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Abstract
Background—Accurately estimating rates of disease progression is of central importance in
developing mathematical models used to project outcomes and guide resource allocation
decisions. Our objective was to specify a multivariate regression model to estimate changes in
disease progression among individuals on HAART in British Columbia, Canada, 1996–2011.

Methods—We used population-level data on disease progression and antiretroviral treatment
utilization from the BC HIV Drug Treatment Program. Disease progression was captured using
longitudinal CD4 and plasma viral load testing data, linked with data on antiretroviral treatment.
The study outcome was categorized into {CD4 count ≥500 cells/mm3, 500 to 350 cells/mm3, 350
to 200 cells/mm3, <200cells/mm3, and mortality}. A five-state continuous time Markov model
was used to estimate covariate-specific probabilities of CD4 progression, focusing on temporal
changes during the study period.

Results—A total of 210,083 CD4 measurements among 7,421 individuals with HIV/AIDS were
included in the study. Results of the multivariate model suggested current HAART at baseline,
lower baseline CD4 (<200 cells/mm3), extended durations of elevated plasma viral load were each
associated with accelerated progression. Immunological improvement was accelerated
significantly from 2004 onward, with 23% and 46% increases in the probability of CD4
improvement from the 4th CD4 stratum {CD4<200} in 2004–2008 and 2008–2011, respectively.

Conclusion—Our results demonstrate the impact of innovations in antiretroviral treatment and
treatment delivery at the population-level. These results can be used to estimate a transition
probability matrix flexible to changes in the observed mix of clients in different clinical stages and
treatment regimens over time.
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1.0 Introduction
Once considered an acute condition resulting in mortality within 10–15 years in most cases
(1,2), HIV disease has been transformed into a chronic condition as a result of highly active
antiretroviral treatment (HAART). In high-income countries, life expectancy for HIV-
positive individuals aged 20 years and receiving HAART is roughly two-thirds of that of the
general population (3). This is a direct result of delayed HIV disease progression brought
about by continual improvements in HIV treatment (4,5). A number of other factors have
been noted to alter disease progression, including earlier HIV diagnosis and treatment
initiation and improved treatment adherence (6,7).

Health economic evaluation plays a critical role in informing health resource allocation
decisions (8). In most cases, these decisions are intended for long-term or lifetime time
horizons, implying the health technologies or programs in question will be available to
clients in need for an indefinite period. As such, these analyses are most often executed
using simulation models capturing all relevant costs and benefits within clearly-defined
health states according to the disease in question (9).

Accurately estimating rates of disease progression is of central importance in developing
individual microsimulation and compartmental mathematical models, used to project
outcomes and guide resource allocation decisions regarding HIV treatment and prevention
initiatives. Modeling disease progression via transition between CD4-based health states is a
near-universal trait of health economic evaluations in HIV (10–14) given the strong
relationship between CD4 T-lymphocyte counts and the costs of health resource use (15–
17), as well as health-related quality of life (18,19). In this context, accurate estimates of
CD4 progression over time are required in order to reliably predict the current and future
burden of disease for the HIV-infected population, a highly heterogeneous group of patients,
as well as to perform cost-effectiveness analyses of HAART in selective groups or settings.

Generating these estimates using multiple regression models can account for heterogeneity
in patient characteristics and allows for flexibility in assigning population-level distributions
of individuals at different clinical stages, receiving different HAART regimens, or according
to specific locations and contexts. The results may also be amenable to probabilistic
sensitivity analysis accounting for the correlation in specified individual-level covariates
(20). However, a variety of different methodologies have been applied to estimate
probabilities of disease progression in HIV/AIDS. For instance, in economic evaluations
alongside clinical trials, transition probabilities are often calculated in a univariate manner,
often using trial data at the study endpoints (usually at 24 or 48 weeks) (21,22). Other
standard approaches involve the use of Weibull regression models to estimate time-
dependent probabilities of transition between health states (23).

Markov chains constitute an alternative means of modeling the progression of a chronic
disease through various severity states. For these models, a transition matrix with the
probabilities of moving from one state to another for a specific time interval is estimated
from observational cohort data. Multi-state Markov models are suited to analyses that
involve transitions between many disease stages, and have previously been applied to model
HIV/AIDS disease progression via CD4 cell count deterioration. They may be used (i) to
estimate the effects of covariates on the risk of transition from one disease stage to another,
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(ii) to compare the effects of each factor on the different transitions, (iii) to estimate the
probabilities of evolving from one stage to another, of particular interest for simulation
modeling (24–26).

