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Abstract
Rationale and Objectives—Modafinil (MOD) and its R-enantiomer (R-MOD) are approved
medications for narcolepsy and other sleep disorders. They have also been used, off label, as
cognitive enhancers in populations of patients with mental disorders, including substance abusers
that demonstrate impaired cognitive function. A debated non-medical use of MOD in healthy
individuals to improve intellectual performance is raising questions about its potential abuse
liability in this population.

Results and Conclusions—MOD has low micromolar affinity for the dopamine transporter
(DAT). Inhibition of dopamine (DA) reuptake via the DAT explains the enhancement of DA
levels in several brain areas, an effect shared with psychostimulants like cocaine, methylphenidate
and the amphetamines. However, its neurochemical effects and anatomical pattern of brain area
activation differ from typical psychostimulants and are consistent with its beneficial effects on
cognitive performance processes such as attention, learning, and memory. At variance with typical
psychostimulants, MOD shows very low, if any, abuse liability, in spite of its use as a cognitive
enhancer by otherwise healthy individuals. Finally, recent clinical studies have focused on the
potential use of MOD as a medication for treatment of drug abuse, but have not shown consistent
outcomes. However, positive trends in several result measures suggest that medications that
improve cognitive function, like MOD or R-MOD, may be beneficial for treatment of substance
use disorders in certain patient populations.
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1) Introduction
Translational research in neuroscience has recently provided valuable information about
drugs that improve cognitive function in subjects affected by specific pathological
conditions as well as in healthy individuals (Partridge et al. 2011). These findings, along
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with increased non-medical-use of “smart drugs” (Cakic 2009; Randall et al. 2003), which
are being used to improve cognitive performance, learning, memory and attention, are
raising concerns of abuse potential in otherwise healthy individuals (Morein-Zamir et al.
2007; Sahakian and Morein-Zamir 2011). Among these drugs are several well-known
psychostimulants, including methylphenidate and the amphetamines, as well as drugs like
modafinil (MOD, Provigil™) and its R-enantiomer (R-MOD, Armodafinil, Nuvigil™). MOD
and R-MOD (Fig. 1) are FDA approved for the treatment of narcolepsy and sleep-related
disorders, but MOD has also been tested off-label as a cognitive enhancer (Turner et al.
2003).

The cognitive enhancing effects of MOD and their neural correlates are being extensively
investigated preclinically and in humans (Minzenberg and Carter 2008). For example,
MOD-induced improvement of cognitive performance has been explored in several brain
disorders in humans that impair cognitive function. Promising results have been obtained
using MOD as an adjunct therapy to antipsychotic treatments (Farrow et al. 2006; Rosenthal
and Bryant 2004) in order to ameliorate cognitive impairments in schizophrenic patients.
Other clinical studies have also documented beneficial effects of MOD on cognitive
performance in human subjects who have been experimentally sleep deprived (Wesensten
2006). In addition, MOD appears to also enhance cognitive performance in healthy adults
who are not sleep-deprived (Makris et al. 2007; Wesensten 2006). For instance,
improvement on digit span, visual recognition memory, spatial planning, and the Stop-
Signal Reaction Time (SSRT) task suggest MOD-related improvement of working memory
and inhibition of pre-potent responding (Turner et al. 2003). Evidence for enhanced working
memory, impulse control, vigilance and sustained attention in healthy volunteers has also
been reported (Baranski et al. 2004; Muller et al. 2013; Randall et al. 2003; Turner et al.
2003). Thus, the effects of MOD on improving attention and cognitive function in healthy
subjects have provided insight into its neuropsychological actions, free from confounds of
any underlying pathology (Morein-Zamir et al. 2007). Moreover, treatment (or adjunctive
treatment) of neuropsychological disorders such as drug abuse and addiction with cognitive
enhancers such as MOD or R-MOD may be more effective than current strategies (Brady et
al. 2011). This idea is particularly appealing for the treatment of cocaine and/or
methamphetamine abuse, as there are no effective medications currently available (Dean et
al. 2011; Ghahremani et al. 2011).

2) Effects of MOD on neurotransmitters related to cognitive function
Though MOD has no measurable affinity at monoamine receptors (Duteil et al. 1990;
Korotkova et al. 2007; Zolkowska et al. 2009), direct inhibition of several neurotransmitter
transporter systems that lead to increased monoamine transmission have been described
(Minzenberg and Carter 2008). The following subchapters review how MOD-induced
changes in neurotransmission are related to activation of receptors and brain pathways that
play critical roles in modulating cognitive function. It is clear that this simple molecule
either directly or indirectly affects many neurotransmitter systems that are likely involved in
the expression of cognitive enhancing effects of MOD. In Fig. 2, the following potential
targets of MOD in mediating cognitive enhancement are depicted.

2.1) MOD effects on dopaminergic neurotransmission
The dopaminergic system includes several well-characterized brain pathways, with DA
neurons that are concentrated in specific midbrain areas, the substantia nigra and the ventral
tegmental area, and from which axons project to selected terminal areas, for example
striatum, nucleus accumbens (NAC), and medial prefrontal cortex to name a few (See for
review Cooper et al. 1996a). DA neurotransmission is involved in several important brain
functions including somatomotor activity, learning, memory, reward, motivation and
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emotions (Smythies 2005a). Thus it is not surprising that DA is also involved in the etiology
of several neurological disorders such as Parkinson’s disease, schizophrenia, ADHD, and
addiction (Smythies 2005a).

Though the precise mechanism(s) underlying MOD’s clinical effects are not fully
understood, several studies indicate that MOD inhibits the reuptake of DA via the DAT
(Loland et al. 2012; Madras et al. 2006; Mignot et al. 1994; Volkow et al. 2009; Zolkowska
et al. 2009). It should be noted that in vitro studies show that MOD binds to the DAT with
lower affinity than methylphenidate and other psychostimulants drugs (Minzenberg and
Carter 2008). Despite its relatively low affinity for the DAT, in human PET studies MOD
shows DAT occupancy comparable to that of methylphenidate at clinically relevant doses
(Volkow et al. 2009). It has also been suggested that DA uptake inhibition improves
learning of inhibitory avoidance and increases hippocampal acetylcholine release (Nail-
Boucherie et al. 1998), thus suggesting that binding to the DAT might be related to the
cognitive enhancing activity of MOD.

In vitro, MOD does not appear to stimulate the release of DA from preloaded synaptosomes
(Simon et al. 1995), but in vivo MOD and R-MOD have been repeatedly shown to
significantly increase DA levels in the NAC shell in mouse brain and in other brain areas in
rat where increased DA neurotransmission is observed (de Saint Hilaire et al. 2001;
Dopheide et al. 2007; Ferraro et al. 1997; Loland et al. 2012; Murillo-Rodriguez et al. 2007;
Zolkowska et al. 2009). MOD has also been reported to increase DA levels in the frontal
cortex suggesting this brain region as a viable target for improving cognitive performance,
since DA is a potential substrate for synaptic plasticity and mechanisms underlying memory
processes (Jay 2003). Moreover, mice lacking the DAT do not exhibit MOD-induced
wakefulness, suggesting that the DAT is also involved in this specific behavioral effect of
MOD (Wisor et al. 2001). Although compensatory neuroadaptations, in this particular case
involving changes in the DA D1 and D2 receptor levels, might be a confounding factor in
the experimental outcome (Fauchey et al. 2000; Jones et al. 1999; Wisor et al. 2001). It
should also be noted that increased wakefulness elicited by MOD might influence cognitive
performance through alternative mechanisms, including activation of the orexin system
(Ferraro et al. 1997; Ishizuka et al. 2012; Lin et al. 1992; Taylor and Russo 2000). Future
investigation into mechanisms related to the dopaminergic system in specific brain regions
and downstream effects that contribute to MOD’s cognitive enhancing effects in healthy
subjects and/or in populations with specific cognitive disorders are underway (Farrow et al.
2006).

