
Prediction of P300 BCI Aptitude in Severe Motor
Impairment
Sebastian Halder1,2,3*, Carolin Anne Ruf2, Adrian Furdea2, Emanuele Pasqualotto4, Daniele De

Massari2,5,7, Linda van der Heiden2,8, Martin Bogdan3,6, Wolfgang Rosenstiel3, Niels Birbaumer2,5,
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Abstract

Brain-computer interfaces (BCIs) provide a non-muscular communication channel for persons with severe motor
impairments. Previous studies have shown that the aptitude with which a BCI can be controlled varies from person to
person. A reliable predictor of performance could facilitate selection of a suitable BCI paradigm. Eleven severely motor
impaired participants performed three sessions of a P300 BCI web browsing task. Before each session auditory oddball data
were collected to predict the BCI aptitude of the participants exhibited in the current session. We found a strong
relationship of early positive and negative potentials around 200 ms (elicited with the auditory oddball task) with
performance. The amplitude of the P2 (r = 20.77) and of the N2 (r = 20.86) had the strongest correlations. Aptitude
prediction using an auditory oddball was successful. The finding that the N2 amplitude is a stronger predictor of
performance than P3 amplitude was reproduced after initially showing this effect with a healthy sample of BCI users. This
will reduce strain on the end-users by minimizing the time needed to find suitable paradigms and inspire new approaches
to improve performance.
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Introduction

One of the earliest discussions of a communication channel that

is independent of muscular control can be found in Vidal et al. [1].

These communication systems, termed brain-computer interfaces

(BCIs), use components extracted from the electroencephalogram

(EEG) as a control signal. Control signals include slow cortical

potentials (SCPs), the P300 event-related potential (ERP) compo-

nent, visually evoked potentials (VEPs) and the sensorimotor-

rhythm (SMR) [2,3,4,5]. Brain activity used for BCI control can

also be measured with functional magnetic resonance imaging

(fMRI) [6,7,8], electrocorticography (ECoG) [9,10], magnetoen-

cephalography (MEG) [11] and functional near infared red

spectroscopy (fNIRS) [12]. Recent studies have also shown that

the EEG response to yes and no questions can be conditioned and

may be used to control a binary communication system

[13,14,15,16]. Hybrid-BCIs combine different control signals

[17], as extensively reviewed by van Gerven et al. [18].

The P300 BCI paradigm was first introduced by Farwell and

Donchin [3]. The user shifts his or her attention to a single letter in

a matrix. The rows and columns of this matrix then flash in a

random pattern. When the row or column containing the letter the

user is focusing on flashes this elicits a P300. The P300 following

the target stimulations is larger than the P300 following non-target

stimulations which enables the classification of the intended row

and column. Classification requires repetition of flashes. Averaging

trials decreases the amplitude of the spontaneous EEG and

conserves the amplitude of the stimulus-locked P300. This

increases the signal-to-noise ratio (SNR) enabling successful

classification. Implementations of this BCI paradigm commonly

use the linear discriminant analysis LDA algorithm (and deriva-

tions thereof) for classification [3,19,20,21]. For a review of

classification algorithms for BCIs see Lotte et al. [22].

Persons with severe motor impairments are differentiated into

the LIS and the complete locked-in state CLIS [23]. Persons in the

LIS retain residual muscle control for basic communication.

Persons in the CLIS have no muscle control and cannot

communicate. Before entering the CLIS BCI performance is not

influenced by the severity of the disease [24]. To date attempts to

achieve this goal have failed [23,25].Therefore, it is one of the
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primary goals of BCI research to restore communication for

persons in the CLIS. In amyotrophic lateral sclerosis (ALS) the

transition from LIS to CLIS is gradual and the precise time point

is hard to define. In a single case study, a person with ALS lost

control of facial muscles and the external anal sphincter before

losing control of eye movements [25]. Besides ALS, other disorders

can lead to LIS or even CLIS. These include brainstem stroke,

cerebral palsy, muscular dystrophies and spinal cord injury (SCI).

