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Summary

Although allergic asthma is a heterogeneous disease, allergen-specific

T helper 2 (Th2) cells producing the key cytokines involved in type 2

inflammation, interleukin-4 (IL-4), IL-5 and IL-13, are thought to play a

major role in asthma pathogenesis. This model is challenged by the recent

discovery of group 2 innate lymphoid cells (ILC2) that represent a critical

innate source of type 2 cytokines. These ILC2 are activated by epithelial

cell-derived cytokines, including IL-25 and IL-33, which have been impli-

cated in the initiation of asthma. In this review, we will discuss recent

studies supporting a significant role for ILC2 in lung inflammation, with

special attention to allergen-induced asthma.
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Introduction

Asthma is a chronic inflammation of the airways caused

by a combination of genetic predisposition and environ-

mental factors, affecting some 235 to 300 million people

worldwide.1–3 Symptoms vary between individuals, but

are often characterized by episodes of coughing, wheezing

and shortness of breath. The term ‘asthma’ encompasses

a group of clinical symptoms and for a long time it was

widely believed that asthma represented an allergic, eosin-

ophilic and T helper type 2 (Th2) -mediated disease.

However, mechanistic studies show that it is a heteroge-

neous condition with multiple subtypes that require dis-

tinct treatment modalities (reviewed in ref. 3). To date,

our knowledge on the pathophysiology of many asthma

phenotypes is incomplete, but ongoing research efforts

are expected to result in more targeted and personalized

therapeutic approaches. In this review we will focus on

type 2 immunity in allergic asthma, which is the most

common and best studied form of asthma.

T helper 2 differentiation in allergic asthma

A hallmark of allergic asthma is airway hyper-responsive-

ness (AHR), which can be triggered by inhalation of aller-

gens such as house dust mite (HDM), animal dander,

pollen or fungal spores.1–3 This is typically associated with

eosinophilic inflammation in the airways and increased

numbers of eosinophils in the circulation that correlate

with AHR in the clinic.4,5 Persistent inflammation eventu-

ally leads to airway remodelling due to repair processes,

most notably subepithelial fibrosis, smooth muscle hyper-

plasia, mucous cell metaplasia and increased angiogenesis.6

Airway epithelial cells make up the frontline of defence that

separates the host and the environment and is therefore

essential in the control of inflammatory responses to aller-

gens that induce asthma (see ref. 7 for a very recent review

on the role of the epithelium in asthma pathogenesis). Epi-

thelial cells express a wide variety of pattern recognition

receptors that recognize pathogen-associated or damage-

associated molecular patterns. For example, HDM allergens

such as Der p II and Der p VII activate toll-like receptor 4

(TLR4) signalling that in turn promotes nuclear transloca-

tion of nuclear factor-jB (NF-jB), which controls a wide

range of inflammatory genes.7 Using irradiated chimeric

mice, it has been shown that HDM-induced asthma

requires the presence of TLR4 on radioresistant lung struc-

tural cells and not on haematopoietic cells such as dendritic

cells (DCs).8 Triggering of TLR4 on epithelial cells by

HDM induces the production of various cytokines includ-

ing thymic stromal lymphopoietin (TSLP), granulocyte–
macrophage colony-stimulating factor (GM-CSF), interleu-

kin-1a (IL-1a), IL-1b, IL-25 and IL-33. Recent in vivo

experiments as well as air–liquid interface cultures of bron-

chial epithelial cells demonstrated that TLR signals induce

the release of IL-1a, which then initiates an autocrine feed-

back loop to trigger production of other cytokines, includ-

ing GM-CSF and IL-33.9 A common effect of these

cytokines is the activation of DCs towards a phenotype that

promotes Th2 immunity.7 Additionally, DCs can be

directly activated as they continuously sample the airway

lumen by forming dendritic extensions.

