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Abstract
Gene-gene interactions are increasingly being addressed as a potentially important contributor to
the variability of complex traits. Consequently, attentions have moved beyond single locus
analysis of association to more complex genetic models. While several single-marker approaches
toward interaction analysis have been developed, such methods suffer from very high testing
dimensionality and do not take advantage of existing information, notably the definition of genes
as functional units. Here we propose a comprehensive family of gene-level score tests for
identifying genetic elements of disease risk, in particular pair-wise gene-gene interactions. Using
kernel machine methods, we devise score-based variance component tests under a generalized
linear mixed model framework. We conducted simulations based upon coalescent genetic models
to evaluate the performance of our approach under a variety of disease models. These simulations
indicate that our methods are generally higher powered than alternative gene-level approaches and
at worst competitive with exhaustive SNP-level analyses. Furthermore, we observe that simulated
epistatic effects resulted in significant marginal testing results for the involved genes regardless of
whether or not true main effects were present. We detail the benefits of our methods and discuss
potential genome-wide analysis strategies for gene-gene interaction analysis in a case-control
study design.
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INTRODUCTION
Genome wide association studies (GWAS) are a popular approach toward investigating the
genetic component of complex diseases. Through the use high-throughput genotyping chips,
GWAS can simultaneously characterize hundreds of thousands of single nucleotide
polymorphisms (SNPs) for a given subject. Analysis of GWAS data typically involves the
isolated evaluation of individual SNPs for association with a given phenotype. Despite much
success in identification of associated loci [Hindorff, et al. 2009], such findings generally
are of modest effect and often explain only a small proportion of heritability in complex
phenotypes [Manolio, et al. 2009]. This “missing heritability” has prompted investigators to
consider alternative sources of genetic variation in association analysis.
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It is well established that coding products of some genes interact with one another
molecularly in complex networks, such as enzymatic reactions and signaling cascades
[Bonetta 2010]. Such interactions may contribute to the genetic variation of complex traits
[Moore 2003], with multiple examples documented [Howard, et al. 2002; Li, et al. 2012;
Moore and Williams 2002; Sima, et al. 2012]. Statistically, gene-gene interactions are
defined as deviations from additive marginal effects of individual genes [Kempthorne 1954],
and our reference of gene-gene interactions hereafter is with respect to such. In regard to
genotyping data, pair-wise gene-gene interactions can be considered at the SNP-level as
statistical interactions between two SNPs in respective genes of interest. Similar to single
marker regression analysis, SNP-SNP interaction analysis can be framed as a traditional
regression-based analysis by including interaction terms into a pair-wise generalized linear
model. It is important to note that this definition of interaction does necessarily coincide
with the biological interpretation of interaction, and that one does not necessarily imply the
other [Greenland 2009]. Although the utility of identifying such interactions with respect to
explaining missing heritability is contentious [Aschard, et al. 2012; Moore and Williams
2009], such interactions can at the very least contribute to our understanding of complex
disease etiology.

Advancements in both genotyping technology and imputation methodology have increased
the density of genotyped markers in the coding regions of genes. Moreover, large scale next-
generation sequencing technologies, such as whole exome/genome sequencing, interrogate
all genetic variation within regions of interest. Unlike traditional GWAS, these tools yield
dense genotype data. Under such conditions, exhaustive genome-wide evaluation of SNP-
level pair-wise interaction is computationally burdensome [Moore and Ritchie 2004]. Thus,
the development of statistically powerful and computationally efficient algorithms for
detecting these interactions is of great interest. A comprehensive review of gene-gene
interaction analysis can be found by Cordell [Cordell 2009].

Gene-level testing has recently grown in popularity due to its dimensional reduction and
biological interpretability [Jorgenson and Witte 2006; Neale and Sham 2004]. In contrast to
single-SNP analyses, such tests allow for all of the SNPs within the region of a gene to be
modeled jointly as a set and can take into account the linkage disequilibrium (LD) structure
within the gene. By grouping SNPs based upon prior biological information, SNP-set testing
may improve power and increase the chance of reproducible significant findings [Wu, et al.
2010], particularly when multiple causal SNPs are present in a given gene. While SNP-set
approaches are not necessarily restricted to gene-level definition, the gene as a functional
unit is a natural choice and provides an intuitive decomposition of the genome.