The objective of this study was to specify a multiple regression model to estimate individual
disease progression among individuals on antiretroviral therapy in British Columbia,
Canada, from 1995 to 2011. We hypothesize that our model would demonstrate improving
rates of disease progression (ie. slowed CD4 decay over time) at the population-level,
controlling for patient-level characteristics. We executed our analysis using population-level
data on clinical progression of HIV among individuals on antiretroviral treatment.

2.0 Methods
2.1 Patient Population

We considered all individuals who had ever received antiretroviral therapy from October 1st,
1995 to September 30th, 2011, as observed in the BC Centre for Excellence in HIV/AIDS
(BC-CfE) HIV Drug Treatment Program. The study cohort is followed in a unique
environment characterized by universal free medical care, including free in- and out-patient
care, laboratory monitoring, and antiretroviral drugs, without co-payments or deductibles.
The antiretroviral drugs are centrally distributed by the BC-CfE according to the BC-CfE’s
treatment guidelines, which have remained consistent with those put forward by the
International AIDS Society since the summer of 1996 and until the most recent guidelines
(5).

We included individuals who initiated antiretroviral therapy naïve at ≥ 19 years old with at
least two CD4 cell count measurements. Individuals were excluded from the analysis if
therapeutic information, baseline CD4 or viral load values were missing. The study sample
is comprised of individuals infected primary with HIV subtype B virus; a previous study
estimated a prevalence of 4.4% non-B virus (27). The study was approved by the University
of British Columbia/Providence Health Care research ethics board.

2.2 Measures
HIV disease progression among individuals ever engaged in antiretroviral therapy,
represented by changes in longitudinally-collected CD4 measurements, was of primary
interest in this study. All CD4 observations following treatment initiation were included in
the analysis, including periods where individuals were not on antiretroviral treatment. CD4
cell count measurements were categorized into {CD4 ≥500 cells/mm3; 500 to 350 cells/
mm3; 350 to 200 cells/mm3; <200 cells/mm3; and death}.

While we aimed to preserve as many observations as possible, given the implicit assumption
of constant covariates between assessments, CD4 measurements following breaks exceeding
36 months were excluded. The data are assumed to represent snapshots of the process at
arbitrary time periods. Survival was ascertained through a continuous linkage to provincial
vital statistics data.

CD4 cell counts were measured by flow cytometry (Beckman Coulter Inc, Mississauga, ON,
Canada). The CD4 metric is known to exhibit considerable variability, resulting from intra-
person temporal fluctuation, for example diurnal variation, as well as from measurement
error introduced by the process of blood collection or the method of collection itself (28).
Statistical techniques to model such noisy data will result in estimated transition intensities
that are too large. Following an analysis of four smoothing techniques to address this
measurement error (29), we applied the ‘ad hoc smoothing’ technique, whereby transitions
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between CD4 strata were only allowed when two consecutive CD4 measurements were
observed.

We tested a number of additional covariates hypothesized to influence changes in HIV
disease progression, including age at treatment initiation, baseline CD4 (latest CD4
measurement within 3 months prior to HAART initiation: <200 vs. ≥200 cells/mm3),
gender, injection drug use (IDU), Hepatitis C virus (HCV) antibody positivity, whether or
not the contemporary standard of HAART was prescribed at baseline (two Nucleoside
Reverse Transcriptase Inhibitor plus either a boosted Protease Inhibitor (PI) or a Non-
Nucleoside Reverse Transcriptase Inhibitor or raltegravir), and current HAART treatment
regimen (first-generation regimens including zidovudine, lamivudine, didanosine, stavudine,
nevirapine, abacavir, nelfinavir and ritonavir; or second-generation regimens including
lamivudine+tenofovir, emtricitabine+tenfovir, tipranavir, maraviroc, raltegravir, etravirine,
atazanavir, enfuvirtide, efavirenz, ritonavir and other PI- or boosted-PI based regimens;
multi-drug resistance regimens including five or more drugs; or off-therapy). As sustained
periods of high plasma viral load (pVL) are associated with decreases in CD4, the area
under the pVL curve was also included as a continuous covariate.

Further, as both policies regarding treatment initiation, and the available treatment regimens
have evolved substantially since the initiation of HAART in 1996 (4,5), we included
covariates on the temporal period of CD4 measurement (pre-2004; 2004–2007; post-2007).
Finally, interaction terms between the temporal period of CD4 measurement CD4 at baseline
was tested. Classifications for categorical variables were informed by clinical relevance,
observed distributions, or otherwise calibrated in multivariate analysis.

