis [9], and in small-animal imaging for studying physiological processes
and pathologies [10]. Many research groups are engaged in designing novel DOT imaging sys-
tems [11–14], and thus there is a requirement for methods to assess the performance of these
systems in clinically relevant tasks [15, 16]. One such important task in DOT is the detection
of absorptive heterogeneous regions, which we refer to as the signal, within the tissue. In DOT,
often the anomalous regions are distinguished by a higher absorption coefficient compared to
the rest of the tissue [17–22]. However, the sensitivity of diffuse-light measurements drops off
quickly with penetration depth due to the high scattering in the tissue, which leads to poor
depth resolution in DOT [23,24]. Thus, an important design parameter for a DOT system is the
signal detectability provided by the system at larger penetration depth. Similarly, the variation
in signal detectability as a function of the signal size and contrast are also important design
parameters.

To investigate signal detectability in DOT for system optimization, an appropriate method
is to compute the performance of the Bayesian ideal observer on the task of detecting the
signal in the tissue [25, 26]. The Bayesian ideal observer uses the likelihood ratio to compute
a test statistic from the image data and compares it against a threshold. This observer uses all
information available to make decisions, and is optimized by several criteria. For example, the
ideal observer maximizes the area under the receiver operating characteristic (ROC) curve, a
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quantity also known as the area under curve (AUC). Moreover, the ideal observer uses the raw
data, and does not suffer from information loss due to the reconstruction process. However,
determining the AUC of an ideal observer is often computationally complex [19, 26]. Thus, an
approximation to the AUC of the ideal observer that is faster to compute can be very useful for
image quality studies.

The use of Fisher information to determine the information content of measured data when
performing an estimation task is quite well established [25]. For a given estimation task, the
inverse of the Fisher information matrix (FIM) gives the Cramér-Rao bound (CRB), which is
a lower bound on the variance of any unbiased estimator that processes the measured data.
More recently, it has been also shown that when we are trying to detect a small change in the
vector parameter of a parametrized family of probability distribution functions (PDFs), there
is a connection between the Fisher information and the performance of the ideal observer on a
detection task, as measured by the AUC [26, 27]. Therefore, the Fisher information can serve
as a useful surrogate figure of merit (SFoM) that approximates ideal observer performance in
detection tasks. In this paper, our objective is to demonstrate the usage of Fisher information
as a SFoM to evaluate signal detectability in DOT. An important quantity required to evaluate
the Fisher information in DOT is the gradient of the photon distribution function with respect
to the absorption coefficient. We will derive an analytic expression for this purpose, along with
an analytic expression for the gradient of the photon distribution function with respect to the
scattering coefficient. These derived analytic expressions can also be used to perform image
reconstruction in DOT using gradient-based reconstruction schemes.

Currently most methods to evaluate DOT systems or investigate signal detectability in DOT
systems do not use observer studies [16]. Metrics such as contrast-to-noise ratio (CNR) and
positional errors (PE) [17, 18, 24, 28] have been used to evaluate the performance of depth
resolution provided by DOT reconstruction algorithms. The PE metric quantifies the error in
locating a signal, while the CNR gives a measure of the whether the object can be detected
from the background. These metrics are not ideal to investigate signal detectability for DOT
system optimization since they require a reconstruction step that often leads to information
loss from the acquired data. Ziegler et al. [29, 30] have devised a statistical method to use raw
data to evaluate DOT systems, but their method essentially just gives us one point on the ROC
curve, and therefore is not comprehensive. A probabilistic detection theory has been devised
by Morgan et al. [20], which evaluates the detection performance of a system based on the area
of overlap of the signal present and signal absent PDFs of the data. However, this approach
is not suitable for multidimensional data, since it is very complicated to compute area under
multidimensional PDFs, and often, different components of the data vector contribute different
weights to the final test statistic that is used to make a decision about the presence of the
signal. There have been previous studies on using Hotelling observers to evaluate various DOT
system configurations [19, 31].However, a framework to evaluate signal detectability in DOT
systems using ideal observers has not been proposed. It is the objective of this paper to present
a framework that uses the ideal observer, using a easier-to-compute SFoM, to evaluate signal
detectability in DOT. We first derive the framework to evaluate detectability for a general DOT
setup. Using software to simulate photon propagation developed by our research group [32,33],
we present the implementation of the proposed method for a specific test DOT system. We then
demonstrate the application of the derived framework to investigate signal detectability in this
DOT system for some simple signal known exactly/background known exactly (SKE/BKE)
tasks.
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2. Methods

2.1. Relation between signal detectability and Fisher information in DOT

In this section, we will analyze the relation between signal detectability and Fisher informa-
tion for a general diffuse optical imaging setup. Let us consider a DOT setup with M detector
elements. Let the flux measured by the mth detector element be denoted by gm, and the image
acquired using the M detector elements by the M-dimensional vector g. Let us also denote the
signal-absent and the signal-present hypothesis by H0 and H1, respectively. The objective in the
detection task is to determine if g is a sample from the signal-absent PDF, denoted by pr(g|H0),
or the signal-present PDF, denoted by pr(g|H1). The Bayesian ideal observer performs this task
by evaluating the likelihood ratio t(g) and comparing it to a threshold. The likelihood ratio t(g)
is given by

t(g) =
pr(g|H1)

pr(g|H0)
. (1)