2.2) MOD effects on noradrenergic neurotransmission
The noradrenergic system uses norepinephrine (NE) as its primary chemical messenger and
serves multiple brain functions, including arousal, attention, mood, learning, memory and
stress-related responses (see for example Smythies 2005b; Sofuoglu and Sewell 2009).
Noradrenergic neurons are localized in brainstem nuclei such as the locus coeruleus (LC)
and noradrenergic axons project diffusely throughout the brain (See for review: Cooper et al.
1996b; Smythies 2005b).

As noted above, binding studies showed MOD had no detectable binding affinity (>20 μM)
for the NE transporter (NET) (Loland 2012). Nevertheless, Madras and colleagues (2006)
measured inhibition of NE uptake in vivo by displacement of the NET selective positron
emission tomography ligand [11C](S,S)-2-(α-(2-methoxyphenoxy)benzyl)-morpholine
(MeNER), in the monkey thalamus, suggesting activation of the NE system by MOD. An
alternative mechanism underlying this effect could be secondary to MOD-induced blockade
of the DAT, which in turn produces an accumulation of extracellular synaptic DA resulting
in reduced [11C]MeNER binding. In fact, DA has been shown to be taken up in vitro and in
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vivo by the NET with a potency similar to NE (Rothman et al. 2001; Tanda et al. 1997),
suggesting that the in vivo binding of [11C]MeNER might be sensitive to endogenous NET
substrates (Seneca et al. 2006) including DA. Interestingly, MOD does not affect the activity
of NE neuronal single unit recordings in the LC of anaesthetized rats (Akaoka et al. 1991).
However, R-MOD appears to activate LC activity in experimental animals and in humans,
as shown by induction of Fos-like immunochemistry in rat brain (Fiocchi et al. 2009), and
stimulation of extracellular NE levels in prefrontal cortex (along with DA) and rostromedial
hypothalamus (de Saint Hilaire et al. 2001). Moreover, in a study on arousal and autonomic
functions in humans (Hou et al. 2005) MOD was shown to activate noradrenergic neurons in
the LC, without affecting extra-coerulear noradrenergic neurons, compared to clonidine.
Hence, presently it is unclear how MOD affects the noradrenergic system, as it does not
appear to directly inhibit the reuptake of NE via the transporter, but stimulates downstream
neurotransmission that may be related to its cognitive enhancing effects. Alvarez and
colleagues (Alvarez et al. 2002) have suggested the possibility that synchronization of the
spontaneous firing of LC neurons is obtained with the strengthening of electronic coupling,
which might result in improved neurotransmission. MOD has been suggested to enhance the
activity of different neurotransmitter pathways by acting on gap-junctions increasing the
firing synchrony in selected brain areas (Garcia-Rill et al. 2007; Urbano et al. 2007). Thus,
even though the direct effect of MOD on NE receptors or uptake is limited, it is possible that
a selective action of MOD on electronic coupling in the gap-junctions of the NE neurons in
the LC might positively influence NE neurotransmission.

Another indirect suggestion regarding the NE modulation of MOD effects on memory
processes related to cognition in human subjects has been shown by Muller and colleagues
(Muller et al. 2004). In that report, the improvement in working memory, in healthy
individuals, was characterized by tasks involving levels of high difficulty and demanding
high levels of effort. Thus, under these conditions the authors related the improvement
obtained with MOD to a possible NE mechanism of action (Smith and Nutt 1996).
Moreover, the authors propose the involvement of the orexin system in these actions (Muller
et al. 2004), since this system shows the most dense arborization of orexin axons in the LC
(Horvath et al. 1999; Sutcliffe and de Lecea 2002).

2.3) MOD and serotonin neurotransmission
Serotonin (5-hydroxytryptamine, 5-HT) neurotransmission and 5-HT receptors have been
reported to be involved in modulation of cognitive function, especially memory and learning
(see for example: Meneses 1999; Sirvio et al. 1994). Moreover, interactions of 5-HT-
receptor ligands and 5-HT neurotransmission with other neurotransmitter systems have been
systematically studied and shown to modulate different cognitive functions (Cassel and
Jeltsch 1995; Sirvio et al. 1994; Zarrindast 2006).

Several studies have reported that MOD dose-dependently increases extracellular 5-HT in
brain regions that are functionally related to cognition. For example the effects of MOD on
5-HT have been described in the frontal cortex, central nucleus of the amygdala and dorsal
raphe nucleus, and to a lesser extent, in the hypothalamus (de Saint Hilaire et al. 2001;
Ferraro et al. 2000; Ferraro et al. 2002). However, the authors of these papers only discuss
their data in terms of MODs involvement in wakefulness and regarding potential treatment
of depressive states (de Saint Hilaire et al. 2001; Ferraro et al. 2013). Hence, although MOD
may influence 5-HT neurotransmission, no direct evidence supporting 5-HT mediation of
MOD’s effects on cognition is described. It is noteworthy that MOD has been reported to
inhibit [3H]DA uptake, with an IC50 value of 6.4 μM, while inhibition for [3H]NE and
[3H]5-HT uptake was shown only at very high micromolar concentrations (>30 and >500
μM, respectively) in human embryonic kidney cells expressing cloned human DAT, NET,
and SERT (Madras et al. 2006). Similar data were obtained for MOD inhibition of DA, NE
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and 5-HT reuptake in rat brain or in COS7 cells transfected with human DAT, NET or
SERT (Loland et al. 2012; Zolkowska et al. 2009). Also an early study by Mignot and
colleagues (1994) demonstrated that MOD, up to a concentration of 100 μM, did not display
any affinity for the SERT in rat forebrain. These very low in vitro potencies of MOD at NET
and SERT would predict insignificant binding to these sites in vivo, which contrasts with
results from those reports described above where MOD was found to increase 5-HT levels in
selected brain areas. In summary, based on data currently available, it is unlikely that the
serotoninergic system directly mediates MOD’s cognitive enhancing actions. Nevertheless,
proposed indirect serotonergic actions of MOD are described in the appropriate section
below for each neurotransmitter system in which modulation of cognitive functions by 5-HT
receptors have been reported (see, for example, section 2.5 and 2.6 below).