Activated DCs are able to initiate sensitization in con-

cert with the epithelium via antigen presentation to naive

T cells in the draining lymph nodes. It appears that acti-

vated DCs have intrinsic capacities to drive Th1 or Th2
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responses. When DCs recognize bacterial or viral prod-

ucts via TLRs, they produce IL-12 and induce Th1 polari-

zation. In contrast, DCs may also sample inhaled

allergens and initiate adaptive Th2 responses in asthma.7

Furthermore, DCs stimulated with agents such as fungal

products, parasitic nematodes or cholera toxin induce

Th2 responses. Central to the initiation of Th2 differenti-

ation is IL-4, which induces the Th2 master regulator

GATA binding protein 3 (GATA3) through signal trans-

ducer and activator of transcription 6 (STAT6).10,11 The

transcription factor GATA3, which is necessary and suffi-

cient to instruct Th2 differentiation, acts in cooperation

with various other nuclear proteins to induce the produc-

tion of IL-4, IL-5 and IL-13 and to suppress Th1 develop-

ment. A suggested mechanism for this activity is that

GATA3 causes chromatin remodelling in the Th2 cyto-

kine locus, in which the genes encoding IL-4, IL-5 and

IL-13 are clustered. Intriguingly, the induction of GATA3

by the IL-4/STAT6 axis in differentiating Th2 cells raises

the paradox that IL-4 is required for the generation of

the cell type that is its major producer. Although IL-4 has

long been thought to control Th2 cell development, the

initial events resulting in IL-4 release in vivo and the ini-

tial source of IL-4 under physiological conditions remain

to be identified. Although innate immune cells might

provide a source of IL-4, Th2 responses can be generated

(i) when only T cells can make IL-4, and (ii) in mice

lacking a functional IL-4 receptor signalling pathway,

arguing against a requisite role for an external source of

IL-4.12 Inflammatory DCs are essential for the induction

of Th2 immunity and features of asthma, whereas ba-

sophils, which have the capacity to produce IL-4, are not

required and do not take up inhaled antigen to present it

to T cells.13 Although remarkably little is known about

the initial pathways that induce IL-4 or GATA3 in acti-

vated T cells in vivo, elegant experiments by Amsen

et al.14,15 provide evidence that DCs use the Notch signal-

ling pathway in T cells to instruct their differentiation.

Dendritic cells expressing the Notch ligand Jagged induce

Th2 differentiation independently of IL-4, whereas DCs

expressing the Delta-like ligand induce the alternative

Th1 cell fate. Notch signalling in T cells leads to activa-

tion of the nuclear effector recombination signal binding

protein for immunoglobulin kappa J region (RBPJj),
which binds to regulatory elements inducing GATA3 and

IL-4 gene expression. Interestingly, intranasal administra-

tion of the Notch-inhibitor c-secretase inhibitor reduced

allergic airway inflammation in mice.16

Once an individual has been sensitized to a specific

allergen, re-exposure to the allergen activates primed Th2

cells, which are thought to play a central role in orches-

trating an allergic immune response (Fig. 1). Interleukin-

4 can stimulate B cells to produce antigen-specific IgE,

which then binds to the high-affinity FceRI on mast cells,

enabling them to be fully activated and to release

histamine, leukotrienes and prostaglandins.17,18 Interleu-

kin-5 especially influences eosinophil survival, activation,

differentiation and recruitment from the bone marrow

into the tissues. It has been shown that when activated,

eosinophils also release leukotrienes similar to mast cells,

which act as potent bronchoconstrictors.17 The combina-

tion of leukotrienes and histamine enhances AHR and

airflow obstruction. Interleukin-13 impacts airway epithe-

lial and smooth muscle cells, where it mediates AHR,

mucus hypersecretion and subepithelial fibrosis. In addi-

tion, IL-13 induces production of several matrix metallo-

proteinases, demonstrating its importance for airway

remodelling in typical asthma.19

Although Th2 lymphocytes are regarded as the central

cell type that orchestrates and amplifies allergic inflamma-

tory events, this pathway however, fails to explain why

asthmatics experience increased frequency and severity of

exacerbations during viral infections of the airway, such

as respiratory syncytial virus, rhinovirus or influenza,

which typically evoke a type 1 response.