As communication is a basic need, BCI could potentially

contribute to maintain or regain or even improve quality of life

[26]. Recently, it has been proposed to use BCIs as an alternative

method of cognitive assessment in persons with ALS [27]. Reliable

cognitive assessment will improve the way BCIs can be tailored to

the needs of the individual.

Healthy users achieved average accuracies above 90% using

visual P300 BCI spellers [28]. In a sample of N = 81 healthy

participants eleven percent did not reach accuracies above 80%

[29]. In samples of motor impaired persons the accuracies

achieved with BCIs often decrease dramatically. In a study with

four motor impaired participants, two did not achieve accuracies

above 70%, in the second phase one of four [30]. A study by

Kübler and Birbaumer showed data from eleven persons with

motor impairments (in LIS) that achieved an average accuracy of

66% [23]. Of these eleven, four achieved a level of control

considered sufficient for independent use of BCIs (which was not

defined as a quantitative but a qualitative measure evaluating the

person’s ability to use a BCI for tasks such as communication, web

surfing or environmental control). Two more reached accuracies

above 70% correct symbol selection, the criterion threshold at

which the use of communication aids becomes feasible [31,32].

Thus in this sample, 45% of the participants were unable to freely

communicate with a visual P300 BCI.

Several studies have described physiological and psychological

predictors of BCI performance. Hammer et al. showed that the

ability to concentrate and visuo-motor coordination predict SMR

BCI performance [33]. More recently motor imagery question-

naires have been shown to be a strong predictor of BCI

performance [34]. From a physiological perspective, Blankertz

et al. have shown that the amplitude of the resting SMR peak

correlates strongly with subsequent SMR BCI performance [35].

Using fMRI, Halde et al. were able to demonstrate that SMR BCI

users with high aptitude and low aptitude have identical neural

activity elicited by motor execution but differ during motor

imagery and particularly motor observation [36]. During motor

observation the number of activated voxels correlated significantly

with BCI-performance (r = 0.53). Specifically, the number of

activated voxels in the right middle frontal gyrus was correlated

with BCI-performance (r = 0.72). This underlines the importance

of task monitoring and working memory throughout the BCI

session. Structural differences between high and low aptitude users

were also shown [37]. A volumetric analysis showed no differences

between the groups but structural integrity and myelination

quality of deep white matter structures were strong predictors of

BCI-performance. Studies with users of SCP BCIs have shown the

predictive power of performance in early sessions for later

performance [38]. More specifically, the number of sessions

needed to achieve significant cursor control correlated moderately

with the number of sessions required to achieve criterion level

control (above 70%, [39]).

Concerning P300 BCIs, motivation impacts the performance

achieved in a subsequent BCI session [28]. The authors described

a reduced P300 amplitude for the least motivated participants as

opposed to the most motivated participants. A moderate but

significant correlation between spectral power in the high alpha

and the low beta band during a baseline recording and subsequent

P300 BCI performance has also been shown [40]. The data

originated from measurements performed over the course of two

years with one person with ALS. The authors analyzed a total of

197 runs in which the participant spelled 1200 letters. Using

resting state data recorded in a different session than the P300 BCI

test sessions, it has been shown that the frequency band of the

maximum peak in the power spectrum correlates strongly with

visual P300 BCI performance [41]. Additionally, spectral and

temporal EEG features correlate with performance during BCI

usage [42].

Physiological factors not extracted from the EEG can also

influence BCI performance. In a study performed with healthy

participants the relationship between heart rate variability and

P300 BCI performance was demonstrated [43]. In another study it

was shown that an auditory oddball recorded before the P300 BCI

session can be used to predict performance in a sample of 40

healthy participants [44]. It has also been demonstrated in one

person in the CLIS and two in the LIS that oddball data can be

used to predict performance in a classical conditioning BCI [16].

An overview of existing predictors can be found in Table 1. The

predictors are grouped according to the categories of the model

suggested by Kübler [45].

In this paper we propose using an auditory oddball session

performed before the P300 BCI session to predict performance.

Instead of a sample of healthy participants (see [44]) we apply this

method of performance prediction to a sample of severely motor

impaired persons. We chose to use an auditory oddball instead of a

visual oddball to have a predictor that is independent of the visual

system, which becomes compromised e.g. in later stages of ALS.