2.4) MOD effects on glutamatergic neurotransmission
As discussed by Homayoun and Moghaddam (2010), the excitatory transmission through
glutamate receptors represents the main mode of synaptic signaling in brain regions
involved in cognitive functions. Glutamate receptors have been implicated in several forms
of mental disease, including dissociative thought disorder, schizophrenia and various forms
of dementia (Homayoun and Moghaddam 2010). For instance, NMDA receptors are
believed to play a key role in several disorders characterized by the occurrence of cognitive
deficits such as in schizophrenia (Coyle 1996; Tamminga 2006). NMDA and AMPA
receptors are also involved in long-term neuronal adaptations or synaptic plasticity, long-
term potentiation (LTP) and long-term depression (LTD) (Luscher and Malenka 2011;
Malenka 1994) that could be related to learning, memory, cognitive processes, and
behavioral flexibility (Bowers et al. 2010; Brasil-Neto 2012). To this end, it is interesting
that MOD-induced wakefulness, both acute and prolonged, results in a LTP of glutamatergic
synapses on orexin LH neurons (Rao et al. 2007). These neurons are indeed involved in
several physiological functions, as an arousal and wake-promoting center, but also in
metabolic health and achievement of natural and drug reinforced behaviors (Boutrel et al.
2013). Thus, it would be interesting to better understand the effects of the glutamatergic
LTP on LH orexin neurons in models of reinforcement, since orexin antagonist ligands have
been found to be effective in reducing the addictive actions of several drugs of abuse.
Gerrard and Malcom (2007) also pointed out the impairment of sleep observed in drug
dependents, and the improvement in cognition that MOD might have in this population.

As observed by Gerrard & Malcom (2007), an interesting feature about MOD’s effects on
glutamate transmission is found in the inconsistent pattern of activation of this brain
neurotransmitter. Different directions for glutamate level modulation are described
depending on the brain region. For instance, likely as a result of a reduction in GABAergic
tone, MOD elevates extracellular glutamate in the medial preoptic area and in the posterior
hypothalamus(Ferraro et al. 1996b). MOD-induced increases in glutamate levels in the
thalamus and hippocampus, instead, appear to be independent from modulation of
GABAergic tone (Ferraro et al. 1997). Furthermore, administration of MOD leads to an
increase in glutamate synthesis (Pierard et al. 1995; Touret et al. 1994) and striatal glutamate
brain levels (Ferraro et al. 1998; Ferraro et al. 1996a) through an unknown mechanism. On
the other hand, it was observed that only high doses (300 mg/kg) of MOD increased
glutamate release in the substantia nigra, or in the pallidum (Ferraro et al. 1998). This effect
on glutamate levels has been suggested to mediate some of the effects of MOD in
neurobiological processes related to cognitive dysfunction in drug addicted subjects (Mahler
et al. 2012a; Tahsili-Fahadan et al. 2010)(see also section 4.2, below). Increases in the
cerebral glutamate-glutamine pool have been reported and may result from MOD-induced
increases in glutamine synthetase activity (Touret et al. 1994). Thus, by enhancing the
glutamate-glutamine cycle in astrocytes, MOD could also modulate glutamatergic tone in
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the synapse, an effect that might be involved in modulation of cognition (Homayoun and
Moghaddam 2010). This modulation improves especially executive functions (as reviewed
by Gerrard and Malcolm 2007) and involves mainly individuals with average or lower
intelligence quotient (IQ) but not people with higher IQ (Randall et al. 2005).

2.5) MOD effects on GABAergic neurotransmission
Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain
(Wong et al. 2003). Administration of GABAergic agents affects memory retention and
learning (Havekes et al. 2011). For instance, GABA receptor agonists impair, while
antagonists facilitate memory consolidation (Brioni and McGaugh 1988). Furthermore,
tiagabine, a GABA transport inhibitor impairs spatial learning in rats in the Morris water
maze (Schmitt and Hiemke 2002), and baclofen, a selective GABA-B receptor agonist, has
been shown to impair spatial learning in rats (McNamara and Skelton 1996). In contrast,
selective GABA-B receptor antagonists can enhance cognitive performance in a variety of
learning paradigms (Getova and Bowery 1998).

MOD has consistent lowering effects on central GABAergic neurotransmission and one
possible mechanism/s of action is related to the alteration of GABAergic neurons in specific
brain regions. Indeed, previous studies have indicated that MOD dose-dependently inhibits
the activity of GABA neurons in the cerebral cortex, the basal ganglia (striatum, globus
pallidus, NAC, substantia nigra), medial preoptic area and posterior hypothalamus in rats
(Ferraro et al. 1997; 1998; Ferraro et al. 1999; Ferraro et al. 1996a; Ferraro et al. 1996b;
Tanganelli et al. 1992). However, other in vitro studies suggested that MOD was unable to
modify GABA-uptake as well as basal and K-evoked [³H]GABA release (Antonelli et al.
1998; Tanganelli et al. 1995), though a reduction in the cortical GABA outflow was
observed in freely moving guinea-pigs (Tanganelli et al. 1992). This suggests that MOD’s
effects on cortical GABA neurons might result from an indirect interaction (Tanganelli et al.
1995). Indeed, to exert its effects on cortical GABA MOD requires intact catecholamine
neurons, i.e. NE and likely DA neurons, as demonstrated by intra-cerebroventricular (icv)
pre-treatments with 6-hydroxydopamine that abolished MOD-induced reductions in GABA
(Tanganelli et al. 1994). This has also been shown with pretreatments of the α1
noradrenergic receptor antagonist prazosin (Tanganelli et al. 1995). MOD’s effects on
GABA are also influenced by the 5-HT system and can be abolished in the cortex by pre-
treatment with the 5-HT2 receptor antagonist ketanserin (Tanganelli et al. 1992) and in the
hypothalamus by the 5-HT3 antagonist MDL72222, which alone has no effect on GABA
levels (Ferraro et al. 1996b).

Studies showing that MOD prevented MPTP-induced increases in GABA-A receptor
binding in the internal globus pallidus (Zeng et al. 2004) have provided evidence for an
interaction at the striatal area level GABAergic system in MPTP-treated marmosets. In this
study, the authors suggest that the neuroprotection and pro-cognitive effects of MOD are
mediated by glutamatergic and GABAergic pathways within the basal ganglia, thus
explaining its potential beneficial effects in Parkinson’s disease.

2.6) MOD interactions with the cholinergic systems
The cholinergic system has been linked to brain processes important for cognitive functions,
such as attention, learning and mnemonic processes (see, for review: Bentley et al. 2011;
Bubser et al. 2012; Furey 2011; Graef et al. 2011; Klinkenberg et al. 2011; Sarter and
Paolone 2011; Terry 2006). However, only a few studies have been performed to test if the
effects of MOD in behavioral procedures involving cognitive function are mediated or
modulated by the brain cholinergic system.
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In a report by Waters and colleagues (2005), it was shown that MOD treatment did not
affect attentional processes in normal awake rats. The experiments were conducted with the
5-choice serial reaction time task, a preclinical model extensively used for studying several
behavioral/brain processes related to cognition and attention (Robbins 2002). In the same
report the authors also found no evidence for improvement in response control by MOD,
which instead seemed to facilitate impulsive responding under conditions of increased
attentional load. Moreover, in this model MOD failed to improve performance deficits
induced by scopolamine, an antagonist of muscarinic acetylcholine receptors, suggesting
that MOD does not directly interact with the cholinergic system (Waters et al. 2005). Indeed,
at doses that significantly reduce cortical GABAergic outflow MOD does not interact with
cortical acetylcholine release (Tanganelli et al. 1992). It is also of interest to note that brain
neurotransmitter systems that are affected by MOD administration, such as the 5-HT system
(de Saint Hilaire et al. 2001; Ferraro et al. 2000; Ferraro et al. 2002), might interact with
cholinergic neurotransmission. As suggested above, though 5-HT may have direct effects on
cognitive function (Meneses 1999), it may also indirectly produce specific behavioral
actions by interacting with the cholinergic system (Cassel and Jeltsch 1995; Sirvio et al.
1994). Indeed, 5-HT neurotransmission has been involved in several physiological and
neurological processes in different brain regions including, for example, basal forebrain
nuclei, hippocampus, striatum and selected cortical areas. Thus, 5-HT transmission,
indirectly stimulated by MOD, might interact with and influence cholinergic function related
to cognition (Cassel and Jeltsch 1995; Ricaurte et al. 1993).