Identification of group 2 innate lymphoid cells

Recently, alternative ways to induce a type 2 response have

been discovered and could be the reason therapies aimed

at T-cell depletion have shown limited success in asthma

patients.20 In fact, the first observation of a non-B/non-

T-cell population in Rag2�/� mice that had the capacity

to produce IL-5 and IL-13, but not IL-4, was made by

Fort et al.21 They found that intraperitoneal injection of

IL-25 induced type 2 cytokines and a Th2-like response,

characterized by increased serum IgE, IgG1 and IgA, blood

eosinophilia and pathological changes in the lungs and

digestive tract. Subsequently, a previously unrecognized

cell population staining positive for intracellular IL-5 was

identified in Rag2�/� mice, but not in Rag2�/� mice lack-

ing the common c (cc) chain, when IL-25 was given intra-

nasally.22 A few years later these cells were found to

provide an important source of type 2 cytokines critically

involved in Nippostrongylus brasiliensis expulsion.23 More-

over, administration of IL-33 in Rag2�/� mice efficiently

induced AHR, goblet cell hyperplasia and eosinophilic

infiltration in the lungs via IL-4, IL-5 and IL-13.24

In 2010 four independent groups almost simultaneously

described Th2 cytokine producing non-B/non-T cells in

detail. Moro et al.25 characterized a lineage-negative cell

population that expresses Sca-1, CD117 (c-Kit), CD25

(IL-2Ra), CD127 (IL-7Ra) and T1/ST2 (IL-33R) in fat-

associated lymphoid clusters and coined them natural

helper cells. These natural helper cells were able to pro-

duce large amounts of typical Th2 cytokines like IL-5 and

IL-13 in response to IL-2 and mediated protection against

parasitic worms.25 Neill et al.26 reported nuocytes in the

mesenteric lymph nodes that expanded in vivo in response

to IL-25 and IL-33 and were an early source of IL-13
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before T-cell induction during helminth infection. Mice

deficient in IL-25 and IL-33 manifested a severely

impaired ability to expel N. brasiliensis, which could effec-

tively be rescued by adoptive transfer of isolated nuo-

cytes.26 Similar cells were described by Price et al.27 who

also found them in the spleen and liver and named them

innate helper type 2 cells. Although most molecular sur-

face markers are shared between natural helper cells, nuo-

cytes and innate helper type 2 cells, subtle differences may

exist.28,29 However, now it is generally agreed that they

can be categorized under group 2 innate lymphoid cells

(ILC2s).29,30 In addition, Saenz et al.31 observed that IL-25

also promotes the accumulation of a lineage-negative

Sca-1+ CD117int multipotent progenitor cell population in

gut-associated lymphoid tissue that induces Th2 responses.

As these multipotent progenitor cells have the capacity to

differentiate into monocyte/macrophage and granulocyte

lineages, they appear to be distinct from ILC2s.

Group 2 innate lymphoid cells and allergic lung
inflammation

Quickly after the identification of ILC2s in the intestine, a

similar population of type 2 cytokine-producing cells was

described in the respiratory tract in the context of influ-

enza infection in mice and allergic rhinitis in humans.32–34

Furthermore, it was shown that local or systemic adminis-

tration of IL-25 or IL-33 induced proliferation of ILC2s as

well as production of IL-5 and IL-13 effector cytokines by

these cells (Fig. 1).35–40 In vivo transfer experiments

demonstrated that IL-13 produced by ILC2s was sufficient

to mediate IL-33-induced airway inflammation.27,38,39

These findings are relevant for asthma in humans as well,

because polymorphisms in the IL17RB gene encoding

one of the chains of the IL-25R have been associated

with asthma.41 Also, IL-33 levels correlate with asthma

severity42,43 and both the IL33 gene and the IL1RL1 gene

(encoding the IL-33R chain T1ST2) have been associated

with asthma susceptibility in humans in large-scale gen-

ome-wide association studies.44–46 In these studies, the

IL1RL1 locus was also associated with atopic dermatitis

and allergic rhinitis.