Due to a stronger dependence of the ERP morphology on stimulus

discriminability, intensity and probability we do not assume that

using the auditory instead of the visual modality will be a

disadvantage [46,47,48,49,]. Using a short BCI session instead of

the oddball for prediction requires that all instructions are

understood by the user in the first session. Any misunderstandings

Table 1. Overview of existing predictors.

Predictor Category Paradigm Publication

Initial performance Psychological SCP [38]

Locus of control Psychological SMR [87]

Concentration/
Coordination

Psychological SMR [33]

Motivation Psychological Visual P300 [28]

Motor imagery
questionnaires

Psychological SMR [34]

Resting alpha/beta peak Physiological Visual P300 [40]

Resting SMR peak Physiological SMR [35]

fMRI Physiological SMR [36]

HRV Physiological Visual P300 [43

Resting alpha frequency Physiological Visual P300 [41]

ERP+power spectrum Physiological Visual P300 [42]

Oddball ERP Physiological Visual+Auditory
P300

[44]

DTI Anatomical SMR [37]

We give the name of the variable used for prediction of performance, the
category out of psychological, physiological and anatomical (this category was
used to group the entries of the table), the BCI paradigm that was used to
determine performance and a reference to the corresponding publication.
doi:10.1371/journal.pone.0076148.t001

P300 BCI Aptitude in Severe Motor Impairment
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will introduce an unwanted bias in the prediction. Performing the

auditory oddball requires little attentional resources and the

instructions are easy to understand. For this reason, an auditory

oddball as we used in this study has also been used to assess brain

function in severly brain injured participants [50]. Thus, we

conclude that the auditory oddball represents a robust and

generally applicable solution for testing in a sample of severly

motor impaired BCI users. We evaluated the success of our

method by analyzing which components of the P300 ERP elicited

by the auditory oddball task correlated with later BCI perfor-

mance.

Methods

Participants
Eleven persons with motor impairments (6 male, mean age

54.36 years, standard deviation (SD) 10.89 years, range 36–71

years) participated in three sessions of the P300 BCI performance

prediction study (see Table 2). We selected participants based on

their willingness to participate and general suitability for EEG

studies (no skin irritations, epilepsy) and recruited them through

local support groups. There was no financial compensation and all

participants were informed that the system could not be provided

to them for personal use after the study. The main motivation of

participation is to contribute to the development of BCI systems so

that others may profit in the future. The level of impairment

ranged from zero to 43 (mean 17.7) according to the ALS

functional rating scale revised (ALS FRS-R) [51]. This instrument

evaluates the ability of the participant to carry out activities of

daily living such as speech and handwriting. Lower values indicate

a lower level of functionality. The ALS FRS-R questionnaire

evaluates twelve items with a score between zero and four. Thus

the score can range from zero (maximally disabled) to 48 (not

disabled). We informed each participant about the purpose of the

study and each participant gave informed consent prior to the

experimental session. The participants gave informed consent in

the presence of their legal representative. The consent was given

using residual movements that had been agreed on before. Written

consent was then provided by the legal representatives (if the

participants were unable to provide written consent).The Ethical

Review Board of the Medical Faculty of the University of

Tübingen approved the study and consent procedure.

Experimental Design
The participants of this study took part in two separate

experiments. First, an auditory standard oddball experiment, to

predict the performance in the second, a visual P300 BCI task. We

provide an overview of the design in Figure 1.

Auditory Oddball
The auditory stimuli were comprised of a set of standard tones

(duration 160 ms; chords at 517 Hz, 646 Hz and 775 Hz) and

deviants (the oddball; duration 160 ms; a 517 Hz tone). The ratio

of standards and deviants was 4:1. Each sequence of stimuli

consisted of five tones. One run consisted of 20 sequences. In total

we performed three runs resulting in 60 deviant and 240 standard

tones (one session). We instructed the participants to count the

deviants. The inter stimulus interval (ISI) was 800 ms, resulting in

a run length of 96 s and a total length of the experiment of 288 s

(4 min 48 s).