As described above, the wake-promoting actions of MOD might be related to improvement
in cognition as a consequence of increased attention. In this regard, it is interesting that
among the many neurochemical targets identified that may explain its spectrum of
pharmacological actions, it has been recently suggested that MOD increases electrical
coupling between cortical interneurons, thalamic reticular neurons, subcoerulear nucleus
neurons, and inferior olivary neurons (Beck et al. 2008; Garcia-Rill et al. 2007; Urbano et al.
2007). This action of MOD on GAP-junctions is suggested to be opposite to the actions of
anesthetics, which reduce the synchronous activity of neurons (Evans and Boitano 2001; He
and Burt 2000). Thus, MOD would increase electrical coupling in the pedunculopontine
nucleus, which contains medium and large cholinergic neurons. This finding on one-hand
supports a role for these neurons, belonging to the so-called “reticular activating system”, in
functions related to the sleep-wake cycle. On the other hand, the increased vigilance/
attention due to MOD modulation of neuronal ensemble activities and the possibility of a
rhythmic firing under a cholinergic input control (Beck et al. 2008; Garcia-Rill et al. 2007;
Urbano et al. 2007) suggest an important new modality of MOD interaction with a
neurotransmitter and in a brain area that play a direct role in cognitive function and
dysfunction.

2.7) MOD interactions with histamine neurotransmission
Histamine has long been known to trigger peripheral actions like allergic reactions and
gastric acid secretion. The discovery of histamine as a neurotransmitter released by brain
histaminergic neurons onto its receptors has completely changed the landscape around the
physiological and therapeutic importance of the histaminergic system (Tiligada et al. 2011).
Histamine neurotransmission is mediated by three main receptor subtypes, which differ in
pharmacology, localization (selected mesolimbic areas, but also pre- and post-synaptic), and
intracellular responses (Leurs et al. 1995; Raddatz et al. 2010). Histamine regulates basic
homeostatic and higher brain functions, including cognition, arousal, circadian and feeding
rhythms (See for review: Blandina and Passani 2006; Passani et al. 2007). Histaminergic
brain neurons are exclusively located in the hypothalamic tuberomammillary nucleus
(TMN) (Tiligada et al. 2011).

Mereu et al. Page 7

Psychopharmacology (Berl). Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



MOD’s effects on brain histamine levels and neurotransmission have been the focus of
several reports. For instance, evidence that MOD could induce c-Fos expression in the TMN
(Scammell et al. 2000), where histaminergic cell bodies are located, suggests that MOD
increases histamine transmission in this area. Moreover, several studies reported that
systemic MOD administration would increase histamine release in hypothalamic areas in
anesthetized (Ishizuka et al. 2003), but also in freely-moving rats (Ishizuka et al. 2008;
Ishizuka et al. 2010). It is however noteworthy that Ishizuka and colleagues (2003) were not
able to demonstrate a significant stimulation of histamine levels when MOD was directly
infused locally into the TMN at a concentration of 1 nM. This lack of local effect on TMN
histamine neurons might indicate that when injected systemically MOD is likely stimulating
the increase in histamine levels through activation of an indirect pathway. In agreement with
these observation, and in favor of a possible downstream effect, in the same report it was
shown that MOD does not bind to histamine receptors (Ishizuka et al. 2003). The authors
suggest the orexin system as a possible mechanism of MOD actions on the histamine
system, and indeed, the same research group (Ishizuka et al. 2010) later found that MOD
increased hypothalamic histamine release and c-Fos expression of the TMN in wild-type
mice, but not in genetically-modified orexin neuron-deficient mice. These findings indicate
that MOD-induced increases in histamine release may require intact orexinergic neurons
(see for review: Ishizuka et al. 2012). However, how MOD interacts with the orexin system
responsible for the activation of histamine neurons and in turn for the increase in
hypothalamic histamine release is not known, since MOD does not directly interact with
orexin receptors. An indirect action through the glutamatergic system has been suggested
(Rao et al. 2007), but more studies are necessary to better understand the pharmacological
relevance of this interaction.

Ishizuka and colleagues (2012), have suggested an alternative mechanism to explain MOD
effects on histamine neurotransmission. This complex mechanism would involve MOD-
induced decreases in GABA levels in the ventral preoptic area, where Scammell et al (2000)
observed a MOD-induced decrease in C-Fos-like immunohistochemistry due to inhibition of
GABA neurons. These GABA neurons, in turn, promote inhibition of activity of TMN
histaminergic neurons (Sherin et al. 1998), and a reduction in their inhibitory activity would
result in increased activity of TMN neurons and increased levels of histamine in TMN-
histamine terminal areas. Regardless of mechanism, histamine levels are only slightly
increased in the presence of MOD and may not be a major contributor to its cognitive
enhancing effects. For example, other cognitive enhancing agents, such as methylphenidate
that share mechanisms of action e.g. DAT inhibition, do not induce histamine release
(Ishizuka et al. 2012).

3) Effects of MOD on brain areas involved in cognitive processes
Several brain areas, identified through modern imaging technologies, are activated by MOD
even though MOD does not have sufficient affinity to bind and activate amine receptors in
those regions (Loland et al. 2012). However, it is apparent that MOD affects the activity of
several neurotransmitters without directly interacting with their specific receptors (see
chapter above), and as suggested by several authors, electronic coupling and neuronal
synchrony effects might explain some of these activities (Garcia-Rill et al. 2007; Urbano et
al. 2007). To this end, it is interesting that MOD administration, even at very high doses,
specifically activates selected brain areas, as shown by Engber and colleagues (1998b). In
that report the effects of MOD (300 mg/kg) were related to a selective increase in c-Fos-like
immune-reactivity on a limited set of brain targets: central nucleus of the amygdala (ACe),
paraventricular nucleus of the hypothalamus, and the anterior hypothalamus. This activation
of neurotransmission suggests a distinct action profile of MOD as compared to the typical
psychostimulant amphetamine administered at a dose of 5 mg/kg showing similar effects on
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wakefulness (Engber et al. 1998b). Amphetamine, in addition, could activate frontal cortex,
striatum, lateral habenula and basolateral amygdala. Compared to MOD, these amphetamine
effects suggest a broader, less selective activation, which includes brain regions belonging to
the basal ganglia, a large brain structure that includes all of the striatal areas (caudate,
putamen, NAC), substantia nigra, and subthalamic nucleus. The basal ganglia play important
roles in motor function, cognition, learning and reward-related behaviors (Afifi 2003;
Brooks 1995; Grahn et al. 2009).