To use this observer in the DOT context, let us denote the absorption and scattering coefficients
at location r by μa(r) and μs(r), respectively. We discreteize this functions using a certain
spatial basis with basis functions given by φn(r). The representation of the absorption and
scattering functions in this basis is given by

μa(r) =
N

∑
n=1

μa,nφn(r), (2)

μs(r) =
N

∑
n=1

μs,nφn(r), (3)

where μa,n and μs,n denote the absorption and scattering coefficients in the considered spatial
basis. These basis functions could be the commonly used voxel basis functions. However, we
are not placing any restriction on the spatial support of these basis functions. The basis function
could in fact represent the support of different anatomical structures in the tissue, where a given
anatomical structure is characterized by the same absorption and scattering coefficient. It must
be pointed out that in general, the equality in Eqs. (2) and (3) holds in the limit of having an
infinite number of basis functions, since we are approximating a continuous function by a finite
basis set. Let us denote the N-dimensional vector of the absorption coefficients by μaμaμa and the
vector of scattering coefficients by μsμsμs. For notational simplicity, let us denote μμμ = {μaμaμa,μsμsμs}.
Also, again for notational simplicity, we define a general coefficient function μ(r) that denotes
the absorption/scattering coefficient at location r. The representation of this general coefficient
function in the spatial basis is given by

μ(r) =
N

∑
n=1

μnφn(r), (4)

where μn denotes the absorption/scattering coefficients in the considered spatial basis.
In the detection task we consider, the signal-present hypothesis is distinguished from the

signal-absent hypothesis by a small change in the parameter vector μμμ . For the signal-present
hypothesis H1 and signal-absent hypothesis H0, the parameter vectors have value μμμ and μμμ0,
respectively. Thus, using Eq. (1), the likelihood ratio is given by

tμμμ(g) =
pr(g|μμμ)
pr(g|μμμ0)

. (5)

To relate the ideal-observer AUC with the Fisher information, we apply the general framework
proposed in Clarkson et al. [27]. We first define a detectability parameter, which is related to
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the ideal-observer AUC as [26]

AUC(μμμ) =
1
2

[
1+ erf

(
d(μμμ)

2

)]
, (6)

where the ideal-observer AUC and detectability when the parameter vector is μμμ are denoted
by AUC(μμμ) and d(μμμ), respectively. When the change between μμμ and μμμ0 is small, we obtain a
second-order approximation to the square of the detectability [27]:

d2(μμμ)∼= (μμμ −μμμ0)
†FFF(μμμ0)(μμμ −μμμ0), (7)

where FFF(μμμ0) denotes the FIM evaluated at μμμ0. Therefore, the detectability, and consequently
the AUC for an ideal observer trying to detect a small change in μμμ , is directly related to the
Fisher information evaluated at μμμ0. We describe the procedure to compute the elements of the
FIM in the next section.

We would like to mention here that in DOT, often the relative change in absorption coeffi-
cient between signal and background could be relatively large, due to the very low value of the
absorption coefficient in the background. However, this change in absorption coefficient still
translates to a very small change in the final image since the absorption coefficient is generally
much lower than the scattering coefficient, and always appears in conjunction with the scatte-
ring coefficient in the equation that describes light propagation in tissue. Thus, even when the
relative change between the background and signal absorption coefficient values is high, when
added with the scattering coefficient, this change is relatively low. As we have also verified,
even a large relative change in the value of the absorption coefficient does not cause a signifi-
cant relative change in the final image. Therefore, the framework that we suggest is valid even
for a relatively large change in the absorption coefficient between the signal and the rest of the
tissue.

2.2. Computing the Fisher information

To compute the elements of the FIM, we must first obtain the likelihood of the image data as
a function of the scattering and absorption coefficient vectors. The major noise source in DOT
is often the Poisson-distributed shot noise [19,34]. Let ḡm(μμμ) denote the noiseless mean image
data as a function of the scattering and absorption coefficient vectors μμμ = {μsμsμs,μaμaμa}. Since the
Poisson noise in individual detector elements is independent of each other, the PDF for the
acquired image data g in our DOT setup is given by

pr(g|μμμ) =
M

∏
m=1

[ḡm(μμμ)]gm exp[−ḡm(μμμ)]
gm!