The Visual P300 BCI
During the visual P300 BCI experiment participants attended a

nested matrix designed to control a web browser [52]. We

included the initial matrix as depicted in Figure 2. We will present

the detailed results of the web browsing task independently of the

performance prediction study and spared the participants the

strain of additional conventional P300 speller sessions that would

otherwise have been needed. Thus, we used the P300 BCI web

browsing sessions for performance prediction. The matrix had an

initial dimension of 767 (see Figure 2) from which the user can

navigate to two different 566 matrices (bottom row, ‘‘J–Z*’’ and

‘‘0–9,@’’). One sequence therefore comprised between 11 (566

matrix) and 14 (767 matrix) flashes (one for each row and column)

of 62.5 ms duration followed by a 125 ms inter-flash interval. We

set the number of flashes to a subject specific level based on a

preceding measurement with a conventional 666 speller matrix.

During the training measurement the participants spelled 17

letters without feedback in two separate runs. Each stimulus was

presented 15 times. We used these two runs to train the classifier

for online feedback with the visual P300 BCI. All participants

Table 2. Description of participants with motor impairment.

Participant Sex Age (years) Year of diagnosis ALS diagnosis ALS FRS-R
Artificial
nutrition Ventilation

1 Male 71 2005 Spinal 11 No Yes (non-invasive)

2 Male 54 2006 Spinal 23 No No

3 Male 70 2008 Spinal 18 No Yes (non-invasive)

4 Female 50 2003 Bulbar 17 No Yes (non-invasive)

5 Female 53 2008 Spinal 23 No No

6 Male 36 1976 (Duchenne) N/A 7 No Yes (non-invasive)

7 Male 55 2003 Spinal 43 No No

8 Female 48 2007 Spinal 12 No Yes (non-invasive)

9 Male 65 2009 Bulbar 34 No No

10 Female 42 1996 Spinal 7 No No

11 Female 54 2005 Spinal 0 Yes Yes (invasive)

Participant six has Duchenne muscular dystrophy. Gender, age in years, year of diagnosis, ALS onset (bulbar or spinal) as well as the score of the ALS functional rating
scale at the time of the study.
doi:10.1371/journal.pone.0076148.t002

P300 BCI Aptitude in Severe Motor Impairment
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performed a third run spelling eleven letters with feedback to

verify the selected settings.

During the web browsing task, the system paused for 8 s after

symbol selection in which it performed signal classification and

presented the selected letter to the participant. We chose the

length of the pause to give the next website enough time to load

and the user enough time to select the next action. The

participants had to perform a given sequence of tasks using the

web browser and make a minimum of 40 correct selections before

the tasks were completed. The number of selections needed to

complete the task successfully varied between users. We used the

number of errors instead of more conventional measures such as

accuracy or bitrate because different errors may need different

numbers of selections to correct (depending on what command the

participant sent to the web browser erroneously). Thus, making a

mistake and then needing to perform correcting steps may actually

increase accuracy in retrospect. An increase in accuracy occurs if

the error needs multiple correct selections to be undone. This can

e.g. occur if the user hits enter by mistake when entering a term in

a search field. To correct it the user must select the ‘‘backwards’’

function, reselect the search field and complete, correct or possibly

re-enter the search term. As a consequence these multiple (ideally)

correct selections will increase accuracy even though the total time

until the intended goal is completed has also increased. Thus, in

our scenario performance (minimum time needed for achieving

the pre-defined goal) would have decreased. Then again it is not

the aptitude of the user that increases the number of corrective

steps needed after a particular mistake which makes using the total

time needed for that task another suboptimal measure. This is the

reason for choosing the absolute number of errors made by the

participant. Each of the eleven participants performed three

sessions using the P300 web browser. For all comparisons between

low and high aptitude users we split the group at the median. For

the correlation analysis, the number of errors was averaged across

sessions for each participant.