2.3 Statistical Analysis
A parametric continuous-time, multi-state Markov model was implemented to estimate the
impact of prognostic factors on CD4 disease progression, and estimate CD4 state transition
probabilities over time. Markov chains constitute a common way of modeling the
progression of a chronic disease through various severity states. For these models, a
transition matrix with the probabilities of moving from one state to another for a specific
time interval is usually estimated from observational cohort data. The time between CD4
measurements is inherently controlled for in this methodology. Multi-state Markov models
have previously been applied to model HIV/AIDS disease progression via CD4 cell counts
(29–34). These models efficiently handle heavily censored data, such as when the exact time
of disease onset is unknown or when a subject is observed over a portion of his/her disease
history (31).

In this model, a covariate is assumed to affect the baseline intensity by a proportional
(constant over time) factor, so that a model with ten transitions requires ten different
regression coefficients to be estimated for each covariate. The effects of the different
covariates (fixed and time-varying) were assumed to be multiplicative and constant over
time, both assumptions being consistent with the conventional proportional hazards model
(35). Therefore, the interpretation of exponentiated coefficient estimates is similar to that of
the adjusted hazard ratio in the Cox model. All baseline intensities and regression
coefficients were simultaneously estimated via maximum likelihood estimation.
Instantaneous transitions were only permitted between adjacent states or death from each
health state. Covariates were included in the multivariate model if they had a statistically
significant impact on any of the CD4 transitions specified in the model. For all hypotheses
tested, a significance level of α=0.05 was used.

The likelihood function for this model assumes that the sampling times are ignorable. That
is, the fact that a particular observation is made at a certain time does not implicitly give
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information about the value of that observation. Sampling times are ignorable if they are
fixed in advance, or otherwise chosen independently of the outcome of the process. Grujer et
al (36) also showed that the sampling times are ignorable under a ‘doctor’s care’ sampling
scheme, where the next observation time (in our case a regularly-scheduled CD4
measurement) is chosen on the basis of the current state. Basing the current observation time
on the current state constitutes a non-ignorable sampling scheme (37). While the majority of
CD4 measurements typically occur at regular intervals as part of routine care, in some
limited instances CD4 measurements are triggered by changes in symptomatology, in a
‘doctor’s care’ sampling scheme. Analyses were executed using SAS version 9.3 and the R
statistical software (38) msm package (39,40).

3.0 Results
The study sample consisted of 7,421 individuals and 210,083 observations, including deaths,
with a median follow up of 5.1 years (Interquartile range (IQR): 2.1–10.4 years) and a
median of 20 CD4 measurements (IQR 9–44, range 2–161). A total of 1573 patients (21%)
died during follow-up. Of the 5848 survivors, 2715 (46%) had a CD4 count ≥ 500 cells/
mm3, 1415 (24%) between 500 - 350 cells/mm3, 1092 (19%) between 350 - 200 cells/mm3,
and 626 (11%) <200 cells/mm3 at baseline. Finally, 3266 (44%) clients discontinued
treatment at least once.

Table 1 provides baseline characteristics on the study sample. The majority of subjects were
males (83%), the median age at ART initiation was 39 (IQR: 33 – 46), a prior history of
IDU was observed in for 38% of the sample and 39% were co-infected with HCV. Nearly
half of the sample (45%) initiated treatment prior to the year 2000, and baseline CD4
measurements <200 cells/mm3 were observed in 41% of the study sample.

We summarized the study outcome in two ways. First, in Table 2, we displayed the
distribution of the total number of transitions between CD4 strata. The majority of pairs of
observations remained within the same CD4 stratum, with relatively few observed
transitions to death from each CD4 stratum. Second, in Figure 1, we showed the distribution
of the durations between CD4 measurements. Nearly 90% of observed CD4 measurement
pairs were ≤6 months apart, with <5% occurring over 9 months apart. The mean frequency
of CD4 measurements has varied between 1.2 to 1.5 per person-quarter during the study
period.