. (8)

Taking the logarithm on both sides, we get the log-likelihood of the image data, which we
denote by L(ḡ|μμμ), as

L(ḡ|μμμ) = logpr(g|μμμ) =
M

∑
m=1

gm log ḡm(μμμ)− ḡm(μμμ)− log(gm!). (9)

The (i, j)th element of the FIM FFF(μμμ) is given by [25]

Fi j(μμμ) =−
〈

∂ 2L

∂ μ j∂ μi

〉
g|μμμ

, (10)
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where angled brackets denote statistical expectations, and where μi denotes the ith absorp-
tion/scattering coefficient as defined in Eq. (4). To obtain the elements of the FIM, we take the
derivative of the log-likelihood (Eq. (9)) with respect to the coefficient μi. This yields

∂L
∂ μi

=
M

∑
m=1

(
gm

ḡm(μμμ)
−1

)
∂ ḡm(μμμ)

∂ μi
. (11)

Further taking the derivative of the above expression with respect to μ j, we get

∂ 2L

∂ μ j∂ μi
=

M

∑
m=1

(
− gm

ḡm(μμμ)2

∂ ḡm(μμμ)
∂ μ j

)
∂ ḡm(μμμ)

∂ μi
+

(
gm

ḡm(μμμ)
−1

)
∂ 2ḡm(μμμ)
∂ μ j∂ μi

. (12)

Averaging the above expression over g and using Eq. (10), we obtain

Fi j(μμμ) =−
〈

∂ 2L

∂ μ j∂ μi

〉
g|μμμ

=
M

∑
m=1

1
ḡm(μμμ)

∂ ḡm(μμμ)
∂ μ j

∂ ḡm(μμμ)
∂ μi

, (13)

since 〈gm〉g|μμμ = ḡm(μμμ). We observe that to evaluate the elements of the FIM, we have to evaluate
the gradient of the mean image data with respect to the absorption and scattering coefficients.
This is the topic of the next section.

2.3. Evaluating the gradient of the mean image data

To evaluate the gradient of the mean image data, we have developed an analytic expression
based on the integral form of the radiative transport equation (RTE), which is the equation used
to describe photon propagation through any media. The fundamental radiometric quantity that
we describe using the RTE is the photon distribution function w(r, ŝ,E, t). In terms of pho-
tons, w(r, ŝ,E, t)ΔVΔΩΔE can be interpreted as the number of photons contained in volume ΔV
centered on the 3D position vector r = (x,y,z), traveling in a solid angle ΔΩ about direction
ŝ = (θ ,φ), and having energies between E and E+ΔE at time t. Another radiometric quantity
required to describe the RTE is the emission function Ξ(r, ŝ,E, t). Like the distribution function,
Ξ(r, ŝ,E, t)ΔVΔΩΔE can be interpreted as the number of photons injected per second into vol-
ume ΔV in energy range ΔE, over solid angle ΔΩ, and at time t. In the DOT implementation, we
assume a mono-energetic time-independent emission source, so that the emission function can
be written as Ξ(r, ŝ). Also, the dominant scattering mechanism in DOT is elastic scattering and
the scattered photon does not lose any energy. Since there is no other energy-loss mechanism
for the photons, we can completely drop the dependence of the distribution function on energy.
Also, since we consider a time-independent emission source, the dependence of the distribution
function on time is also dropped, and we write the distribution function as w(r, ŝ).

LetKKK andXXX denote the scattering and attenuation operators in integral form, which represent
the effect of scattering, and the effect of attenuation and propagation of photons, respectively.
The effect of the scattering operator KKK on the distribution function is given by [25]

[KKKw](r, ŝ) = μs(r)cm

∫
4π

dΩ′p(ŝ, ŝ′|r)w(r, ŝ′), (14)

where cm denote the speed of light in the medium, ŝ and ŝ′ denote the direction of the outgoing
and incoming photons, respectively, and p(ŝ, ŝ′|r) denotes the scattering phase function, which
in biological tissue is typically given by the Henyey-Greenstein function [35, 36]:

p(ŝ, ŝ′|r) = 1
4π

{
1−α2

[1+α2 −2α cos(ŝ · ŝ′)]3/2

}
, (15)
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where the anisotropy factor α characterizes the angular distribution of scattering in the tissue.
The attenuation operator XXX is the standard attenuated X-ray transform, and its effect on the
distribution function is given by [25]

[XXXw](r, ŝ) =
1

cm

∫ ∞

0
dlw(r− ŝl, ŝ)exp

[
−
∫ l

0
dl′μtot(r− ŝl′)

]
, (16)

where μtot(r) = μa(r)+μs(r) is the total attenuation coefficient. In terms of the defined atten-
uation and scattering operators, for a mono-energetic time-independent source Ξ(r, ŝ), the RTE
can be written as [25, 32]

w =XXXΞ+XXXKKKw. (17)

To evaluate the gradient of the mean image with respect to the nth absorption/scattering
coefficient μn, we note that ḡm(μμμ) is computed as

ḡm(μμμ) =
∫

d3r
∫

dΩ hm(r, ŝ)w(r, ŝ), (18)

where hm(r, ŝ) denotes the sensitivity of the mth detector pixel to the distribution function. We
can write the above equation in inner product notation as

ḡm(μμμ) = (hm,w). (19)

Taking the gradient of ḡm(μμμ) with respect to μn, we get

∂ ḡm(μμμ)
∂ μn

=

(
hm,

∂w
∂ μn

)
. (20)