Kernel machine methods in particular have provided a successful tool in SNP-set association
testing [Kwee, et al. 2008; Wu, et al. 2010; Wu, et al. 2011]. Such approaches determine
genetic association through representations of pair-wise genomic similarity between pairs of
subjects [Schaid 2010a; Schaid 2010b]. Recently, Li and Cui presented a gene-level
interaction approach for continuously-valued quantitative traits using a kernel machine
smoothing-spline ANOVA model, which they refer to as SPA3G [Li and Cui 2012]. An
application of this method for a binary response, such as disease status, presents unique
challenges which preclude a direct application of SPA3G, notably that the response can no
longer be assumed to be Gaussian distributed. These challenges motivated our work to adapt
the methods within SPA3G to be applicable to case-control studies.

In this paper, we outline a comprehensive approach toward hypothesis testing for marginal
and interaction effects of genes in association analysis for dichotomous responses using
regression-based score tests. In addition to detailing omnibus and marginal tests, we define a
kernel regression approach toward gene-gene interaction detection for a dichotomous
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response under a generalized linear mixed model (GLMM) framework. We evaluate the
performance of these testing approaches using coalescent simulation data under a variety of
experimental conditions, and investigate their relation to one another within the context of
multiple epistatic models. We also compare our approach to exhaustive SNP-SNP logistic
regression and two leading gene-level gene-gene interaction methods. Finally, we discuss
the implications of our findings and suggest future directions for further development.

METHODS
Consider a case-control association study involving N individuals, such that N is composed
of Ncase cases and Ncont controls. Let y = (y1, y2, …, yN)T be a binary representation of case-
control status, such that yj = 1 if the jth subject is designated a case and 0 otherwise. Let X be
an N × p set of any additional covariate data, and G1 and G2 be respective N × q1 and N × q2
matrices of genotypes for markers contained within the regions of genes 1 and 2, where q1
and q2 correspond to the number of respective markers within each gene. It is assumed that
these regions are defined a priori based upon some relevant biological criteria. We define
genotypes under an additive model, such that Gi(j, k) ≡ gijk ∈ {0,1,2} is the integer count of
minor alleles observed at marker k in gene i for subject j.

Using a positive-definite kernel function, κ(·,·), we can map Gi to some Hilbert space
through the mapping ϕ: G → F such that F is an inner product space. This is accomplished
through the “kernel trick” [Schölkopf and Smola 2002] which calculates inner products in F
through the given kernel function, such that

where Gi(j,·) represents all of the marker genotypes for in gene i for subject j. The kernel
function circumvents the necessity to calculate the explicit mappings ϕ(Gi(j,·), yielding the
kernel space mapping Ki of the respective original genotype matrix Gi. This kernel matrix Ki
is an N × N full Gram matrix, such that the element-wise definition is given as Ki(j, j′) =
κ(Gi(j, ·), Gi(j′, ·)), for j, j′ = 1, …, N. From Aronszajn [Aronszajn 1950], we also define the
interaction kernel matrix K3 as K1 ◦ K2, where the operator ◦ represents the Hadamard, or
element-wise, product. Through K1, K2, and K3, the genetic effect of the two genes of
interest on the phenotypic variation is decomposed into main and interaction effects. These
matrices in turn can be applied in a mixed-model context as underlying covariance structures
for variance components. Let μi represent the probability that the ith observation is a case,
and μ = (μ1, …, μN)T. We consider a mixed effects logistic model for μ, such that

where , , and  are independent N × 1
random effect vectors, and X̃ = [1 X].

Global Hypothesis Test

Define the omnibus, or global, hypothesis of no genetic effect such that .
The score statistic is defined as Q0 = (y − μ̂)T KaU (y − μ̂), where Kall = K1 + K2 + K3 and μ̂
are the fitted values of μ on X̃ under H0. Under the null hypothesis, Q0 is asymptotically
distributed as a weighted mixture of chi-square distributions [Liu, et al. 2008]. While there
are a number of methods to characterize this distribution for purposes of hypothesis testing,
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we employ Pearson’s three-moment approach [Imhof 1961], since the approximation error
can be bounded.