In a different study, using 2-deoxyglucose (2-DG) utilization as a measure of synaptic
activity, Engber and colleagues (1998a) confirmed the broader activation with amphetamine,
monitoring altered metabolic rates in regions of the basal ganglia, frontal cortex, NAC,
ventral tegmental area, pontine reticular fields, and other nuclei of the thalamus. In the same
report MOD but not amphetamine administration increased 2-DG utilization in the ACe.
Thus, while not directly affecting areas related to regulation of sleep and wakefulness MOD
affected brain areas interconnected to those, and at variance with amphetamine, MOD had
no effect on regions involved in controlling motor function. In agreement with this, a
systemic administration of a low dose of MOD, 75 mg/kg, increased the induction of c-Fos-
like immunochemistry in the lateral division of the ACe, as well as in the latero-dorsal
division of the bed nucleus of the stria terminalis (BNST) (Scammell et al. 2000), an integral
region of the so-called “extended Amygdala” (Alheid and Heimer 1988). This latter brain
structure has been defined from neuroanatomical data and functional observations, and is
represented by several interconnected brain regions, the BNST, the ACe, the NAC shell, and
the sublenticular substantia innominata. This brain structure plays a fundamental role in
rewarded, motivated behaviors (See for example: Koob 1999), and activation of this area by
MOD might play a role in its suggested therapeutic efficacy as a psychostimulant
medication (see chapter 4).

A more recent observation by Gozzi and colleagues (2012) showed that a strong activation
of fronto-cortical areas involved in higher cognitive function could be found upon MOD
administration in rats at doses producing plasma level concentrations resembling those
found to be efficacious in clinical studies. Thus, even though this study was performed in
anesthetized animals, it shows that MOD would be able to activate brain areas related to
arousal that are neurobiological targets underlying the wake-promoting and pro-cognitive
effects of this drug. In fact, the frontal cortex is proposed to mediate executive functions that
are essential in enhancing performance of complex tasks that might comprise of
psychological and neurological processes (See for review: Chudasama and Robbins 2006;
Dalley et al. 2004). Control of cognitive processes and attention could also be modulated by
subcortical catecholamine systems (Aston-Jones and Cohen 2005; Robbins 2005). For
instance, the locus coeruleus (LC) and the ventral tegmental area exert a gating function on
cortical ensembles arising from projecting systems involved in cognitive processing (Aston-
Jones and Cohen 2005). Cortical function can be regulated by LC neurons, and disturbances
in these systems are central to major psychiatric disorders, such as schizophrenia, depression
and bipolar disorders (Aston-Jones and Cohen 2005). Recently Minzenberg and Carter
(2008) demonstrated that MOD shifts the function of the LC-NE system toward a low-tonic/
high-phasic pattern of activity to optimize task performance. In a follow up to that study,
Minzeberg and colleagues (2011) tested the hypothesis that MOD could modulate the
default mode network (DMN). The DMN is a distributed network of functionally connected
cortical regions identified in functional neuroimaging studies (Minzenberg et al. 2011). It
has been found that by increasing the task-induced deactivation in the DMN, MOD would
also increase the speed of sensorimotor processing (Minzenberg et al. 2011). These effects
are believed to be dependent from changes in vmPFC activity. The importance of changes in
this brain region comes from its particular structure, in which there are projections from
several neurotransmitter systems, including catecholamine systems, and output connections
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able to modify and control the function of many subcortical areas, including the basal
ganglia (Gu 2002).

In another related and recent clinical study, Rasetti and colleagues (2010) examined the
effect of a chronic low-dose of MOD (100 mg/day for 1 week) on emotion information-
processing as well as cognitive information processing circuits in healthy volunteers. The
authors suggest that MOD improved the efficiency of cognitive information processing
mediated by the frontal cortex, while reducing external influences from anxiety-like stimuli
by dampening reactivity of the amygdala, without causing any changes in blood pressure or
heart rate.

4) MOD as treatment for substance abuse and addiction
Several studies now indicate that substance abusers can suffer from significant cognitive
deficits that either preceded or are caused by chronic substance abuse (Brady et al. 2011). It
is well documented that the reinforcing effects of drugs can lead to addiction (Di Chiara et
al. 1993; Le Moal and Koob 2007) and that a role for the brain’s DA system is unequivocal.
In addition, dopaminergic modulation of emotional responses and behavioral effects (Di
Chiara et al. 1998; Wise 2006), can lead to the progression from recreational use to drug
dependence, including withdrawal states, craving and relapse (Gould 2010). As noted above,
the direct effects of drugs of abuse on the dopaminergic system can have multiple
downstream effects on other neurotransmitter systems that can be long term and are
integrally involved in both addiction and resulting cognitive deficits. Impairment of
attention, memory, abstract reasoning and information processing can all conceivably
interfere with treatment success. Hence, understanding neural correlates to these deficits and
implementing cognitive enhancement through therapeutic intervention may therefore be
beneficial in the treatment strategy for at least some individuals (Anderson et al. 2009;
Brady et al. 2011; Heinzerling et al. 2010).

We have discussed the interactions of MOD with the dopaminergic system, and with other
brain neurotransmitters involved in different phases of substance use disorders. As shown in
Fig. 3, the targets of MOD potentially involved in the treatment of substance abuse are
depicted. Here we focus on recent preclinical and clinical reports and on clinical trials
related to MOD use as a potential medication for drug-dependence, and as a specific
enhancer of cognitive functions in addicted individuals. Moreover, given the limited, if any,
abuse liability of MOD, we have reviewed recent reports in which it has been successfully
substituted for psychostimulant drugs, like methylphenidate or amphetamine, both of which
are more likely to be abused in therapies where a psychostimulant is required.

4.1) MOD as a potential medication for psychostimulant abuse
Several interesting clinical reports of testing MOD’s effects in addicted individuals have
been published in the last decade, with equivocal findings about its ability to influence drug-
taking, drug-craving etc. (Brady et al. 2011; Shearer et al. 2009). For example, the
subjective effects of MOD have been studied in human cocaine-using volunteers, trained to
recognize the cocaine discriminative stimulus (150 mg, orally) from placebo (Rush et al.
2002b). The results showed that MOD did not share subjective effects with cocaine in the
therapeutic dose-range of (200–600 mg, orally), while in the same study methylphenidate
(60 mg) fully generalized to the cocaine cue. Similar results were obtained by other
researchers when comparing subjective and physiological effects of MOD with
amphetamine (Warot et al. 1993) or methylphenidate (Jasinski 2000). These results point
toward a unique mechanism of action for MOD as compared to other psychostimulants,
even though all of these drugs interact in humans with the DAT (Spencer et al. 2010;
Volkow et al. 2009).
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It is important to note, however, that even though the subjective effects of MOD did not
overlap with those of other known psychostimulants, it has been reported to elicit dose-
dependent subjective-rated measures of “Like the drug”, and “High” (Jasinski 2000).
Further, in a more recent report MOD’s reinforcing effects have been studied in a double
blind fashion in healthy volunteers not reporting any use of illicit substances at the time the
research took place (Stoops et al. 2005). A progressive-ratio procedure for earning MOD
capsules was studied under two different conditions (a relaxation and a performance
condition). In this study, MOD elicited dose-related reinforcing effects, measured as
increases in break point, under performance, but not relaxation conditions. In both subject
groups, however, MOD elicited similar stimulant-like, subject-rated effects. Thus, based on
the results of this report, the authors conclude that MOD might have abuse potential under
specific circumstances and especially in healthy subjects (Stoops et al. 2005). A prosperous
black market for MOD and other stimulants used as cognitive enhancers (Cakic 2009;
Chatterjee 2004; 2007), facilitated by their availability online (Randall et al. 2005), might
also raise concerns about the abuse-liability of these substances (Partridge et al. 2011).