Thus, to evaluate the gradient of the mean image data, we have to evaluate the gradient of the
distribution function with respect to μn. Using Eq. (17), we can write the expression for this
gradient as

∂w
∂ μn

=
∂XXX
∂ μn

Ξ+
∂XXX
∂ μn

KKKw+XXX
∂KKK
∂ μn

w+XXXKKK
∂w
∂ μn

. (21)

Of the four terms in the above equation, the first two terms can be considered as a new oper-
ator ∂XXX

∂ μn
acting on another distribution function. Let us evaluate the first term. We know from

Eq. (16) that the effect of the attenuated X-ray transform on the source function is given by

[XXXΞ](r, ŝ) =
1

cm

∫ ∞

0
dl Ξ(r− ŝl, ŝ)exp

[
−
∫ l

0
dl′μtot(r− ŝl′)

]
. (22)

Note that

μtot(r) = μs(r)+μa(r)

=
N

∑
n=1

(μs,n +μa,n)φn(r), (23)

where in the last step, we have used Eqs. (2) and (3). Using the above representation and taking
the derivative of Eq. (22) with respect to μn, where as mentioned earlier, μn could denote the
absorption/scattering coefficient, we get

∂XXX
∂ μn

Ξ(r, ŝ) =− 1
cm

∫ ∞

0
dl Ξ(r− ŝl, ŝ)exp

[
−
∫ l

0
dl′μtot(r− ŝl′)

][∫ l

0
dl′′φn(r− ŝl′′)

]
. (24)
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Defining the step function

step(l) =

{
0, l < 0,

1,otherwise,
(25)

we can rewrite the integral over l′′ in Eq. (24) as

∂XXX
∂ μn

Ξ(r, ŝ) =− 1
cm

×
∫ ∞

0
dl Ξ(r− ŝl, ŝ)exp

[
−
∫ l

0
dl′μtot(r− ŝl′)

][∫ ∞

0
dl′′[step(l′′)− step(l′′ − l)]φn(r− ŝl′′)

]

=− 1
cm

∫ ∞

0
dl

∫ ∞

0
dl′′[step(l′′)− step(l′′ − l)]φn(r− ŝl′′)Ξ(r− ŝl, ŝ)exp

[
−
∫ l

0
dl′μtot(r− ŝl′)

]
,

(26)

where in the second step, we have done a simple rearrangement of terms. Interchanging the
order of integration, we obtain

∂XXX
∂ μn

Ξ(r, ŝ)

=− 1
cm

∫ ∞

0
dl′′φn(r− ŝl′′)

∫ ∞

0
dl[step(l′′)− step(l′′ − l)]Ξ(r− ŝl, ŝ)exp

[
−
∫ l

0
dl′μtot(r− ŝl′)

]

=− 1
cm

∫ ∞

0
dl′′φn(r− ŝl′′)

∫ ∞

l′′
dlΞ(r− ŝl, ŝ)exp

[
−
∫ l

0
dl′μtot(r− ŝl′)

]
, (27)

where in the second step, we use the fact that as l′′ varies from 0 to ∞, step(l′′) = 1, and that
1 − step(l′′ − 1) exists only when l > l′′. Splitting the exponential integral over l′ into two
parts, we get

∂XXX
∂ μn

Ξ(r, ŝ) =− 1
cm

×
∫ ∞

0
dl′′φn(r− ŝl′′)exp

[
−
∫ l′′

0
dl′μtot(r− ŝl′)

]∫ ∞

l′′
dlΞ(r− ŝl, ŝ)exp

[
−
∫ l

l′′
dl′μtot(r− ŝl′)dl′

]
.

(28)

This equation is now starting to resemble another attenuation transform, except for the integral
over l. Simplifying this integral further by replacing l− l′′ by l̃, we get

∫ ∞

l′′
dlΞ(r− ŝl, ŝ)exp

[
−
∫ l

l′′
dl′μtot(r− ŝl′)

]

=
∫ ∞

0
dl̃Ξ(r− ŝl′′ − ŝl̃, ŝ)exp

[
−
∫ l′′+l̃

l′′
dl′μtot(r− ŝl′)

]

=
∫ ∞

0
dl̃Ξ(r− ŝl′′ − ŝl̃, ŝ)exp

[
−
∫ l̃

0
dl̂μtot(r− ŝl′′ − ŝl̂)

]
, (29)

where in the last step, we do another change of variables in the integral over l′ by replacing
l′ − l′′ by l̂. We recognize that the last term is very similar to the attenuated X-ray transform.
More precisely, using Eq. (16)

∫ ∞

0
dl̃Ξ(r− ŝl′′ − ŝl̃, ŝ)exp

[
−
∫ l̃

0
dl̂μtot(r− ŝl′′ − ŝl̂)

]
= cm[XXXΞ](r− ŝl′′, ŝ). (30)
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Substituting this in Eq. (28), we get