Figure 1. In each session every participant performed an auditory oddball and a visual P300 BCI internet browsing task. The
participants performed three sessions in total. We averaged the results of the web browsing task across the three sessions to determine the
performance of each participant. The BCI system provided online feedback. We evaluated performance using the number of errors made by the
participant. Features extracted from the auditory oddball session served as a performance measure and we assessed whether we can use them to
predict BCI aptitude of participants with severe motor impairment in the visual P300 BCI task.
doi:10.1371/journal.pone.0076148.g001

Figure 2. The visual P300 BCI matrix the participants used to control the web browser. Participants used letters to select hyperlinks and
for text input. The participant selected links on websites with more than 26 links using the letters marked with a ‘‘*’’. Other functions included moving
forward and backward between pages or reloading. The system provided submatrices for numbers and double letters from J–Z*.
doi:10.1371/journal.pone.0076148.g002

P300 BCI Aptitude in Severe Motor Impairment
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Data Acquisition
We performed stimulus presentation and data collection with

the BCI2000 software [53]. We recorded the EEG using an Ag/

AgCl electrode cap with 16 channels (manufactured by EASYCAP

GmbH, Herrsching, Germany; F3, Fz, F4, T7, T8, C3, Cz, C4,

Cp3, Cp4, P3, Pz, P4, Po7, Po8 and Oz) based on the modified

10–20 system of the American Electroencephalographic Society

[54]. The reference was placed on the right and the ground on the

left mastoid. The sampling rate was set to 256 Hz with a high pass

filter at 0.1 Hz and a low pass filter at 60 Hz (auditory oddball:

30 Hz) using a g.tec 16-channel gUSBamp EEG amplifier (g.tec

medical engineering GmbH, Austria).

Offline Processing
During the offline processing we high-pass filtered the data

acquired during presentation of the auditory oddball at 0.5 Hz

and then low-pass filtered at 20 Hz using a two-way least-squares

FIR filtering by a function from the EEGLAB toolbox [55].

To isolate and remove ocular artifacts we employed the blind

source separation (BSS) method algorithm for multiple unknown

signals extraction (AMUSE) [56,57]. AMUSE is particularly suited

to remove ocular artifacts [58]. To increase external validity we

performed no other artifact correction or rejection.

For offline analysis we replaced the right mastoid reference with

a common average reference (CAR). The CAR re-references the

potential at each electrode with mastoid reference by subtracting

the average potential of all electrodes. After segmenting the data

into individual epochs (0–800 ms), we baseline corrected by

subtracting from every epoch the mean amplitudes in the 2100 to

0 ms pre-stimulus interval.

We defined amplitude of the P300 as the local maximum

between 250 and 700 ms, the N1 as the local minimum between

100 and 200 ms, the P2 as the local maximum between 200 and

250 ms and the N2 as the local minimum between 250 and

375 ms. Note that using the CAR also influences the topography

of the investigated ERP components. For example components

which have a frontal maximum absolute value will appear to have

a dipolar topography after applying the CAR. Negative compo-

nents on Fz will appear positive on Oz if the negative amplitude

was high enough. Thus we inverted the sign for the analysis of the

ERP peaks for electrodes posterior to Cz. This effect must also be

taken into consideration when evaluating the topography of the

ERPs.

Classification
We used stepwise linear discriminant analysis (SWLDA) for

online and offline classification. This algorithm is commonly

employed as a classification method for visual and auditory P300

BCIs [3,30,59,60,61]. The algorithm adds the most significant

features to the model first (p,0.1, otherwise the model generation

fails). Then the algorithm adds the remaining features to the model

in order of their significance. During the backward stepwise

regression step the algorithm removes features from the model that

do not fulfill a significance level of p,0.15. After 60 iterations or if

no further features fulfill the inclusion criterion the model

generation stops and the model is applied to the data in the

current state.

We smoothed the spatiotemporal features of each trial with a

moving average filter, with a width of 25 samples, and then

decimated them by a factor of 25 prior to feature selection and

classification. For classification we used a time window from 0 to

1000 ms and the full channel set for online feedback.

During online classification we applied the model separately to

the trials following row and column flashes. The BCI system

displays the row and and the column trials with a maximum score

as feedback. This means that the system requires no bias term for

classification of the P300 responses. The classifier weights were

trained on and applied to single trials for feedback. The classifier

output was summed over all trials of a particular stimulus and the

row and column with the maximum output selected for feedback.