To date there are no reports describing MOD-induced intoxication, dependence or
withdrawal (Myrick et al. 2004). This could be a result of its physico-chemical properties,
i.e. poor water solubility - it is only administered orally - and its instability at high
temperatures, thus preventing diversion to routes of administration (e.g. smoking or
injecting) that might increase its delivery time and concentration to the brain (Jasinski and
Kovacevic-Ristanovic 2000). Indeed, the chemical structure of MOD (Fig. 1) has been
identified as a factor in its unique pharmacological profile as well as providing a challenge
to in vivo investigation (Cao et al. 2010; Loland et al. 2012).

Taken together these reports support the notion that MOD maybe useful as an agonist-like
medication for the treatment of stimulant abuse/dependence. For instance, its “pleasant”
subjective effects (Jasinski 2000) and its longer duration of action, which is especially true
for R-MOD (Robertson and Hellriegel 2003), might improve compliance, a significant
challenge in treatment of substance abusing individuals (Loland et al. 2012; Sofuoglu et al.
2013). Several clinical trials using MOD for both methamphetamine and cocaine users have
been reported (Brady et al. 2011). For example, a clinical report on non-treatment seeking,
cocaine-using volunteers showed how MOD, administered for 5 consecutive days (200, 400,
or 800 mg orally) significantly reduced the effects of randomized blinded infusion of
cocaine (20 or 40 mg IV) (Malcolm et al. 2006). Similarly, Hart and colleagues (2008),
showed that under controlled laboratory conditions, during 48 days of study, MOD (200 and
400 mg/day) could markedly attenuate the subjective-effect ratings of smoked cocaine self-
administration. MOD (400 mg/day), associated to a biweekly cognitive psychosocial
behavioral therapy in a double-blind trial in cocaine-dependent subjects (n=62), was more
efficacious than placebo in significantly increasing the number of negative benzoyl-
ecgonine (cocaine metabolite) urine samples, and in maintaining protracted periods of
cocaine abstinence (Dackis et al. 2005). A more recent trial was performed by the same
research group in a larger number of cocaine-dependent subjects (n=210). While this study
confirmed a very good safety and tolerability use of MOD during the 8 weeks of its
administration, providing adverse events in <5% of subjects, it failed to confirm the
previously reported significant differences between MOD and placebo over the same
measures/effects of cocaine abstinence (Dackis et al. 2012). In the latter study MOD
treatment was combined with only once a week (instead of biweekly) cognitive/behavioral
therapy, a factor that might have influenced the outcome. Also, though without statistical
significance, the authors suggested a positive trend in some of the measures taken, including
higher odds of attaining abstinence from cocaine. Moreover, when data were elaborated by
gender, the male subjects (n=155) showed an almost (p=0.06) significant difference between
MOD 400 mg and placebo treatments, in respect to odd ratios for abstinence, thus
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suggesting that MOD might be efficacious in attaining cocaine abstinence under specific
conditions.

Several clinical studies have also explored the potential effects of MOD on different stages
of methamphetamine dependence. While all of these studies found MOD to be safe and well
tolerated in methamphetamine dependent subjects, none of them found statistically
significant improvements in urine detection of metabolites, abstinence, depressive
symptoms, or craving (Anderson et al. 2012; De La Garza et al. 2010; Heinzerling et al.
2010; Hester et al. 2010; Lee et al. 2013; McGaugh et al. 2009; Shearer et al. 2009). Some
of these reports are placebo controlled trials, like for example in the study by Heinzerling
and colleagues (2010) who did not find significant differences between MOD (400 mg/day)
and placebo effects in methamphetamine dependent, treatment seeking subjects (n=71) over
several measures of methamphetamine use, retention, depressive symptoms, and craving.
Other reports were performed without a placebo control, or with a limited number of
subjects. Most if not all of these reports show interesting trends of MOD toward a
significant effect on reduction in methamphetamine use or methamphetamine effects. In
addition, Anderson and colleagues (2012) recently reported that ad hoc analysis of
medication compliance wherein a significant improvement in maximum duration of
abstinence in those subjects who were in the top quartile for compliance was demonstrated.
This study not only provides positive results but underlines clinical trial challenges that must
be addressed in the future with better biomarkers for medication compliance.

A recent preclinical report shows how MOD treatment associated with behavioral training to
extinction, blocked the reinstatement of extinguished opiate-seeking behavior in rats
(Tahsili-Fahadan et al. 2010), but only at a 300 mg/kg dose. Interestingly, this anti-
reinstatement effect of MOD could be fully suppressed by the selective mGlu2/3R
antagonist LY 341495 (Tahsili-Fahadan et al. 2010). These effects led the authors to
hypothesize that MOD predominantly increased extrasynaptic glutamate levels especially in
the NAC, which would result in preferential stimulation of extrasynaptic mGlu2/3Rs, due to
a concomitant downregulation of mGlu1/5Rs that occurred during the extinction training
(Knackstedt et al. 2010). This effect of MOD is specific for reinstatement of opiate-seeking
behavior in animals trained to extinction, since it does not affect the expression of morphine
preference and the reinstatement of opiate-seeking behavior in animals not trained to
extinction (Tahsili-Fahadan et al. 2010).

4.2) MOD effects on cognitive function in substance abusers
Based on reports describing the concurrence of cognitive dysfunction in the addicted
population, several clinical procedures and preclinical animal models have been developed
to study cognition and especially neurocognitive deficits produced by acute and chronic
administration of abused substances (Beveridge et al. 2008; Garavan and Hester 2007; Nic
Dhonnchadha and Kantak 2011; Recinto et al. 2012; Verdejo-Garcia et al. 2012).

Cognitive function may be of particular relevance in understanding neuro-behavioral
mechanism/s underlying the transition from recreational to dependent use, withdrawal and
relapse (Garavan and Hester 2007). Impulsivity and sensation-seeking traits, and a kind of
pathological learning are also very well targeted as important factors during this transition to
addiction (Di Chiara et al. 1999; Ersche et al. 2010; Jupp and Dalley 2013; Le Moal and
Koob 2007). Thus, it is not surprising that drug addicted individuals display neurobiological
impairments in those brain circuits required for normal decision-making and cognitive
function (Garavan and Hester 2007). As indicated by Gould (2010) the brain regions and the
neural processes related to cognitive functions (including learning, memory, and reasoning)
overlap extensively with those that are involved in mediating drug abuse and addiction
processes (Gould 2010) see Figs. 2 and 3. For example, it has been shown that continued
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drug use, i.e. methamphetamine or cocaine, may cause cognitive impairment or deficits,
especially in the young, wherein the developing brain is particularly susceptible to the
effects of drugs of abuse. Thus, alteration of cognitive functions can be found as a result of
long-lasting changes produced by exposure to drugs of abuse in early stages of life (Gould
2010; Porter et al. 2011). For example, repeated drug use may elicit disruption of frontal
cortex processes known to regulate and control cognitive activities such as decision-making,
response inhibition, planning and memory, as indicated by brain-imaging studies in humans
and neuro-behavioral studies in experimental animals (Gould 2010; Jupp and Dalley 2013).
Therefore, the emerging emphasis on cognitive impairment in neuropsychiatric disorders,
including addiction (Brady et al. 2011) has stimulated investigation into the potential pro-
cognitive effects of MOD in this population (Ghahremani et al. 2011; Rasetti et al. 2010;
Turner et al. 2003). It has been repeatedly shown in both clinical and preclinical studies that
MOD may serve as a useful adjunct to behavioral therapies in the treatment of drug
dependencies.

