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Abstract

Background—Serum creatinine has been used as the diagnostic test for acute kidney injury

(AKI) for decades despite having imperfect sensitivity and specificity. Novel tubular injury

biomarkers may revolutionize the diagnosis of acute kidney injury; however, even if a novel

tubular injury biomarker is 100% sensitive and 100% specific, it may appear inaccurate when

using serum creatinine as the gold standard.

Conclusions—In general, the apparent diagnostic performance of a biomarker depends not only

on its ability to detect injury but also on disease prevalence and the sensitivity and specificity of

the imperfect gold standard. Apparent errors in diagnosis using a new biomarker may be a

reflection of errors in the imperfect gold standard itself rather than poor performance of the

biomarker.

Introduction

Diagnostic tests are judged on the basis of their ability to classify individuals according to

disease status. Serum creatinine concentration (SCr) is the surrogate test for diagnosis of

acute kidney injury (AKI). SCr is acknowledged to be an inadequate gold standard as it has

poor specificity in some settings and poor sensitivity others. Change in SCr is a continuous

variable, but is dichotomized to define a binary outcome (AKI present or absent). The

choice of a cutoff will directly affect the true sensitivity and specificity of SCr as the gold

standard: using small changes in SCr to define AKI will lead to relatively higher sensitivity

but lower specificity; using larger changes in SCr, or the need for renal replacement therapy

in severe AKI, will result in lower sensitivity but higher specificity for true tubular injury.

Even minor imperfections in the diagnostic performance of a gold standard test like SCr can

result in significant misinterpretations of the diagnostic performance of a novel biomarker
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under investigation. For the purposes of this exercise, we will assume that the tubular injury

process we are attempting to identify with a biomarker can be unequivocally known.

The Effects of Using an Imperfect Gold Standard

To understand how an imperfect gold standard can distort the apparent diagnostic

performance of a new test, consider a study of 1,000 individuals; assume 200 truly have AKI

with tubular injury with the diagnosis based not on changes in SCr, but another ideal

diagnostic test that has 100% sensitivity and 100% specificity. The imperfect gold standard

test, SCr, would then have its own sensitivity and specificity for the true diagnosis of AKI:

SCr would not have perfect sensitivity due to renal reserve in some patients or perfect

specificity due to pre-renal azotemia. Even if the sensitivity and specificity of SCr are each

90% (likely to be overestimates), then a 2×2 contingency table (Table 1) can be constructed

that shows how many individuals are correctly and incorrectly classified by SCr as having

AKI.

Of the 800 individuals without true AKI as defined by tubular injury, SCr would falsely

identify 80 as having AKI. Of the 200 individuals with true AKI, SCr would falsely identify

20 as not having AKI. Now imagine that a new biomarker is studied in this cohort of

patients, and that the new biomarker is in fact perfect when compared to the true gold

standard. How would such a perfect biomarker appear to perform when compared to SCr?

Table 1 shows the results: the apparent sensitivity of the perfect biomarker is only 69%, and

the apparent specificity is 97%.

The equations that describe the apparent sensitivity and specificity of a novel biomarker,

assuming the results of the gold standard and the novel biomarker are independent given

disease status, an assumption termed conditional independence, are as follows:

1. Apparent sensitivity:

2. Apparent specificity:

where the subscripts G and B refer to the imperfect gold standard and the novel biomarker,

respectively.

Receiver operating characteristic (ROC) curves are graphical plots of sensitivity versus 1 –

specificity; the area under the receiver operating characteristic curve (AUC-ROC) is a

summary statistic widely used to assess diagnostic test performance characteristics. Because

ROC curves are monotonic, the upper and lower bounds of the AUC-ROC can be calculated

for a given sensitivity and specificity value (defined jointly relative to the same cutoff) as

follows:
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Lower bound of AUC-ROC = sensitivity × specificity

Upper bound of AUC-ROC = sensitivity + (1 − sensitivity) × specificity

The lower and upper bounds for AUC-ROC curves are derived by plotting the point (1 −

specificity, sensitivity) and finding monotone curves through the given point that have

minimal and maximal AUC-ROC’s respectively. These curves will be step functions with a

vertical jump at X = 1 − specificity. These bounds are for the empirical ROC curve; they are

not confidence bounds for the true ROC curve. Corresponding bounds for the apparent

AUC-ROC assume conditional independence and replace sensitivity and specificity with

their “apparent” counterparts.