∂XXX
∂ μn

Ξ(r, ŝ) =− 1
cm

∫ ∞

0
dl′′φn(r− ŝl′′)cm{[XXXΞ](r− ŝl′′, ŝ)}exp

[
−
∫ l′′

0
dl′μtot(r− ŝl′)

]
, (31)

which, using Eq. (16), can be written in operator notation as

∂XXX
∂ μn

Ξ =−cmXXX(φnXXXΞ). (32)

This gives the first term in Eq. (21). The second term in Eq. (21) is very similar to the first term,
and can be written as

∂XXX
∂ μn

KKKw =−cmXXX(φnXXXKKKw). (33)

Using Eqs. (32) and (33) we get

∂XXX
∂ μn

Ξ+
∂XXX
∂ μn

KKKw =−cmXXX[φn(XXXΞ+XXXKKKw)]

=−cmXXX(φnw), (34)

where in the second step, we have used Eq. (17).
The third term in Eq. (21) involves a gradient of the scattering operator. Evaluating this

gradient is easy, since the scattering operator, given by Eq. (14), is linear in μs. Using Eq. (4),
the gradient of the scattering operator is obtained as

∂KKK
∂ μn

w =
∂

∂ μn
cmμs(r)

∫
dΩ′p(ŝ, ŝ′)w(r, ŝ′)

= βcmφn(r)
∫

dΩ′p(ŝ, ŝ′)w(r, ŝ′), (35)

where β = 0 when μn denotes the absorption coefficient and 1 when μn denotes the scattering
coefficient. Defining another operator KKK1, whose effect on the distribution function is given by

[KKK1w](r, ŝ) = cm

∫
dΩ′p(ŝ, ŝ′)w(r, ŝ′), (36)

we can rewrite Eq. (35) in operator notation as

∂KKK
∂ μn

w = βφnKKK1w. (37)

Thus, the third term in Eq. (21) can be written as

XXX
∂KKK
∂ μn

w =XXX(βφnKKK1w). (38)

Substituting Eq. (34) and (38) in Eq. (21), we get

∂w
∂ μn

=XXX(−cmφnw+βφnKKK1w)+XXXKKK
∂w
∂ μn

. (39)

Comparing with Eq. (17), we realize that the above equation is just the RTE, with the source
term given by

sn =−cmφnw+βφnKKK1w. (40)
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Thus, to evaluate the gradient of the photon distribution function with respect to μn, we just
have to compute each term of the RTE with the source term as −φncmw+βφnKKK1w, i.e. the dis-
tribution function (−cmw+βKKK1w) that exists over the spatial support of the nth basis function.

To summarize, to evaluate the detectability of the signal at a certain location, we use Eq. (7).
The Fisher information in this equation is computed using Eq. (13). Computing the Fisher infor-
mation requires determining the gradient of the photon distribution function, which is evaluated
by executing the RTE with a source term that is dependent on the spatial support of the signal.

2.4. Implementation

We implement the proposed framework to investigate signal detectability in DOT using the C
programming language on a computing system with a 2.27 GHz Intel Xeon quad core E5520
processor as the central processing unit (CPU) running a 64-bit Linux operating system, and
consisting of four NVIDIA Tesla C2050 graphics processing units (GPUs). To evaluate the de-
tectability, we must compute the mean image data and its gradient. Computing these quantities
requires solving the RTE. We have developed mathematical methods to solve the RTE using
a Neumann-series form [32, 33]. We have also developed software to model light propagation
in completely non-uniform three-dimensional small-geometry anisotropic scattering media for
a DOT setup [33]. The software has been developed on the NVIDIA Tesla C2050 graphics
processing units (GPUs) using the compute unified device architecture (CUDA) programming
framework for computational efficiency, and provides up to two orders of magnitude speedup
compared to a non-GPU implementation. The Neumann-series RTE software is developed to
solve the RTE with a laser beam as the source term, and execution of this software computes
the mean image data for the DOT setup. Using this software, the distribution function in all the
voxels is also computed. This quantity is stored, since it is required to compute the source term
(Eq. (40)) for the RTE to compute the gradient of the mean image data.

To evaluate the gradient of the mean image data, we first note that the RTE for the gradient
of the photon distribution function given by Eq. (39) can be written in the following form as a
Neumann series [32]:

∂w
∂ μn

=XXXsn +XXXKKKXXXsn +XXXKKKXXXsn + . . . , (41)

where sn is the source term as given by Eq. (40). To implement this equation, we further rewrite
in a spherical harmonic and voxel basis as below [32,33]:

Wd
′ = ASn +ADASn +ADADASn + . . . , (42)

where A and D denote the attenuation and scatter operators in voxel and spherical harmonic
basis respectively, and Sn and Wd

′ are the source term and the derivative of the photon dis-
tribution function in the spherical harmonic and voxel basis, respectively. We have derived the
expressions and implemented the attenuation and scattering operators on the GPU for a non-
uniform anisotropic scattering media [33]. To evaluate the gradient, we need to substitute the
source term by the expression given by Eq. (40) in the spherical harmonic and voxel basis.
This quantity can be easily computed from the distribution function that we had computed and
stored earlier. Following this, an iterative application of the attenuation and scattering operators
until convergence, and a final application of Eq. (20) yields the gradient of the mean image
data [33]. Using the mean image data and its gradient, the Fisher information, and therefore the
detectability, can be evaluated for any spatial support of the scattering or absorptive signal.