Deficits in cognition and prefrontal cortical functions have also been described in
methamphetamine- (MA) dependent individuals (Monterosso et al. 2005; Salo et al. 2002).
In a recent report on a limited number of MA-dependent, non-treatment seeking subjects, a
three-day 400 mg MOD treatment significantly improved working memory in those
individuals showing poor performance at baseline, but not in those with relatively higher
performance at baseline (Kalechstein et al. 2010). The same research group more recently
(Kalechstein et al. 2013) showed that a lower dose of MOD, 200 mg, administered daily for
five days in a larger group of cocaine-dependent individuals could improve performance in
two specific sets of working memory measures tested immediately after washout. MOD
improved learning by enhancing neural functions in brain regions related to learning and
cognitive control, suggesting that MOD may be a suitable pharmacological adjunct for
enhancing the efficacy of cognitive-based therapies for psychostimulant-dependence
(Ghahremani et al. 2011). Therefore, medications that improve cognition in these subjects
may also improve the success of therapy for their addiction. It should be noted that in the
cigarette smoking population, where cognitive deficits have been consistently found in
young and older smokers (Chamberlain et al. 2012; Durazzo et al. 2012), MOD does not
seem to ameliorate these deficits (Schnoll et al. 2008). In a randomized placebo-controlled
trial for smoking cessation in 157 treatment-seeking tobacco smokers, MOD administered at
a dose of 200 mg daily for 8 weeks did not increase abstinence from smoking more than
placebo (Schnoll et al. 2008). Moreover, MOD worsened withdrawal conditions and affect,
suggesting it might not be a drug of choice in smoker population with comorbid psychiatric
disorders. It is interesting that MOD lacks any positive effects in this population, where the
cognitive deficits might appear as a result of long term exposure to nicotine, an agonist at
Ach-nicotinic receptors (Chamberlain et al. 2012; Durazzo et al. 2012). It is then plausible
that neural adaptations of Ach-nicotinic receptors render this patient population less likely to
respond to treatment with MOD, even though no direct link between Ach receptors and
MOD has been reported (see section 2.6 above) Thus, the neurobiology underlying
dependence from different classes of drugs may be a factor in MOD actions, and for this
reason, more studies on this topic may be warranted.

In this regard, the suggestions of therapeutic applications for MOD coming from the well-
known link between patients with mental illnesses (schizophrenia, bipolar disorder,
depression) impairing cognition functions and their high risk for substance abuse (see for
example: Fenton et al. 2012; O’Brien et al. 2004; Pulay et al. 2009) deserve more research at
both clinical and preclinical leves. Certainly an additional adverse impact on cognition, due
to chronic substance abuse would be particularly deleterious in combination with pre-
existing cognitive problems characteristic of such mental disorders (Gould 2010).
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4.3) MOD as a potential and safer alternative to other psychostimulant medications
One of the most interesting aspects of MOD pharmacology stands in its ability to occupy the
DAT (Volkow et al. 2009), and to increase DA levels in dopaminergic brain terminal areas
(Loland et al. 2012; Volkow et al. 2009), without apparent consequence for abuse (Deroche-
Gamonet et al. 2002; Myrick et al. 2004).

We have discussed the importance of the physico-chemical characteristics of MOD that
might reduce its propensity for abuse (Jasinski and Kovacevic-Ristanovic 2000). There
might be, however, other important pharmacological targets that play a significant role in
this apparent lack of abuse liability. Among these targets, histamine and orexin/hypocretin
neurotransmission have been repeatedly shown to be involved in modulation of the
reinforcing effects of drugs (Boutrel et al. 2013; Brabant et al. 2010). We have also
discussed their involvement in the cognitive effects of MOD. A precise role for increased
histamine neurotransmission in drug abuse and in the reinforcing effects of MOD is not
clear. There are known effects of specific histamine receptors and their antagonist ligands,
especially for the H3 receptor, in modulating the reinforcing and behavioral actions of
psychostimulants (Campbell et al. 2005; Ellenbroek 2013; Munzar et al. 2004; Tanda et al.
2008). Also, like MOD there have been suggestions that amphetamines too might increase
brain histamine transmission (Munzar et al. 2004). However, it is of interest to note that
histamine H3 inverse agonists/antagonists like MOD show specific effects on arousal and
attention, are devoid of abuse liability, and have been clinically tested and found efficacious
as narcoleptic or ADHD medications (Uguen et al. 2013; Weisler et al. 2012). Similarly, the
orexin/hypocretin system has been recently demonstrated to modulate and participate in
brain mechanisms and reinforcing actions of drugs abused by humans (Hollander et al.
2012; see for review: Mahler et al. 2012b). For example, orexin antagonists have been
shown to negatively modulate the reinforcing efficacy and behavioral effects of several
drugs of abuse, suggesting that orexin transmission plays a facilitating role in reward-related
behaviors, including reinstatement of drug intake in abstinent animals (Mahler et al. 2012b).
MOD has been suggested to increase orexin release through an unknown mechanism (see
the already discussed papers by Ishizuka et al. 2010; 2012). An indirect action on LH orexin
neurons through MOD-induced LTP in glutamategic synapses has been reported (Rao et al.
2007). Interestingly, this effect is suppressed by pharmacologic blockade of the melanin
concentrating hormone (MCH) or is not present in genetically modified mice lacking the
MCH-1 receptors (Rao et al. 2008). Even more interesting is the evidence that suggests the
MCH system is involved in cocaine abuse and in natural and drug reinforcement (Chung et
al. 2009; Karlsson et al. 2012). Thus, while it is not clear how an increase in orexin
neurotransmission might be responsible, at least partially, for the reduced abuse liability of
MOD, it is possible that complex interactions among several pharmacological targets have a
role in this effect. For instance, when taken together, the histaminergic and orexinergic
properties of MOD might play a primary role in its adjunct therapeutic effects in specific
populations of drug abusers, where cognitive dysfunction is evident. Also, this might be true
for treating those brain disorders that benefit from associating psychostimulant and cognitive
therapies, for example ADHD or specific substance use disorders (Brady et al. 2011).