Marginal and Interaction Hypothesis Tests
It is possible to test for the presence of marginal effects of each gene individually by using
the respective kernel matrix in the framework of the score statistic, such that Qi = (y − μ̂)T

Ki (y − μ̂) for i = 1,2. This is equivalent to the sequence kernel association test (SKAT) [Wu,

et al. 2011]. If there are no marginal effects present ( , ), we can also test
specifically for a statistical interaction between genes 1 and 2 via the score statistic Q3 = (y
− μ̂)T K3 (y − μ̂), which we refer to as the interaction test. For any of these tests, we again
approximate the null distribution of Qi by the Pearson’s approximation.

Composite Hypothesis Test
We also define a test specifically for an interaction effect adjusting for the presence of

marginal gene effects (τ1 ≠ 0, τ2 ≠ 0), such that . This requires fitting the null
GLMM that includes the main effects of the two genes, which may be conducted using
penalized quasi-likelihood [Breslow and Clayton 1993] (PQL). Maximum likelihood
approaches toward fitting GLMMs involve intractable integration of high dimension, and
PQL utilizes Laplace approximation in order to accommodate this integration through
iterative estimation of the fixed and random model components. For our purposes, we fit this
model using the glmmPQL function from the MASS library in R [Venables and Ripley
2002].

Definition of the corresponding score statistic is complicated by the fact that the covariance
matrix is no longer diagonal, but includes off-diagonal binomial covariances, which are
difficult to obtain. One remedy is to adapt work by Lin [Lin 1997], which outlines score
statistics for variance component testing in GLMMs as follows. Define Δ and W to be
diagonal N × N matrices with corresponding diagonal elements

where g(·) is the link function in the GLMM, g′(μj) denotes the first derivative of g(μj) with
respect to μj, V(·) is the corresponding variance function, and μj is the mean for the jth

subject under the null model. Since we apply the canonical logit link function, it follows that
δj = wj = μj(1 − μj). From Lin [Lin 1997], we define y* to be the PQL working vector under
the null GLMM, such that

Then we define restricted maximum likelihood (REML) version of our composite score
statistic to be

where  is the null projection matrix and

 is the estimated null covariance matrix with variance component
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parameter estimates  and . While Lin goes on to define a normalized version of the score
statistic, our early findings indicated strong biases for a dichotomous response under the
null. Similar to the global and marginal score tests, we derive the null distribution for QC
using the Pearson’s approximation.

Computational Considerations
Fitting the composite null model using PQL requires that K1 and K2 be decomposed into

corresponding square-root matrices Z1 and Z2, such that  and . When
a linear (or weighted linear) kernel is used, this is easily accommodated since

, where A is a diagonal weight matrix, such that . If a
nonlinear kernel function, such as the Gaussian kernel, is used, then this may be completed
using the incomplete Cholesky decomposition [Kershaw 1978] of Ki, whereby Zi is the
lower triangle matrix. Then, the random effects η1 and η2 are modeled as Z1 b1 and Z2 b2,

such that  and . Since such decompositions can be
computationally intensive, there is initial appeal to the use of some form of linear kernel for
this application, particularly when the number of markers per gene is relatively small.

Algorithms for approximating the null distribution of the score statistics (Q1, Q2, Q3, Qall,
QC) are dependent upon deriving the eigenvalues of U = KP for the respective kernel matrix
K and projection matrix P of each test, which always will be N × N. This can be
computationally demanding, as such decompositions are in practice O(N3). However,
equivalent eigenvalues can be derived from U* = ZT PZ. This form is more appealing for
two reasons: (1) it is it is guaranteed to be positive definite, which can be exploited by
decomposition algorithms; and (2) if rank(Z) ≪ N, the computational burden of this
eigendecomposition is greatly reduced. This can motivate the use of low-rank
approximations of Z, although we leave this topic to future research.

Kernel Selection
There are multiple options for which kernel function to apply to the marker data [Schaid, et
al. 2005]. We used a polygenic kernel, which is a linear kernel applied to standardized

genotype data. We define the polygenic kernel representation for gene i to be 
where

Since this is a type of linear kernel, it affords some computational benefits mentioned
previously. However, there may be gains in statistical power in utilizing nonlinear kernel
functions, such as the Gaussian kernel, which may be capable of detecting nonlinear
interactions.

