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Abstract
The thalamus sub-cortical gray matter structure consists of contiguous nuclei, each individually
responsible for communication between various cerebral cortex and midbrain regions. These
nuclei are differentially affected in neurodegenerative diseases such as multiple sclerosis and
Alzheimer’s. However thalamic parcellation of the nuclei, manual or automatic, is difficult given
the limited contrast in any particular magnetic resonance (MR) modality. Several groups have had
qualitative success differentiating nuclei based on spatial location and fiber orientation
information in diffusion tensor imaging (DTI). In this paper, we extend these principles by
combining these discriminating dimensions with structural MR and derived information, and by
building random forest learners on the resultant multi-modal features. In training, we form a multi-
dimensional feature per voxel, which we associate with a nucleus classification from a manual
rater. Learners are trained to differentiate thalamus from background and thalamic nuclei from
other nuclei. These learners inform the external forces of a multiple object level set model. Our
cross-validated quantitative results on a set of twenty subjects show the efficacy and
reproducibility of our results.
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1. INTRODUCTION
The thalamus is a symmetric sub-cortical gray matter structure located between the cerebral
cortex and midbrain. It plays a central role in the processing and relay of signals involving
both higher cognitive functions and the regulation of consciousness and sleep [1]. The
thalamus is composed of neuronal clusters called nuclei, each individually responsible for
communication between various cerebral cortex and midbrain regions [2]. Thalamic nuclear
changes have been associated with multiple human functional disorders, including
Parkinson’s disease, multiple sclerosis [3], and Alzheimer’s disease [4], with the affected
nuclei a target of surgical treatment [5]. Given the potential clinical applicability, automatic
parcellation of the thalamic nuclei has become a common goal in the literature.

While thalamic nuclei present minimal contrast in conventional MRI (with few notable
exceptions [6, 7]), diffusion tensor imaging (DTI) shows more potential. DTI measures the
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directional diffusivity of water molecules at each voxel, and records this information in the
tensor matrix. With their distinct tract connectivities and cytoarchitectures [2], the nuclei
may be distinguishable via inhomogeneity in this tensor field image or its derivatives.

Several groups have had qualitative success differentiating nuclei based on spatial location
and fiber orientation information in DTI. Behrens et al.[8] used probabilistic tractography
and manually labelled each thalamus voxel according to the most probable cortical or
midbrain connection and an established histological atlas of the nuclei [2]. Apart from
connectivity, others have shown qualitative results based on optimizing regional tensor
homogeneity using level sets [9], mean-shift clustering [10], and watershed segmentation on
the image of local inhomogeneity in the tensor [11].

Other articles have shown quantitative results. Wiegell et al.[12] combined spatial and
tensor information per voxel, using a Mahalanobis distance for location and a Frobenius
norm on tensor differences in k-means clustering. Ziyan et al.[13] used normalized graph
cuts to divide the thalamus into putative nuclei, also showing that the principal eigenvector
(PEV) of the tensor was a strong distinguishing feature. In both works however, the putative
nuclei are manually labelled or inherit from a manual parcellation the label of the nucleus
they are compared against. Ye et al.[14] recently proposed the use of a multiple object level
set method called MGDM [15]. The external forces driving the optimization were derived
from the Knutsson edge map, which measures the speed of change in orientation of the PEV
(see Sec. 2). While they compared their nuclear parcellations against those of a manual rater,
their initialization depended on the rater’s thalamus boundary and they had only a small
number of cases.

In this paper, we propose automatic thalamus parcellation using random forest learners [16]
trained on manually delineated cases. We integrate the many potentially discriminating
features used in prior work, including spatial coordinates, the Knutsson map, and other DTI-
based and structural MRI information. In training, we form a multi-dimensional feature per
voxel, which we associate with a nucleus label from a manual rater. We then use random
forest classification to discriminate thalamus from background and thalamic nuclei from
each other, using all the multi-contrast data at our disposal. The resulting learners, when
applied to a target case, inform the external forces of the MGDM parcellation method used
in [14]. We perform a quantitative study with bagged crossvalidation of twenty cases,
showing a generalizable method that, unlike [14], does not require prior information about
the target image. We follow with details of our method, results, and discussion of strengths,
weaknesses and future directions.

2. METHODS
In this section we describe three key components of our automatic thalamus parcellation
scheme: the Knutsson mapping of the principal eigenmode, which informs both our
classification and the manual parcellations we train from and test against; our training of
random forest classifiers on multimodal data; and target thalamus parcellation using
MGDM.