Alteration of normal DAT function is related to a number of neurological disorders that are
commonly treated with psychostimulant drugs. For example, the most commonly used
medications in the treatment of ADHD in children and adults are methylphenidate and
amphetamine, both of which function primarily through the DAT to express their therapeutic
actions. However, misuse of prescription ADHD medications in the U.S. is very common,
especially among young adults, 18 to 25 years of age (See for example Sweeney et al. 2013).
The question is, can the psychostimulant actions of MOD efficaciously substitute for the
therapeutic effects of amphetamine or methylphenidate in ADHD patients? The answer to
this question comes from several trials and reports showing positive effects of MOD
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treatments in the therapy of ADHD. For example, MOD has been tested as an ADHD
medication in comparison to amphetamine, in adult-subjects who met DSM-IV criteria for
ADHD (Taylor and Russo 2000). Results from this report show improvement for both MOD
and amphetamine vs. placebo in several symptoms related to ADHD. The authors conclude
that these results support MOD as a reasonable alternative to the more addictive
psychostimulants for treatment of ADHD. Several other reports and meta-analyses show
mostly positive effects and efficacy of MOD as a treatment for ADHD (Faraone and Glatt
2010; Lindsay et al. 2006; Mann and Bitsios 2009; Turner 2006; but see: Wilens et al.
2011), thus making it a potentially safer candidate for this therapeutic application.

An extension of the concept that MOD might also be useful in the treatment of other
disorders typically treated with methylphenidate or amphetamine comes from its military
use. It is well known that veterans from war operations are at high risk for post-traumatic
stress-disorders and for developing other mental illnesses (see for example: Seal et al. 2011).
Moreover, compared to active duty forces, veterans might also be at higher risk for alcohol
and substance use disorders. We are not aware of the potential role that psychostimulants
used during combat operations might have on this specific population. However, since MOD
has not been shown to be abused or to elicit withdrawal signs after its repeated use
(Martinez-Raga et al. 2008), the possibility to substitute psychostimulants showing higher
abuse liability with a safer compound makes MOD a very promising candidate for use in
military settings where sleep deprivation is common. This is especially true since one of the
important features of MOD is to promote wakefulness without preventing sleep, if this
opportunity is available (Batejat and Lagarde 1999). Thus, a random combination of periods
of sleep-deprivation, for example, during combat operations, and an opportunity for periodic
naps would make MOD the drug of choice. As discussed above, the recent discovery that
histamine H3 receptor inverse-agonist/antagonist are safe and clinically efficacious anti-
narcoleptic therapies (Uguen et al. 2013), suggest that safe histaminergic enhancing effects
of MOD may contribute to its therapeutic wake-promoting effects.

During the last 10–15 years MOD has been tested as an alternative to d-amphetamine by
aircrews of the United States military services during helicopter flight operations (Estrada et
al. 2012), and its use for sustained military operations has been tested in several studies
(Batejat and Lagarde 1999; Buguet et al. 2003; Caldwell et al. 2000). In one of these studies
MOD was administered at high doses, 3 × 200 mg of MOD/day, and it was shown that
helicopter pilots maintained their alertness and accuracy at pre-deprivation sleep-levels, after
40 hours without sleep (Caldwell et al. 2000). In the same study MOD elicited some side
effects, dizziness, nausea, and vertigo that, as also suggested by Buguet and colleagues
(2003) were likely the result of a too high dose of MOD. Indeed, when compared to the
effects of d-amphetamine in sustained military flight operations (Estrada et al. 2012),
administration of MOD was well tolerated at 3 × 100 mg doses given every 4 hours. In the
same report MOD performed very well as a d-amphetamine alternative counteracting the
sleep deprivation effects (40 hours without sleep) on mood and cognition (Estrada et al.
2012). In a different report by Whitmore and colleagues (2006) the effects of MOD (400
mg/day) were studied on military personnel during a prolonged, 88-hour sleep deprivation to
simulate military ground operations. In this report subjects receiving MOD treatment did not
maintain a better state of alertness and performance compared to subjects treated with
placebo. While this dosage has been suggested by Buguet and colleagues (2003) as a safe
and efficacious, Whitmore and colleagues (2006) concluded that the complete sleep loss
could not be counteracted by the low dose of MOD employed (Whitmore et al. 2006).

Based on these reports, MOD appears to be a superior medication for improving
performance upon sleep deprivation as compared to methylphenidate or amphetamine that
are more likely to be abused by the general population. This is even more important in
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certain populations such as young adults that may be more vulnerable to develop substance
use disorders, or military personnel that might show a higher likelihood to develop post-
traumatic stress disorders, and comorbid alcohol or drug abuse (Seal et al. 2011).

5) Conclusions
MOD appears to have multiple effects on different brain areas and neurotransmitter systems
in the brain. MOD activates different circuits and brain areas as compared to amphetamine
and methylphenidate, while sharing inhibition of dopamine reuptake as a common
mechanism underlying its pharmacological effects. Indeed, intriguing preliminary findings
suggest that MOD may activate cortical over subcortical areas in the brain and might
produce cognitive improvement in a number of neurological and psychiatric disorders with
relatively low, if any, abuse liability. Thus, MOD and its longer acting R-enantiomer, R-
MOD, offer significant potential as cognitive enhancers suggesting alternative therapies for
ADHD and other neuropsychiatric disorders (Loland et al. 2012). Recent research identified
several non-dopaminergic effects of MOD, such as the increase of electrical neuronal
coupling, or the enhancement of histamine and orexin neurotransmission that might be of
primary importance to explain its efficacy as a wake-promoting and cognitive enhancing
medication, even in non-sleep deprived individuals. Moreover, its ability to selectively
activate specific brain areas, like the extended amygdala and the lateral hypothalamus would
likely contribute to its unique pharmacological profile and to its efficacy as a
psychostimulant medication. Indeed, the reviewed clinical literature has shown that MOD
may hold promise as a medication to treat psychostimulant-induced cognitive dysfunctions
and also as an adjunct to behavioral therapies for psychostimulant abuse. Additional clinical
studies need to be designed to better understand how and to what extent MOD improves
cognitive performance. Understanding the mechanism/s underlying the therapeutic efficacy
of MOD will help to better address the needs of multiple patient populations affected by
cognitive disorders, including substance abuse.
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Figure 1.
Chemical Structures of modafinil (MOD) and armodafinil (R-MOD).
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Figure 2.
Targets of MOD’s actions as a cognitive enhancer
Brain areas and related neurotransmitter systems that are potentially involved in mediating
the therapeutic actions of MOD as a cognitive enhancer. NE= norepinephrine; DA=
Dopamine; GABA= gamma-amino-butyric-acid; GLU= glutamate; NET= norepinephrine
transporter; DAT= dopamine transporter, 5-HT=serotonin; Ach= Acetylcholine.
Solid lines indicate direct interactions, while dashed lines indicate observed effects that
appear to be via indirect interactions or for which a mechanism has not yet been elucidated.
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Figure 3.
Targets of MOD’s actions as a potential medication for substance use disorders.
Brain areas and related neurotransmitter systems that are potentially involved in mediating
the actions of MOD related to its potential therapeutic effects on psychostimulant and opiate
abuse. NE= norepinephrine; DA= Dopamine; GABA= gamma-amino-butyric-acid; GLU=
glutamate; NET= norepinephrine transporter; DAT= dopamine transporter.
Solid lines indicate direct interactions, while dashed lines indicate observed effects that
appear to be via indirect interactions or for which a mechanism has not yet been elucidated.
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