Simulation Study
In order to assess the properties of type I error rate control and statistical power for our
hypothesis tests, we devised a comprehensive simulation study. Our basic simulation
strategy was to simulate haplotypes and randomly combine haplotypes to create a large
population of genotypes. Then, under a given genetic disease model and prevalence, we
simulated disease status and perform case-control sampling to obtain our test data. The
details of our simulation are given below.
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To simulate genotypic data, we used the calibrated coalescent model simulation software
COSI [Schifano, et al. 2012] to generate two independent sets of 10,000 50kb regions, each
representative of a distinct gene. Recombination maps were based upon observed LD
structure in samples of European ancestry. A derived minor allele frequency (dMAF) was
calculated for each marker based upon its frequency in the haplotype population to represent
a population-based value. From these pools of haplotypes we generated a large population of
Npop genotype profiles for simulated individuals by combining two randomly selected
haplotypes. The two gene-wise data sets had 1017 and 1040 polymorphic sites, respectively,
with 116 and 164 being common SNPs (dMAF ≥ 0.05). We then selected a subset of
common SNPs for each gene to represent our simulation genotyped marker data, such that
the maximum pairwise Pearson correlation between any two SNPs in a given gene was ≤
0.50. This resulted in 12 and 25 genotyped SNPs for genes 1 and 2, respectively, ranging in
dMAF from 0.05 to 0.49. LD plots of both SNP-sets are found in Figure 1.

To simulate disease status for given genotypes, we adopted a model parameterization
applied by Aschard et al. [Aschard, et al. 2012], which used a log-additive approach such
that the marginal and interaction effects are independent, in order to directly control the
marginal and interaction effect sizes. This approach uses a recoding of the genotype values
gijk to corresponding genotype weights, gijk, which are based upon the dMAF of the
respective SNPs. Let Ω1 and Ω2 respectively define the subsets of gene 1 and gene 2 SNPs
selected to be causal. Dichotomous phenotypes are then simulated via a log-linear model
with probability of occurrence μj, such that for subject j

where log indicates the natural logarithm, a0 is the population average prevalence, β1l and
β2m are marginal effects for the respective SNPs, and γlm is the interaction effect between
SNP l in gene 1 and SNP m in gene 2, with Ilm (0 or 1) an indicator for the presence of that
specific interaction. The genotype weights gijk are functions of the population-level MAF
(dMAF) of the respective SNPs, and are defined such that the expected effect of each
interaction term conditional on a specific genotype at one locus is always equal to 0 (see
Aschard et al. for details). We let all marginal effects be randomly selected uniformly
between log(1.1) and log(1.3) to reflect realistic relative risk (RR) values observed in
GWAS. By setting various effect components to be null, we also control which genetic
effects are present in our disease model. For each simulation, we generated a population of
Npop = 100,000 genotypes and performed case-controls sampling, with disease prevalence
fixed at 0.10 for each simulation. All causal SNPs were randomly selected for each
simulation replication.

Finally, given that gene-gene interaction analysis is an active area of research, we compared
the power of our testing procedures to gene-based Bonferroni-adjusted single SNP-SNP
logistic regression, along with two leading gene-level approaches: KCCA [Larson, et al.
2013; Yuan, et al. 2012] and principal component (PC) analysis-based logistic regression
modeling (PC-LR). KCCA is an LD-based procedure which uses kernelized canonical
correlation analysis to test for differences in association between genes across case-control
status using a Gaussian kernel function. Variations of PC-LR [Bhattacharjee, et al. 2010; He,
et al. 2011; Wang and Abbott 2008] have been shown to be powerful approaches for gene-
level interaction analysis by reducing the marker data for a given gene to a few leading PCs.
For our PC-LR analysis, we derive the lead PC term from each gene and test the statistical
significance of their interaction in the presence of their marginal effects within a basic
logistic regression model.

Larson and Schaid Page 6

Genet Epidemiol. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



RESULTS
Type I Error

We examined Type I error rate control for sample sizes of 1000, 1500, and 2000, with
balanced numbers of cases and controls. For the global, marginal, and interaction tests, a
total of 100,000 simulation runs were run for each sample size, with Type I error rates
evaluated at α levels of 0.001, and 0.0001. Table I presents the Type I error simulation
results for these tests, along with Figure 2 presenting QQ-plots of the respective −log10
transformed p-values. These tests exhibit near nominal type I error rates across all α levels,
with the interaction test tending toward being more conservative for smaller sample sizes.