2.1. Mapping the PEV into Knutsson Space
The principal eigenvector is the unit vector associated with the largest eigenvalue of the
diffusion tensor. Since opposing vectors in Cartesian coordinates should represent the same
orientation, there is a sign ambiguity in defining a difference measure between PEV’s [13].
Fan et al.[17] recently addressed this ambiguity using the Knutsson [18] map, defined as M :
ℝ3 → ℝ5 for the unit vector [x, y, z]:
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(1)

In the Knutsson space, two opposing Cartesian vectors are the same. The Knutsson edge
map ‖G‖F is the Frobenius norm (read: vector magnitude) of the 5 × 3 local gradient matrix,
computed using finite differences. High intensities in the edge map, where the transformed
PEV changes quickly, are considered to be boundaries between nuclei or nuclear groups.

Manual raters first use the fractional anisotropy image (FA) to find the thalamus boundary,
then use these Knutsson cues to delineate nuclear structures that we identify as the anterior,
medialdorsal, and pulvinar nuclei [17]. A fourth structure we call the ventral group is the
complement of these structures (see Fig. 1). The lateral and medial geniculate nuclei extend
inferior from the pulvinar.

We use these reproducible manual delineations as a ground truth for our training and testing,
and we use the 5D tuple of Eqn. 1 in addition to ‖G‖F as part of our random forest
classification.

2.2. Random Forest Learning
Since its introduction by Breiman [16], random forest machine learning has become very
popular due in part to its speed of convergence and generalizability, with a number of tools
implementing variations [19]. The inputs to the random forest classifier are the set of
observations and their associated class labels, where each observation consists of a
multidimensional feature vector acquired at a single voxel, including the MRI, DTI, and
derived spatial and orientation information. For the number of trees in the forest, a random
selection of the observations is used to construct a decision tree, where the decision at each
node of a tree—in this work—is based on minimizing the misclassification rate with respect
to a subset of the features available. The output is a tree ensemble that, given a new
observation, returns a putative class label for that observation and classification or
membership scores for that and the other (less likely) class labels. There are of course
numerous parameters that affect tree and forest construction (see [20] for a rich tutorial).

With co-registered modalities available, we sample 12 features at every voxel: the
normalized MP-RAGE value, FA, mean diffusivity (MD), the spatial location (separately, x,
y, and z), the five Knutsson dimensions M(PEV), and the Knutsson edge map ‖G‖F. Fig. 2
shows an example vector-valued image. At each voxel, the sampled feature vector is
associated with the thalamic nuclear label for that voxel (or background) provided by the
manual rater. After random forest learning on one subject, the resulting tree ensemble can
then be applied to another subject, with the classification scores per voxel driving the
MGDM parcellation.

2.3. Nuclear Parcellation with MGDM
MGDM is a multiple object level-set segmentation framework that guarantees object
relationships and prevents overlaps and gaps [15]. MGDM is thus applicable to thalamus
parcellation, where nuclei are contiguous with one another without gaps (see Fig. 1).
MGDM also enables the use of boundary-specific forces, where a particular force might
apply only on the boundaries between designated objects (e.g., the boundary shared by the
ventral nucleus and background). Within the level-set framework, this allows for regional
appearance modeling, which has proven successful relative to global-scale appearance [21].
In this work, we are the first to take advantage of MGDM’s expressiveness in defining
specific nucleus-nucleus and nucleus-background boundary forces.
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For each training subject, we generate seven random forest tree ensembles using subsets of
the vector-valued image and manual delineation. First, the nucleus-nucleus tree ensemble is
constructed using only the nucleus voxels (and therefore not background). In the target case,
this ensemble produces a membership image for each nucleus, and these images inform the
respective nucleus-nucleus boundaries (see Fig. 4). Then a separate tree ensemble is
constructed for each of the six nucleus-background boundaries. The voxels sampled for such
an ensemble include those identified with the particular nucleus and those background
voxels nearest to that nucleus, leading to a two class ensemble. Fig. 3 shows the relative
importance of the features in example ensembles.

In testing a particular subject, we apply the ensemble classifiers from the training cases to
that subject’s data, combining the associated membership scores. Since we do not know the
manual rater’s thalamus boundary, we do not mask the resulting score images, nor do we
register these images as in [14]. Fig. 4 shows example resulting score images with the
manual boundary overlaid, showing agreement at the relevant boundaries. The initialization
of MGDM consists of a labelling of the image that is essentially the mode of the labels at
each voxel coordinate across the training cases.