2.5. Methods for the specific SKE/BKE task

To demonstrate the application of the proposed scheme, we consider the task of detecting a
high-absorption region, i.e. the signal, in an otherwise homogeneous background. Let the spatial
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support of the background and the signal be denoted by φ0(r) and φ1(r), respectively. Also, let
the absorption coefficient of the background and signal be denoted by μa,0 and μa,1, respectively.
The signal and the background are assumed to have the same scattering coefficient. Let us
also denote the difference between μa,0 and μa,1 by Δμa. Using Eq. (7), the expression for
detectability in this case will be given by

d2(μμμ) = Δμ2
a Fa1,a1, (43)

where, using Eq. (13), Fa1,a1 is given by

Fa1,a1 =
M

∑
m=1

1
ḡm

(
∂ ḡm

∂ μa,1

)2

. (44)

Using Eq. (20), the gradient of the image data with respect to μa,1 is given by

∂ ḡm

∂ μa,1
=

(
hm,

∂w
∂ μa,1

)
. (45)

To evaluate the gradient of the photon distribution with respect to μa,1, in accordance with
Eq. (39) we execute the RTE with the source term as

sn =−cmφ1w. (46)

Therefore, the mean output image ḡ̄ḡg and the gradient of the mean output image are evaluated
using the RTE. To vary the signal depth, we vary the spatial support of the signal, given by φ1(r).
The variation of detectability with other parameters, such as the size and contrast of the signal,
and the scattering coefficient of the background can also be studied using this framework.

Before presenting the simulation studies, we would like to mention that the Neumann-series
method is accurate in many scenarios where the conventionally used diffusion approximation
breaks down, such as DOT setups with collimated light sources [32,37,38], optically-thin media
[32, 39], media with low-scattering void-like regions [33, 40] and media where the absorption
coefficient is similar to the scattering coefficient [33,41,42]. Investigating signal detectability in
media where the diffusion approximation breaks down is an important research problem [16]. In
our experiments, we simulate DOT setups in which the diffusion approximation breaks down,
and study the variation in signal detectability as we vary the signal and phantom properties.
Thus these studies present some interesting insights on signal detectability in DOT, and also
evaluates phantom configurations where the diffusion approximation breaks down. However,
our main intent behind presenting these experimental results is to demonstrate the validity of
the proposed framework.

3. Experiments and results

We now demonstrate the application of the proposed framework to investigate signal detectabil-
ity for a particular test DOT system, as the various properties of the phantom and the signal are
varied. As mentioned earlier, our intent in performing these observer studies is to validate the
proposed framework. Thus, we will be simulating DOT setups where we can predict the ex-
pected observer output, and validate whether the proposed SFoM also computes a similar result.
Our simulated DOT setup is as shown in Fig. 1, where a collimated 10 mW laser source emits
a beam of NIR light with a transverse circular profile with radius 0.5 mm. The beam is incident
approximately on the center of the entrance face of the scattering medium, where the center of
the beam has x− y coordinates as (0.5 mm,0.5 mm). The scattering medium is a 3-D phantom
of dimensions 2×2×2 cm3, characterized by a reduced scattering coefficient μ ′

s = μs(1−g).
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The background of the phantom is homogeneous with absorption and scattering coefficients
given by 0.01 cm−1 and 1 cm−1, respectively. This is a small-geometry media where the light
source is collimated, which is a case where the diffusion approximation breaks down [37, 39].
The experiments are carried out for non-reentry boundary conditions, so the refractive index
of the medium is fixed to unity. The value of the anisotropic coefficient α of the media is set
to 0, partly because it is easier to predict the expected observer output with such media. The
signal is spherical in shape with a radius of 1.5 mm and has the same scattering coefficient as
the background, but a higher absorption coefficient of 0.011 cm−1. The DOT setup consists of a
pixellated detector in the x−y plane, consisting of 20×20 pixels, and of dimensions 2×2 cm2,
which is in contact with the entrance face of the tissue and measures the reflected intensity. In
the Neumann-series method, for all the experiments, the highest degree in the spherical har-
monic expansion is 3. For this DOT setup and the specified signal and phantom properties, the
computation time to determine the SFoM was close to a minute.

Fig. 1. The simulated DOT setup for our experiments.

3.1. Signal detectability as a function of depth

In the first experiment, the signal is placed approximately at the center of the x− y plane. The
x− y coordinates of the center of the signal are (0.5 mm,0.5 mm), and its location is varied
along the z dimension. We would expect that since we are using only the reflected intensity to
make inferences about the presence of the signal, the detectability would decrease as the signal
depth increases. The detectability is computed using the developed software and plotted as a
function of the signal location in Fig. 2, and we observe the expected trend.