We also examined Type I error rate control for composite test when marginal effects are
present in both genes but there is no interaction (Ilm = 0), and contrast it with that of the
interaction test where such marginal effects are not taken into account. We considered
disease models where the number of causal markers per gene was 1 or 2, and ran 4000
replications. Results for the error rates of the two tests can be found in Table II at α levels of
0.05 and 0.01. Interestingly, the findings indicate that both the interaction test and composite
test control the Type I error rate under both models despite the lack of marginal effect
adjustment for the interaction test.

Power
We first considered a set of simulations in which there were single causal interacting SNPs
in each gene for sample sizes of N = 1000, 1500, and 2000. Since there is specific interest in
being able to detect interacting loci in the absence of marginal effects, we considered
simulations conditions with and without marginal effects present. We examined four
specific values of γ12 (log(1.5), log(2.0), log(2.5), log(3.0)) in our simulations, and ran 500
replications for unique set of conditions, reporting empirical power at an α level of 0.05.
Figure 3 presents our findings for all of our score-based tests along with the SNP-SNP,
PCA, and KCCA approaches under these simulation conditions. The results show that when
marginal effects are present, the various score tests generally perform best, especially at
lower values of γ12. When marginal effects were absent, KCCA and the global test had the
highest power at lower effect sizes as well. Interestingly, the marginal tests indicate power
levels above the Type I error rate despite no marginal effects being explicitly modeled.

In all simulations, the SNP-SNP approach tended to be best (or at least competitive) when
the interaction effect size was most extreme, regardless of whether or not marginal effects
were present. This corroborates previous findings which have found SNP-SNP methods to
be competitively powerful when the gene-level interaction is isolated to a single pair of
SNPs [He, et al. 2011; Li and Cui 2012].

We also considered an additional set of simulations where two pairs of interacting SNPs
were present across genes, and values of γlm were randomly sampled uniformly from the
interval [log(1.5),log(2.0)]. All other simulation conditions were the same as previously
defined and 1000 replications were run per unique set of conditions. A barplot of these
results can be found in Figure 4. These findings indicate that even in the absence of marginal
effects, the global test is the most powerful approach for identifying the presence of
interaction. The interaction and composite tests were relatively close in their empirical
power, and performed similarly to the SNP-SNP testing. The KCCA approach performed
comparably to the previously mentioned test when no marginal effects were present, but was
less powerful when marginal effects were included.

It is important to note that under all simulations, the interaction test was more powerful than
the composite test regardless of the inclusion of marginal effects.
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DISCUSSION
Gene-gene interactions are becoming an increasingly common component to genomic
association analysis. Increasing GWAS chip sizes, imputation, and next-generation
sequencing platforms will continue to increase the number of genotyped intragenic SNPs,
and the need for computationally efficient strategies for exploratory interaction analysis
among loci has grown in response. In this paper we have detailed a comprehensive approach
toward detecting the presence of genetic effects, specifically gene-gene interactions, for
case-control genetic association studies. We have devised a global test for detecting the
presence of gene-level associations via kernel matrix representations of marker data. Using a
simulation study based upon realistic genotype data, we have demonstrated that it is a
powerful approach toward detecting the presence of both main and interaction effects of
gene-level risk association. By adapting the work of Li and Cui for quantitative traits to
binary traits using GLMMs, we have also defined a score test, the composite test, for
detecting gene-gene interactions after adjusting for main effects.

As Figures 3 and 4 indicate, the global test is a powerful approach toward detecting gene-
gene interactions even in the absence of marginal effects. Given that the global test only
requires fitting a single null regression model, it is a computationally attractive screening
procedure for possible interactions and can rapidly be implemented in a genome-wide
analysis. Subsequent testing performed on significant findings can then be applied to
identify the particular architecture of the genetic association. We also found that marginal
tests result in significant findings despite the exclusion of marginal effects from our
simulations. Although lower-powered than the global test, conducting solely marginal tests
(SKAT) could be an effective alternative strategy in contrast to the testing burden of
exhaustive pairwise exploratory analysis.