Statistical Analysis
All r-values were calculated as rank correlations which were

performed according to the method described in [62]. For the

correlation analysis performance of the participants was normal-

ized to the mean performance across the three sessions (to ensure

that all values were independent). Significance was assumed for

p,0.05 for all statistical tests (including t-tests). All results of the

ERP analysis were given as mean with standard deviation.

Results

Online Performance
Due to the nature of the task (the participants had to accomplish

certain goals with a P300 controlled web browser using predefined

steps) we give performance in number of errors. The participants

made a mean amount of 15.1613.3 errors (range 0–51 errors) in a

task that needed a minimum of 40 selections. We found no

correlation between ALS FRS-R and the average error made by

each user in the three measurement sessions (r = 0.29, p = 0.39).

Group Differences in the Auditory Standard Oddball
Target and standard trials of the auditory oddball were

evaluated separately for high and low aptitude users. Figure 3

shows the target/non-target differences of the whole spatio-

temporal feature matrix in (A). In Figure 3 (B) we show the

differences between the ERPs of high (red) and low (blue) aptitude

users on electrodes Fz, Cz, Pz and Oz. For comparison purposes,

we also plotted the average response across all participants (green).

Finally, the topographies of the target/non-target differences from

200 to 600 ms are shown in 100 ms steps.

The averaged auditory oddball P300 ERP component peaks

had an amplitude of 2.0861.3mV at 361.51687.1 ms on electrode

Cz. High aptitude users had an average amplitude of 1.5261.3mV
and low aptitude users of 2.5461.3mV. An independent t-test

showed that the difference was not significant (t9 = 21.3, p =

0.23). Latencies averaged to 392.19691.9 ms for high aptitude

and to 335.94681.7 ms for low aptitude users. A independent t-

test was not significant (t9 = 1.08, p = 0.31).

Correlation between Auditory Oddball Response and
Aptitude
Figure 3 shows that the amplitude differences of later ERP

components between the aptitude groups were smaller than the

amplitude differences of earlier positive and negative ERP

components. This was confirmed by the correlation plot of the

spatio-temporal feature matrix shown in Figure 4 (A). The highest

r2 values were in the latency range from 100 to 350 ms. In Figure 4

(B) the upper of the two scatter plots illustrates the positive

correlation between errors in the browsing task and amplitude of

the auditory oddball P300 on frontal electrodes, whereas the lower

scatter plot shows the negative correlation on occipital electrodes.

The correlation on PO8 reached an r of 20.93. The topographies

in Figure 4 (C) further underline that frontal amplitudes have a

positive correlation with the number of errors, whereas occipital

electrodes have a negative correlation with the number of errors.

Due to the high number of comparisons performed in the

approach shown in Figure 4, we decided also to calculate the

P300 BCI Aptitude in Severe Motor Impairment
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correlations of individually calculated peaks on channels Fz, Cz,

Pz and Oz. The results are shown in Table 3. Performance

correlated strongest with the amplitude of the N2 component at

Oz (r = 20.86).

Discussion

Eleven persons with motor impairments participated in the

study using a visual P300 BCI for control of a web browser. It was

possible to use features extracted from EEG data recorded during

an auditory oddball task for prediction of aptitude. A correlation

analysis of the different ERP components showed a strong

relationship between early positive and negative potentials around

200 ms with performance. We found this relationship between

individual sample points of the whole spatio-temporal feature

matrix (up to r = 0.93) and also between individual peaks (up to r

= 20.86).