The five-state multivariable Multi-state Markov model was fitted with covariates to produce
nine parameter estimates for each of the ten possible transitions modeled, for a total of 90
parameter estimates. Selected results of the multivariate MSM model were presented in
Table 3. We present hazard ratios (HRs) on improvement in CD4 strata; HRs <1 therefore
indicate delayed time-to-CD4 improvement. Baseline CD4 counts<200 cells/mm3 were
associated with delayed time-to CD4 improvement from each of the 2nd, 3rd and 4th CD4
strata, compared with baseline CD4 counts ≥ 200 cells/mm3 (transition from CD4<200 cells/
mm3 to 200–350 cells/mm3: HR:0.52; 95% CI (0.49, 0.56)). Higher pVL levels as indicated
by AUC pVL, resulted in progressively greater delays in CD4 improvement from each of the
2nd (0.95 (0.87, 1.02)), 3rd (0.64 (0.60, 0.69)) and 4th CD4 strata (0.38 (0.35, 0.41)). Finally,
baseline prescription of second-generation HAART regimens resulted in accelerated CD4
improvement from the 2nd, 3rd and 4th strata, and baseline prescription of second-generation
HAART regimens was also independently associated with accelerated CD4 improvement
compared to baseline prescription of first-generation HAART regimens and periods off
therapy.

Finally, in Figure 2 we present fitted values of CD4 transition probabilities, estimated on an
annual basis, generated from results of the multivariate MSM model, and using observed
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mean values of covariates observed during three specified time periods (pre-2004; 2004–
2007; 2008–2011). Marked improvement was observed on transitions from the 3rd

{CD4:200–349 cells/mm3} and 4th {CD4 <200 cells/mm3} CD4 strata; the probability of
transitioning from the 3rd CD4 stratum {CD4:200–349 cells/mm3} to the 1st and 2nd CD4
strata improved from (0.088, 0.256) pre-2004 to (0.120, 0.308) and (0.138, 0.343) in the
2004–2007 and 2008–2011 time periods, while the probability of deterioration to the 4th

CD4 stratum {CD4 <200 cells/mm3} declined modestly. The probability of improvement
from the 4th CD4 stratum {CD4 <200 cells/mm3} increased from (0.019, 0.088 and 0.295)
for CD4 strata 1, 2 and 3, respectively, in the pre-2004 period to (0.033, 0.131 and 0.329) in
2004–2007 and (0.044, 0.171 and 0.371) in 2008–2011. Together, the probability of
improvement from the 4th CD4 strata increased from (0.019, 0.088 and 0.295=0.402)
pre-2004 to 0.493 and 0.586 in 2004–2007 and 2008–2011, respectively, representing 23%
and 46% increases in the probability of CD4 improvement from the 4th CD4 stratum
{CD4<200 cells/mm3} after 2004.

4.0 Discussion
Our results illustrate the effect of innovation in HIV therapeutics on CD4 disease
progression. We found that the probability of CD4 improvement during HAART increased
over time, resulting in disease progression being significantly delayed among treatment
recipients in recent years. This result was punctuated by 23% and 46% increases in the
probability of CD4 improvement for individuals with CD4 cell counts below 200 cells/mm3

from to 2004–2008 and 2008–2011, respectively. Diminishing HIV disease virulence could
be posited as an alternative hypothesis for the temporal trend revealed in this article,
however provincial and North American data do not support this hypothesis (41,42);
Improving genotypic sensitivity scores further support the role of treatment in improvements
in disease progression (41).

Prior studies have estimated CD4 transition probabilities using related methodologies (43),
however this population-level analysis spanning over 15 years of treatment delivery is the
first, to our knowledge, to demonstrate significant delays in disease progression among
individuals on HAART at the population-level. These findings have important implications.
Clearly, simulation models aiming to project outcomes into the future, which employ CD4
transition probabilities based on data from the early-HAART era will substantially
underestimate the individual, as well as public health benefits of HAART. This is an
important result to communicate as efforts to scale-up treatment unfold globally on a
backdrop of constraints and decreases for funding (43,44).

While our estimated transition probabilities from the higher CD4 states to death were
uniformly low, generally in the neighborhood of 1% over a 12-month period, the direction
of some parameter estimates were contrary to our a priori hypotheses. While we believe the
vast majority of CD4 measurements in our analysis were non-informative, it may be
possible that the timing of measurements nearest to death may have been informative.
Sweeting et al (37) describe a methodology used to resolve this problem by conditioning on
a more regularly observed auxiliary variable – a solution which may not be feasible for
modeling HIV progression, as CD4/pVL measurements are themselves regularly observed.
Further methodological development is likely required to handle these scenarios in Multi-
state Markov models of HIV disease progression.