As per Table II, the interaction test (Q3) does not incur any quantifiable bias when multiple
SNPs with true marginal effects are present in the simulation model. While the included
simulations are restricted to a relatively small number of total SNPs per gene as well as
marginal effects of modest size, this is a surprising result that raises the question of whether
or not the interaction test can be used as a proxy for the composite test. More surprising is
that the interaction test is more powerful than the composite test in all of our simulations.
While we refrain from recommending the composite test be abandoned for the interaction
test, it is computationally appealing prospect which warrants further investigation.

With increasing numbers of polymorphic sites being either genotyped or imputed in
association studies, computational burden is of particular importance, especially relative to
SNP-level testing. For example, on a modern workstation with an Intel® Core™ i5 3.10
Ghz processor and 4 GB of RAM, running all possible pairwise SNP-SNP tests for our
simulation required 7.914 seconds per simulation replication when N = 1000. Running the
global score test, meanwhile, requires only 2.595 seconds. This discrepancy in
computational burden is further evidenced if we increase SNP-level testing burden, as such
analyses scale poorly as the number of included SNPs increases. If we consider a simple
data simulation where genotypes are independently sampled from a binomial distribution,
and set the number of genotyped SNPs per gene to 100, the respective compute times for
exhaustive SNP-SNP testing and the global test are 236.54 and 22.00 seconds. It is
important to note, however, that the computational burden of the kernel-based tests scales
largely with respect to sample size N, as this requires decomposition of larger and larger
kernel Gram matrices. Respective compute times for the SNP-SNP tests and the global test
when N = 2000 on our COSI simulation data are 12.123 and 34.044 seconds. This burden
can be mitigated with varying strategies, however, including low-rank decompositions

Larson and Schaid Page 8

Genet Epidemiol. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[Bach and Jordan 2005], which could significantly reduce computational times. More work
is necessary to explore the utility of these approaches.

Even with computationally efficient implementations of our gene-level interaction tests,
exhaustive pairwise analysis of a genome with 25,000 genes would require

 hypothesis tests, which is generally infeasible with respect to
both computational and multiple testing burdens. Efficient strategies for implementing
agnostic genome-wide analysis thus should be dependent in part on prior functional
information. One strategy would be to utilize protein-protein interaction databases to define
a body of potential gene-gene interaction pairs, greatly reducing the testing space. For
example, we downloaded the PINA [Wu, et al. 2009] protein-protein interaction (PPI)
dataset for binary interactions in Homo sapiens (accessed February 2013). This information
was reduced to the gene level (HUGO designation) and redundant pairs were removed. This
resulted in 106,004 unique gene pairs between 14,784 individual genes, a substantially
reduced testing multiplicity. Stricter inclusion criteria, such as experimental validation, can
further reduce this testing set.

Although there are a number of benefits to gene-level testing, questions remain as to how to
interpret replicability of specific findings, since it is possible different sets of interacting
SNPs may yield the same significant gene-pair. This requires a paradigm shift in how gene-
level association is considered relative to individual SNPs, being more akin to gene-set types
of analyses. Moreover, special considerations will be necessary for multiple testing, since
there is a clear issue of dependence among test statistics where a given gene is a member of
multiple gene-pairs being evaluated. Additional work is necessary to evaluate the effects of
such dependence on multiple testing correction.

Power analysis for multi-locus approaches such as gene-level testing is complicated by a
number of factors, including the quantity of total and interacting SNPs, their respective
MAFs, overall LD structure of the genotyped SNPs themselves, and underlying models of
epistasis [Marchini, et al. 2005]. While our random selection of causal SNPs in our
simulations averages over a number of these factors, our simulations are by no means
exhaustive and systematic influences on power will remain. The kernel function itself may
also impact statistical power, as the polygenic kernel is just one of many possible options
and alternative selections may behave differently from our findings. While it is not within
the scope of this paper to investigate the impact of the kernel function itself, we
acknowledge that strategic kernel selection may impact hypothesis testing performance.
Influence of kernel selection under differing epistatic models is a focus of future work,
particularly with respect to its comparative performance with KCCA, which is specifically
capable of nonlinear interaction detection.