3. RESULTS
We processed 22 image sets from an ongoing ataxia study. The MP-RAGE and DTI images
were obtained on a 3T MR scanner (Intera, Philips Medical Systems, Netherlands) and co-
registered. The DTI were acquired using a multi-slice, single shot EPI sequence. Each
sequence had one B0 image and used 30 gradient directions. The data were resampled to
0.828125 mm isotropic [14].

We trained nucleus-nucleus and nucleus-background ensemble classifiers for each subject as
in Sec. 2.3. As shown in Fig. 3, the spatial and Knutsson dimensions are most discriminative
among nuclei, as is expected from the literature. For example, note in Fig. 1 that the
pulvinar, ventral/medialdorsal, and anterior are broadly separated along the anterior-
posterior direction. However, also note how other modalities, such as the MP-RAGE and
FA, are relatively more important in distinguishing nuclei from background.

It should be noted here that all images were cropped to within ten voxels of the manually
delineated thalamus. While this amounts to limited prior information about the target in this
study, there are atlas-based registration schemes that can provide this modest accuracy [22].

We then performed ten splits each with five training and the remaining test. In that each case
was in training for between one and three of those splits, each of the images was parcellated
seven to nine times. We computed the common Dice volume overlap coefficient over all
nuclei and all splits, with the pooled statistics reported in Table 1.

Results on all the groups were much better than the inter-rater variability reported for a
limited study in [17]. For example, while the automatic result on the anterior nucleus agrees
with the manual parcellation at .576, manual raters’ agreement with themselves is reported
at .324. Also note that while the results on the lateral and medial geniculates are poor, those
nuclei are also exceedingly small, potentially only two or three voxels in the original DTI
resolution, and thus difficult to resolve. In fact, the pulvinar and ventral group are often
~80% of the delineated thalamus volume in this study. Finally, we note that on these larger
nuclei our results are comparable to those of [14], but without requiring extensive prior
knowledge of the target’s thalamic boundary.
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4. DISCUSSION
Our long-term goal is the large scale study of thalamic neuropathology using automated
methods. In this paper we have extended thalamic parcellation in important ways that place
us closer to that goal. We have used random forests classification to integrate multiple
sources of potentially discriminating information (as reported in the literature) into an
established thalamic parcellation scheme using MGDM. We have also limited prior
knowledge of the target in computing our automatic results. Finally, this has allowed us to
conduct a true validation experiment testing an automated method’s ability to reproduce a
manual rater’s result. However, there are several concerns to address as we move forward.

We will first look to improve our accuracy and precision on the smaller structures, by
training more specific (nucleus-everything) random forest learners and pooling results over a
larger number of training cases. We will also integrate other discriminating contexual
features in addition to spatial coordinate, like connectivity information at each voxel, as in
[8].

Second, in addition to the Knutsson space of [17], there are several other tensor and PEV
dissimilarity measures [13, 11]. We will compare these measures on synthetic and real data
to determine if they imply related image structures.

Continuing in this line, we must understand how true to reality our nuclei are, whether
manual or automatic. We use manual parcellations in training that we assume are correct,
despite high inter-rater variability in the only study. We must further evaluate the
reproducibility of these Knutsson-implied image structures and their underlying physiology,
potentially through the use of 7T images or registered histological data.
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Fig. 1.
Left: axial brain slice with thalamus highlighted. Middle: closeup of left thalamus in
fractional anisotropy (FA). Right: left thalamus nuclear delineation from the Knutsson
edgemap image (Sec. 2.1): anterior nucleus [yellow], medialdorsal [red], ventral group
[blue], and pulvinar [orange].
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Fig. 2.
An example vector-valued image, showing MP-RAGE, FA, MD, ‖G‖F, and the five
Knutsson dimensions. Spatial location modalities not shown.
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Fig. 3.
Variable importance for example nucleus-nucleus (left) and nucleus-background tree
ensembles. Note the associated target membership images in Fig. 4.
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Fig. 4.
Target nucleus-nucleus and nucleus-background membership images with manual contours
overlaid. From left: ventral-other nuclei, ventral-background, pulvinar-other.
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Table 1

Dice results for the six defined nuclei.

Nucleus Mean Dice Median Dice

Anterior 0.576 ± 0.146 0.593

MedialDorsal 0.641 ± 0.142 0.664

Ventral Group 0.833 ± 0.074 0.838

Pulvinar 0.711 ± 0.102 0.725

Lateral Gen 0.394 ± 0.202 0.405

Medial Gen 0.489 ± 0.244 0.515
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