We then shift the location of the signal to an off-axis position (x,y) = (5.5 mm,5.5 mm), and
repeat the above experiment. The plot of detectability vs. signal depth is plotted in Fig. 2. As
we would expect, when the depth increases, the signal detectability reduces. Also, we expect
that the detectability should be lower for an off-axis signal compared to an on-axis signal, and
the plot shows this trend.

3.2. Signal detectability as a function of the scattering coefficient of the tissue

In the next experiment, we vary the scattering coefficient of the tissue. The signal has the same
scattering coefficient as the background. The object is placed at four different on-axis locations
at 2.5 mm, 7.5 mm, 12.5 mm, and 17.5 mm from the reflected face, respectively. It would be
expected that as the scattering coefficient increases, due to increased scattering, the detectability
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Fig. 2. The signal detectability as a function of the depth of the signal for on-axis and
off-axis signal locations.

of the signal will decrease. However, the process of scattering also contributes to attenuation,
and thus, an increase in the scattering coefficient also causes an increase in the value of the
attenuation coefficient of the signal, which should lead to increased detectability.

We plot the signal detectability as a function of the scattering coefficient for these four lo-
cations of the signal in Fig. 3. We find that the plot reflects the discussed trade-off. When the
signal depth is small, scattering has very little effect on detectability. Thus, increasing the scat-
tering coefficient up to a certain value leads to improved detectability. However, as the signal
depth increases, the effect of increase in scattering in the media tends to outweigh the increase
in the attenuation coefficient. At moderate signal-depth values, the detectability is maximized
at an optimal scattering coefficient value. For higher signal-depth values, the scattering effect
dominates and an increase in scattering coefficient leads to a decrease in detectability.

3.3. Signal detectability as a function of signal size and signal depth

Due to the poor spatial resolution in DOT, it is important to investigate the variation in de-
tectability as a function of the signal size. To study this variation, in the next experiment, we
vary the radius of the spherical signal from 0.5 to 2 mm, and for each size, vary the depth from
2.5 mm to 16.5 mm. The result of this experiment is plotted in Fig. 4. As expected, an increase
in the size of the signal leads to an increase in detectability, for all values of signal depth.

3.4. Signal detectability as a function of signal size and signal contrast

Another important study in DOT is the variation in detectability as a function of the signal
size and signal contrast [16], where signal contrast refers to the difference between the absorp-
tion coefficients of the signal and the background. We can perform this observer study using
the proposed framework, . In our study, we vary the absorption coefficient of a spherical sig-
nal from 0.011 cm−1 to 0.05 cm−1. Simultaneously, the radius of the signal is also increased
from 0.5 mm to 2.5 mm. The signal is placed at a depth of 2.5 mm from the exit face of the
tissue. From the results plotted in Fig. 5, we observe that as the signal contrast increases, the
detectability also increases, which is an expected result.

#192172 - $15.00 USD Received 12 Jun 2013; revised 21 Aug 2013; accepted 26 Aug 2013; published 9 Sep 2013
(C) 2013 OSA 1 October 2013 | Vol. 4,  No. 10 | DOI:10.1364/BOE.4.002107 | BIOMEDICAL OPTICS EXPRESS  2120



0.5 1 1.5 2 2.5
400

500

600

700

Sc. co. in cm−1
D

et
ec

ta
bi

lit
y

Sig. depth = 2.5 mm

0.5 1 1.5 2 2.5

120

140

160

Sc. co. in cm−1

D
et

ec
ta

bi
lit

y

Sig. depth = 7.5 mm

0.5 1 1.5 2 2.5

10

20

30

Sc. co. in cm−1

D
et

ec
ta

bi
lit

y

Sig. depth = 12.5 mm

0.5 1 1.5 2 2.5

2

4

6

8

10

Sc. co. in cm−1

D
et

ec
ta

bi
lit

y

Sig. depth = 17.5 mm

Fig. 3. The signal detectability as a function of the scattering coefficient for different signal
depths

4 6 8 10 12 14 16

10
1

10
2

10
3

Signal depth in mm

D
et

ec
ta

bi
lit

y

 

 

Signal radius = 0.5 mm
Signal radius = 1 mm
Signal radius = 1.5 mm
Signal radius = 2 mm
Signal radius = 2.5 mm

Fig. 4. The signal detectability as a function of the signal size for different signal depths

4. Discussions and conclusions

In this paper, we have suggested a framework to evaluate signal detectability in DOT using a
SFoM that approximates the performance of the Bayesian ideal observer and is based on the
Fisher information. We have implemented this framework using the Neumann-series RTE to
simulate light propagation through the tissue. The software has been developed on NVIDIA
GPUs for computational efficiency. This framework can be used for various tasks such as eval-
uating the detectability of an absorptive or scattering signal in any general DOT setup, quan-
tifying the performance of various DOT systems on different detection tasks, and comparing
different DOT systems for different detection tasks.
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Fig. 5. The signal detectability as a function of the signal contrast for different signal sizes

We have also derived an expression to compute the gradient of the mean image data as a
function of the scattering and absorption coefficients. This expression is very useful since it
just requires executing the RTE with a different source term. Moreover, while we have used the
Neumann-series form of the RTE to evaluate the gradient, it can also be computed using other
methods to solve the RTE, such as the differential methods [41, 43, 44] and the Monte Carlo
methods [45]. The different photon-transport-simulation methods have trade-offs in terms of
accuracy and computational efficiency for different kind of phantoms, and thus, depending on
the phantom type, the appropriate method can be used to compute the gradient, and implement
the proposed SFoM-based scheme. The expression to evaluate the gradient also has other appli-
cations, such as in image reconstruction or in studying information content of DOT data with
respect to estimation tasks [47].