BCI Performance
We defined performance as the number of errors needed to

complete a task consisting of 40 selections in a P300 767 matrix

with two 566 submatrices. On average the participants made 15.1

errors until performing all 40 selections correctly. The number of

errors did not correlate with the degree of impairment. This is in

concordance with other studies that did not show a relationship

between the ability to use a BCI and disease progression [24]. For

better comparability of the performance of the participants in this

study with the performance of other samples of persons with motor

impairment, the accuracy was estimated as 40 correct selections

out of 55.1 total selections. This results in 73% online accuracy

which is above the criterion level of 70% accuracy [31,39]. We

believe that the accuracy achieved by the participants in this study

can be compared to the accuracy achieved by ALS or persons with

other motor disabilities in previous P300 BCI studies

[26,30,52,63,64,65]. In fact none of the other studies demanded

such a complex task from the participants as performed by the

participants in this study. Therefore, these results reflect a robust

estimation of the ability to control a BCI. Participants needed to

make selections using a 767 letter matrix with two 566 sub-

matrices. Additionally, the participants controlled a web browser

on an additional screen (requiring attentional switches between the

P300 matrix and the screen displaying the web browser) which

changed the displayed content accordingly. This increased the

demand on attentional resources of the participants. It is also the

largest sample of participants to have participated in any of the

aforementioned studies. Using novel stimulation techniques such

as famous faces instead of flashing rows and columns information

transfer rate (ITR) can be increased substantially than what we

report in this study [66].

Comparison of ERPs
ERP differences between healthy participants and participants

with severe motor impairment have been explored in several

studies. The general conclusion is that besides motor impairment

there appears to be an effect of the disease on attention and

working memory. In some studies this loss of cognitive funcitons

has been linked to the severity of the disease [67]. Other studies

found that ALS may be, but must not be linked to frontotemporal

dementia (FTD). In samples of persons with FTD the occurence of

ALS is much higher than can be expected in a random sample

Figure 3. The average amplitude across all participants of the response to the auditory oddball is shown as the full spatio-temporal
feature matrix (EEG channels are in the sequence given in the data acquisition section) of the target non-target difference (A). Time
course at Fz, Cz, Pz and Oz of the averaged ERP are shown for high aptitude (red), low aptitude (blue) and all users (green) for targets (continuous
lines) and non-targets (dashed lines; B). Topographic distribution (the scale is the same as in A) of the target non-target difference at 200, 300, 400,
500 and 600 ms (C).
doi:10.1371/journal.pone.0076148.g003
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[68]. This has been attributed to the observation that the gene

defective in familial ALS is sometimes linked to the gene causing

FTD [69,70]. Thus, the two diseases occur more frequently in the

same person than can be expected by chance alone. A summary of

cognitive effects associated with ALS can be found in Raaphorst

et al. [71]. This is reflected in electrophysiological studies. In an

auditory selective attention task with eight persons with ALS,

ERPs were reduced compared to age-matched healthy controls

[72,73]. It was also shown that with the progression of impairment

auditory and visual P300 latency was increased [74]. Cognitive

impairments and decreased P3a/P3b amplitudes as well as higher

P3a latencies were also shown [75,76]. An important factor that

may contribute to ERP abnormalities in persons with ALS are

periodic failures in the ventilation system that may lead to anoxia

[77]. Analysis of intensive care unit patients, especially those

receiving artificial ventilation, have revealed significant impair-

ment of cognitive functions [78]. Recent data suggests that

abnormalities tend to increase, e.g. in P300 latency, with the

disease duration [79,80]. Compared a sample of healthy

participants [44], amplitudes were decreased and latencies

increased in the sample of persons with motor impairments in

this study.

We found that the minimum amplitude on Cz between 250 and

375 ms indicates fewer errors in the internet browsing task

performed by the participants of this study. On Pz the polarity

switches (due to the CAR) and increased amplitudes indicate fewer

errors. The N2 has been described as more than a sensory

component and its involvement in cognitive control processes such

as response inhibition has been underlined [81]. This indicates a

role of selective attention and arousal in BCI tasks when the

participants ignore non-targets and respond to the target stimuli

which is reflected in variations in N2 amplitude. We also found

that the latency increases with the number of errors on frontal

EEG channels.

Amplitude and latency of the P2 have a weaker correlation than

amplitude and latency of the N2 [82]. Indeed, we did not find

correlations between latency and performance. There are no P2

amplitude differences between targets and non-targets for the low

aptitude users. In particular, on channel Cz there was no

difference between the P2 elicited by targets and non-targets

whereas the averaged target and non-target curves of the high

aptitude users diverge after the N1. Our data shows a lower P2

amplitude on frontal channels and higher amplitude on occipital

channels for high aptitude users. On all channels the absolute

values of the P2 amplitude were higher for low aptitude users.