While we have presented this work strictly within the context of a dichotomous trait, we
note that the theoretical adaptation of our approach from SPA3G could be modified to
account for any non-Gaussian response with a presumed exponential family distribution
with little difficulty. We also foresee this testing framework being expanded to address
pathway analysis applications and higher order interactions through linear combinations of
gene-level kernel matrices and their Hadamard products.
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Figure 1.
Pairwise linkage disequilibrium plots of the simulation SNPs for (A) gene 1 and (B) gene 2.

Larson and Schaid Page 12

Genet Epidemiol. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
QQ-plots of the −log10 transformed p-values for the (A) global test and (B) marginal test
under the complete null model, for sample sizes of 200, 500, and 1000.
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Figure 3.
Empirical power curves (α = 0.05) as a function of interaction effect size exp(γ12), for the
global, marginal, interaction, and composite tests, along with SNP-SNP logistic regression,
PCA, and KCCA methods. Results are shown with marginal effects present for sample sizes
(A) N = 1000, (B) N = 1500, and (C) N = 2000, and with marginal effects absent for sample
sizes (D) N = 1000, (E) N = 1500, and (F) N = 2000.
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Figure 4.
Barplot of empirical power results (α = 0.05) for hypothesis testing when the number of
causal SNPs per gene is two, where interaction effects γlm are uniformly drawn from
[log(1.5), log(2.0)] Results are presented for sample sizes of N = 1000, 1500, and 2000, with
marginal effects either present (Marg = T) or absent (Marg = F).

Larson and Schaid Page 15

Genet Epidemiol. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Larson and Schaid Page 16

Ta
bl

e 
I

C
om

pl
et

e 
N

ul
l T

yp
e 

I 
E

rr
or

 R
at

es
 f

or
 G

lo
ba

l, 
M

ar
gi

na
l, 

an
d 

In
te

ra
ct

io
n 

T
es

ts

G
lo

ba
l T

es
t

M
ar

gi
na

l T
es

t
In

te
ra

ct
io

n 
T

es
t

N
α

 =
 1

e-
03

α
 =

 1
e-

04
α

 =
 1

e-
03

α
 =

 1
e-

04
α

 =
 1

e-
03

α
 =

 1
e-

04

10
00

8.
3e

-0
4

5.
0e

-0
5

9.
3e

-0
4

6.
0e

-0
5

3.
7e

-0
4

1.
0e

-0
5

15
00

8.
0e

-0
4

6.
0e

-0
5

1.
1e

-0
3

1.
1e

-0
4

5.
4e

-0
4

3.
0e

-0
5

20
00

8.
7e

-0
4

6.
0e

-0
5

1.
1e

-0
3

1.
2e

-0
4

7.
0e

-0
4

4.
0e

-0
5

Genet Epidemiol. Author manuscript; available in PMC 2013 December 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Larson and Schaid Page 17

Ta
bl

e 
II

T
yp

e 
I 

E
rr

or
 R

at
es

 f
or

 I
nt

er
ac

tio
n 

an
d 

C
om

po
si

te
 T

es
ts

 w
ith

 M
ar

gi
na

l E
ff

ec
ts

 P
re

se
nt

1 
C

au
sa

l S
N

P
 p

er
 G

en
e

2 
C

au
sa

l S
N

P
s 

pe
r 

G
en

e

In
te

ra
ct

io
n 

(Q
3)

C
om

po
si

te
 (

Q
C
)

In
te

ra
ct

io
n 

(Q
3)

C
om

po
si

te
 (

Q
C
)

N
α

 =
 0

.0
5
α

 =
 0

.0
1
α

 =
 0

.0
5
α

 =
 0

.0
1
α

 =
 0

.0
5
α

 =
 0

.0
1
α

 =
 0

.0
5
α

 =
 0

.0
1

10
00

0.
03

90
0.

00
90

0.
03

98
0.

00
88

0.
03

55
0.

00
58

0.
03

78
0.

00
50

15
00

0.
03

85
0.

00
65

0.
03

75
0.

00
63

0.
04

08
0.

00
70

0.
03

98
0.

00
70

20
00

0.
04

20
0.

00
63

0.
04

38
0.

00
68

0.
04

40
0.

01
08

0.
04

45
0.

01
08

Genet Epidemiol. Author manuscript; available in PMC 2013 December 01.