We have demonstrated the application of the developed SFoM to study signal detectability as
a function of signal depth, signal size, signal contrast, and the scattering coefficient of the tissue.
The SFoM predicts that while signal detectability decreases with an increase in depth, and
increases with an increase in signal contrast and signal size, the relation is not as straightforward
when we vary the scattering coefficient of the tissue. While varying the scattering coefficient
of the tissue, it is observed that for a given signal depth, there are optimum values of scattering
coefficients at which the detectability is maximized. The SFoM predicts expected trends, and
thus these studies help to validate the proposed framework.

In this paper, we have investigated the signal detectability for a simple SKE/BKE task. How-
ever, the developed framework is general and can be used for studying more rigorous and real-
istic detection tasks. To apply this scheme in more realistic media, we would have to account
for various factors, of which two important factors are medium inhomogeneity and signal and
background randomness. Our scheme can be easily applied to heterogeneous media as long
as we simulate photon transport using a method that accounts for tissue non-uniformity, such
as the Neumann-series-based method that we have developed [33]. To investigate signal de-
tectability with random backgrounds or random signals, we would have to determine the Fisher
information for these scenarios. The general form of the Fisher information when the signal and
background are random has been derived in Kupinski et al. [46], and can be determined for our
case using the methods suggested in this paper. Since the formalism that relates detectability
to Fisher information (Eq. (7)) is completely general, observer studies with random signals or
backgrounds can be performed using Fisher information as the SFoM.
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In the experiments we have performed, we often obtain high detectability values. Detectabil-
ity values greater than 5 yield very similar AUC values (≈ 1). In such scenarios detectability
cannot be used as an indicator to compare the performance of the two systems. However, we
obtain such high detectability values in our experiments because we have chosen a very simple
SKE/BKE task, the signal is not too deep into the tissue, the scattering coefficient is low, and
often the signal is on-axis. For more realistic tasks, the detectability values would be much
lower. For example, we observe in Fig. 2 that when the signal is more than 1.5 cm deep into the
tissue and off axis, the detectability is less than 0.5. Similarly, when the scattering coefficient is
high and the signal is deep, as in the lower two plots in Fig. 3, the detectability values are very
low, even when the signal is on axis. When the detectability values lie in the range of 0 to 5, the
suggested framework yields different AUC values and can thus be used to compare systems.

The simulation study in this paper has been performed for media with low values of scat-
tering coefficients. This is because the developed Neumann-series RTE approach is computa-
tionally intensive for media that have very high values of μsH, where μs denotes the scattering
coefficient of the phantom and H denotes the length of the tissue [32]. With improvement in
computational capacity, it should be possible to perform this study using the Neumann-series
RTE with higher values of scattering coefficients [33]. Alternatively, we can use the differential
or Monte Carlo methods, which are computationally more efficient when the scattering coeffi-
cient is high. Also, while in our simulation studies, we have chosen our imaging domain to be a
non-diffusion regime, the SFoM-based technique can be definitely used in media where the dif-
fusion approximation is valid, and in those cases, the diffusion-approximation-based methods
can be used to evaluate the mean image data.

In our detection task, the signal is a high-absorption region, but there are instances in DOT
where we are interested in detecting scattering heterogeneities [19]. While we have not demon-
strated this through experiments, the method can easily take care of scattering heterogeneities.
We can evaluate the gradient of the photon distribution function with respect to the scattering
coefficient by executing the RTE with the source term given by Eq. (40), where we set β = 1.
The computed gradient value can then be used to evaluate the Fisher information with respect
to the scattering coefficients using Eq. (13). Following this, the detectability for a scattering
inhomogeneity can be computed using Eq. (7).

We have performed our analysis with a Poisson noise model, since this is often the major
noise source in DOT systems [19,34]. Our analysis can be extended to detectors that have other
noise sources. For example, in the DOT setup being considered, apart from the Poisson noise,
the detector might have significant thermal and readout noise, which can be modeled using
a Gaussian distribution. Under some assumptions, the combined effect of these Poisson and
Gaussian noise sources can be approximated by another normal PDF [48], the first and second-
order statistics of which can be determined [47]. The Fisher information for a Gaussian noise
model is easy to determine. For detectors with other noise sources, we would need to derive
the PDF of the noise distribution, and thus the expression for the Fisher information, following
which the proposed scheme can be applied.
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