Defining AKI according to the need for dialysis

The need for renal replacement therapy following AKI almost always reflects severe

parenchymal kidney injury; rare exceptions may include dialysis initiation in patients with

advanced chronic kidney disease or dialysis for volume overload, electrolyte abnormalities,

or toxic ingestions. As seen in Table 2, if we assume that the gold standard in this case, need

for acute dialysis, has specificity of 100% and sensitivity of 25%, then at a true disease

prevalence of 20% the apparent sensitivity of a perfect biomarker is 100%, apparent

specificity is 84%, and the lower and upper bounds of the apparent AUC-ROC are 0.84 and

1.00. Even rare false positives (specificity of 99% for the imperfect gold standard) lead to an

apparent sensitivity of 86% and lower and upper bounds of the apparent AUC-ROC of 0.72

and 0.98.

Previous work on the imperfect gold standard

The effect of imperfect reference standards has in general been neglected in the expanding

clinical literature on diagnostic test accuracy. In the biostatistical literature, several

approaches based on the assumption of conditional independence have been proposed. If the

gold standard has a known false positive and false negative rate, and the true disease

prevalence is known, then the apparent sensitivity and specificity of a new diagnostic test

can be calculated [2–4]. Unfortunately, the required parameters are not usually known with

certainty. Hui and Walter have proposed a method to estimate the error rate of a diagnostic

test even when the error rates of the gold standard are unknown by applying both tests

simultaneously in two populations with different prevalences of disease [5]. Walter and

Irwig [6] have reviewed latent class models for use when no gold standard exists at all; the

approach requires a minimum of three (imperfect) diagnostic tests and the use of maximum

likelihood techniques to yield estimates of disease prevalence and test accuracy. All of these

approaches make the assumption of conditional independence of the new diagnostic test and

the gold standard, which may not be a reasonable assumption in many clinical settings.

Analytical approaches that incorporate conditional dependence have been described by

Vacek[7] and Phelps et al.[4] Alonzo and Pepe [8] have proposed a composite reference

standard test to overcome deficiencies with other methods.
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Non-creatinine based endpoints for biomarker studies

Longer-term outcomes such as mortality, or the eventual need for renal replacement therapy,

may be used to compare a new biomarker against an imperfect gold standard. Indeed,

troponin’s association with mortality [9–11], in conjunction with its known tissue

specificity[12], contributed to its adoption for the diagnosis of myocardial infarction[13].

One difficulty with extrapolating this approach to AKI biomarker studies may be the large

sample sizes required for statistical power, the long latency between an episode of kidney

injury and outcomes such as progressive CKD, and confounding by other risk factors and

clinical events.

A biomarker may also be associated with mortality or another long-term outcome because of

an association with sepsis or inflammation, without being reflective of actual kidney injury.

This highlights that a surrogate biomarker should be in the causal pathway of the disease

process.

Another possible study design involves the use of exposure status to test a biomarker’s

accuracy. Consider, for example, a study in which biomarkers are tested following exposure

to a drug with known nephrotoxic potential, such as cisplatin. If biomarkers are measured in

well-matched patients who did and did not receive cisplatin, exposure status could be used

as the criterion against which biomarkers are compared, assuming that there is a high

correlation between exposure status and kidney injury. In this type of design, SCr does not

need to be used as a gold standard. The risk of such a study design, however, is

identification of biomarkers that are too sensitive to be of use clinically. These types of

studies may be useful to identify biomarkers that fulfill the vision elaborated by the United

States FDA regarding qualification and use of biomarkers in drug development, dose

regulation, and clinical monitoring of nephrotoxic drug exposure [14].

The ultimate validation of a biomarker’s utility would be the demonstration, ideally in a

randomized controlled trial, that biomarker measurement actually alters clinical

management and improves clinical outcomes. For example, knowledge of AKI status as

inferred by biomarker elevations should lead to reductions in length of stay, ICU-related

complications, need for renal replacement therapy, long-term renal function decline, or

mortality.

Conclusion

Biomarker development in nephrology is crucial if we hope to develop therapeutic strategies

for AKI prevention and treatment. Underpowered studies using small changes in SCr as

endpoints may have the unintended and perverse effect of underestimating the utility of

novel biomarkers that outperform SCr itself. When using a non-ideal gold standard to

evaluate novel biomarkers, appropriate study design considerations become critical to avoid

misleading conclusions that would preclude the acceptance into clinical medicine of new

useful biomarkers that have the chance to revolutionize the approach to AKI diagnosis and

therapeutics.
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Table 1

The effect of an imperfect gold standard on the sensitivity and specificity of a new biomarker that is in fact

100% sensitive and specific for acute kidney injury.

True AKI (i.e., tubular injury)

AKI No AKI Total

AKI according to SCr 180 80 260

No AKI according to SCr 20 720 740

Total 200 800 1000

sensitivity = 90% specificity = 90%

AKI according to SCr

AKI No AKI Total

New biomarker positive 180 20 200

New biomarker negative 80 720 800

Total 260 740 1000

apparent sensitivity = 69% apparent specificity = 97%

Abbreviations: SCr, serum creatinine; AKI, acute kidney injury
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