Several limitations are worth noting. First, while the study was based on a population-level
registry of antiretroviral treatment dispensation, initiated in 1992 (in the pre-HAART era),
given patient characteristics (including virus subtype), the nature of the HIV epidemic in
BC, and our healthcare delivery policies, caution must be exercised in applying these
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estimates to other settings. Second, time-varying covariates capturing changing drug
resistance profiles over time were not considered in this analysis, however previous studies
reported low prevalence of multi-class resistance (45); a detailed examination of the effect
of drug resistance is beyond the scope of this article. Third, current, or recent CD4 and pVL
measurements were not always available in all time periods where treatment was delivered.
CD4 markers have been noted to exhibit considerable variability as a result of intraperson
temporal fluctuation, for example diurnal variation, as well as from measurement error
introduced by the process of blood collection or the method of collection (flow cytometry)
itself (27). Further, the IDU status and aboriginal ethnicity covariates were self-reported and
had high levels of missing data, likely to be non-differential, resulting in coefficients
attenuated towards the null hypothesis. Efforts to improve data quality on these critical
indicators via triangulation with provincial registries and administrative databases are
currently underway. We attempted to address threats to internal validity due to measurement
error or confounding in the design of the study, as described above.

To conclude, this analysis has highlighted the magnitude of temporal variations in HIV
disease progression among HIV-positive individuals on antiretroviral therapy. The results
are cause for careful consideration of estimates of transition probabilities in economic
models to project the costs and benefits of HAART scale-up in HIV ‘treatment as
prevention’ programs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Distribution of time between CD4 measurements
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Figure 2.
12-month transition probabilities using current-valued covariates
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Table 1

Baseline characteristics of the study sample (7,421 patients)

Characteristic

Age (years) at the first ARV, median (IQR) 39 (33–46)

Males, N (%) 6132 (83)

Year of first ARV, N (%)

 1992–1996 883 (12)

 1996–1999 2470 (33)

 2000–2003 1193 (16)

 2004–2007 1371 (18)

 2008–2011 1504 (20)

Baseline CD4 (cell count/mm3), N (%)

 ≥ 500 792 (11)

 350–499 1280 (17)

 200–349 2313 (31)

 < 200 3036 (41)

Baseline Viral Load (log10 copies/mL), median (IQR) 4.9 (4.4–5.0)

Injection drug use, N (%)

 No 3266 (44)

 Yes 2812 (38)

 Unknown 1343 (18)

HCV status, N (%)

 Negative 3555 (48)

 Positive 2872 (39)

 Unknown 994 (13)

First ARV therapy (current HAART), N (%)

 No 3512 (47)

 Yes 3909 (53)
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Table 3

Multivariate multistate Markov model results: CD4 improvement during antiretroviral therapy in British
Columbia, Canada: 1996–2011

Covariate

Transition between CD4 strata*

350–499 to ≥500 200–349 to 350–499 <200 to 200–349

HR (95% CI) HR (95% CI) HR (95% CI)

Baseline Therapy: Not current standard Ref Ref Ref

 Current standard of care 1.30 (1.22,1.38) 1.34 (1.26,1.42) 1.28 (1.18,1.39)

AUC pVL 0.95 (0.88,1.03) 0.64 (0.60,0.69) 0.38 (0.35,0.41)

Current Therapy: 2nd generation Ref Ref Ref

 1st generation 0.79 (0.74,0.85) 0.73 (0.68,0.79) 0.78 (0.72,0.86)

 Off therapy 0.32 (0.28,0.37) 0.36 (0.33,0.41) 0.46 (0.40,0.52)

At current year: <2004**

Baseline CD4≥200 Ref Ref Ref

 CD4<200 0.79 (0.71, 0.87) 0.59 (0.54, 0.64) 0.55 (0.50, 0.60)

At current year: 2004–2007**

Baseline CD4≥200 Ref Ref Ref

 CD4<200 0.77 (0.70, 0.85) 0.64 (0.59, 0.71) 0.52 (0.47, 0.57)

At current year: 2008–2011**

Baseline CD4≥200 Ref Ref Ref

 CD4<200 0.65 (0.59, 0.71) 0.52 (0.47, 0.57) 0.58 (0.50, 0.67)

Ref: reference group; HR (95%CI): Adjusted Hazard Ratio (95% Confidence Interval); AUC pVL: area under the pVL curve.

*
Controlling also for age and gender.

**
Statistical interaction between baseline CD4 (≥200 vs. <200) and current calendar year (<2004; 2004–2007; 2008–2011).
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