Figure 4. Signed r2 values between auditory oddball amplitudes at all time points and channels with visual P300 BCI performance
(defined as the number errors during the web browsing task) in red for positive correlations and in blue for negative correlations
(A). Two elements were selected from the matrix (marked by green circles in A) for visualization using scatter plots (B) showing a correlation of r =
0.9 (p , 0.01) on electrode C3 and a correlation of r = 20.9 (p , 0.01) on electrode Oz. Finally, topographic distributions of the signed r2 values are
shown at the bottom (C). Note that due to the use of ‘‘number of errors’’ as performance measure positive correlations indicate a decrease in
performance with increasing amplitude, whereas negative correlations indicate an increase of performance with decreasing amplitude.
doi:10.1371/journal.pone.0076148.g004
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In fact, the P2 amplitude appears to decrease with increased

attention (for a review of the P2 see Crowley and Colrain [83]). An

enhancement of the P2 amplitude to unattended stimuli was found

by using EEG and MEG [84,85]. In both studies this attenuation

of the P2 in the attend condition coincided with an enhancement

of the N1 (which has higher absolute amplitudes in the high

aptitude group in this study). The authors explained this with two

different stages of selective attention. The first being inhibition,

which is visible as the increased N1, and the second being filtering,

which is accompanied by a decreased P2 in the EEG. Under this

assumption high aptitude users exhibit increased attention and

better filtering mechanisms in the target condition compared to

the non-target condition and also compared to low aptitude users.

Conclusions

A short auditory oddball experiment can be used to predict

performance in a sample of persons with severe motor impair-

ment. This was shown previously in a sample of healthy

participants and also with a person in CLIS [16,44]. It is probable

that a single variable that predicts performance will not be found,

due to the many factors that influence performance. As proposed

by Kübler [45], these factors include physiological, anatomical and

psychological variables (besides technical variables which are

beyond the scope of this paper). Physiological variables such as

heart rate variability (HRV) [43], the amplitude of the SMR-peak

[35], amplitudes of the ERPs used to control the BCI [42] and the

volume of the brain-areas recruited during motor imagery in

particular in pre- and supplementary motor areas [36] influence

performance. Additionally the anatomy of a BCI user may be

affected by lesions or neurodegeneration [72] which influences the

EEG and consequently BCI performance. Even in healthy users

differences in brain-connectivity can predict variations in BCI

performance [37]. Finally, psychological factors such as mood and

motivation Kleih:2010fk and visuo-motor coordination [33] have

an added impact on the ability to control a BCI. The factors which

we found in this study are clearly physiological of origin but are

probably a measure of a psychological variable: increased

attention and better filtering mechanisms (which seem to be

persistent throughout a BCI session). Eventually, all predictors

should be combined and redundancies removed. Clearly some

predictors cannot be applied in a feasible manner with every BCI

user, e.g. the predictors requiring magnetic resonance imaging

(MRI) measurements. Nonetheless, they provide valuable input to

the overall model and point to negative influences on BCI

performance that may be removed without the need for

continuous MRI measurements.

In combination with future investigations of BCI performance

these methods can be used to select the optimal paradigm for

persons with motor impairments [86]. Additional improvements

will be possible using EEG features to monitor BCI performance

during usage. Findings as in this paper may be used as a control

variable to specifically train the variables in question (such as

attention). This will increase the chance that early BCI sessions are

successful and not frustrating experiences.
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BCI performance correlation with baseline frequency spectra for a user with

ALS. Proceedings of the 4th International Brain-Computer Interface Workshop
and Training Course : 8–13.

41. Halder S, Spühler M, Hammer E, Kleih S, Bogdan M, et al. (2011) Prediction of
visual P300 BCI aptitude using spectral features. Proceedings of the 5th

International Brain-Computer InterfaceWorkshop and Training Course : 144–

145.

42. Mak JN, McFarland DJ, Vaughan TM, McCane LM, Tsui PZ, et al. (2012)

EEG correlates of P300-based brain-computer interface (BCI) performance in
people with amyotrophic lateral sclerosis. J Neural Eng 9: 026014.
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