Nevertheless, provoking type 2 immunity by intranasal

administration of IL-25 or IL-33 generates an acute

response and does not reflect the complex process of

allergic sensitization and response in a physiological situa-

tion. Therefore, several other mouse models have been

employed to study the role of ILC2s in allergic airway
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Figure 1. The central role of group 2 innate lymphoid cells (ILC2s) in type 2 immunity. Allergens or viral infection trigger the epithelium to

express the stress signals thymic stromal lymphopoietin TSLP, interleukin-25 (IL-25) and IL-33. In response to these cytokines, ILC2s undergo

proliferation and produce large amounts of IL-4, IL-5 and IL-13. Additionally, dendritic cells (DCs) are also stimulated towards a T helper type

2 (Th2) -inducing phenotype. IL-4 and IL-13 cooperate to activate B cells that produce antigen-specific IgE, which binds to the high affinity

FceRI on mast cells. Upon secondary antigen exposure, primed mast cells degranulate and release histamine, leukotrienes and prostaglandins that

are responsible for airway hyper-responsiveness. Furthermore, IL-5 is a chemoattractant for eosinophils, which are well-equipped to cause inflam-

mation. When Th2 cells come into play, ILC2s are stimulated further by the IL-2 they produce, resulting in a positive feedback loop. The ILC2s

may also produce amphiregulin and can therefore play a role in restoring epithelial integrity after viral infection. An alternative pathway to

activating ILC2s is possible via leukotriene D4 and a recent study has shown an inhibitory effect of lipoxin XA4 on ILC2s (see text for further

information).
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inflammation, including asthma induced by the ovalbu-

min (OVA) protein, fungal allergens derived from Alter-

naria alternata, glycolipid antigens from Sphingomonas

bacteria that can stimulate natural killer T cells and the

protease papain (see ref. 47 for a recent review). Papain

has proteolytic functions by cleaving tight junctions

between epithelial cells, thereby gaining access to underly-

ing dendritic cells and possibly promoting the production

of endogenous danger signals by the epithelium. It

induces asthma symptoms in mice mediated by ILC2s,

independent of B or T lymphocytes and is known to

cause occupational asthma.36,48

Taken together, these findings showed that ILC2s have

a critical role in particular mouse models for asthma in

which allergic lung inflammation was studied in Rag-

deficient mice, in the absence of functional B and T

lymphocytes. However, the contribution of ILC2s in

allergy in the context of an intact adaptive immune sys-

tem is less well studied. We have shown in wild-type mice

that in HDM-induced allergic asthma, the ILC2 popula-

tion in lung and bronchoalveolar lavage fluid increased

significantly in size and that ILC2s were a major source

of IL-5 or IL-13. Also in OVA-induced asthma, the con-

tribution of ILC2s and Th2 cells to the total production

of IL-5 or IL-13 appeared in the same range.37 The ILC2s

may therefore be critical for the induction of allergic air-

way inflammation in the lung, even in models where T

cells were previously thought to be the main producers of

IL-5 and IL-13. In contrast, upon induction of asthma

through ovalbumin or HDM only a minor proportion of

IL-4+ cells were ILC2s. Nevertheless, it has been reported

that ILC2s have the capacity to produce IL-4 in response

to TSLP or leukotriene D4.
49–51

Much less in known about ILC2s in lung inflammation

in humans. Cells with an ILC2 phenotype were described

in healthy human lung parenchymal tissue and bronc-

hoalveolar lavage fluid from lung transplant recipients.33

Although ILC2s were found to be enriched in nasal pol-

yps from patients with chronic rhinosinusitis and in

lesional skin from patients with atopic dermatitis, the

involvement of ILC2s in the pathogenesis of asthma in

humans remains unknown.34,52

Group 2 innate lymphoid cells and pulmonary
infection

In 2011 Chang et al.32 provided evidence for a critical

role of ILC2s in the development of AHR induced by

influenza in mice. They demonstrated that H3N1 influ-

enza virus infection acutely induced AHR, independently

of Th2 cells and adaptive immunity. The AHR response

required IL-13 and IL-33 and was associated with airway

neutrophils and macrophages, but not with eosinophils.

By gating on lineage-negative ST2+ c-Kit+ Sca-1+

CD25+ CD90.2+ lymphocytes, ILC2 numbers were shown

to increase in the lung and peak on day 5–6 when pro-

duction of IL-5 and IL-13 and AHR was also strongest.

Depleting ILC2s, using a monoclonal antibody against

Thy-1/CD90.2 in Rag2�/� mice, abolished the H3N1-

induced AHR response. Conversely, AHR was fully recon-

stituted when purified ILC2s were adoptively transferred

back into the recipient mice. The relationship between

influenza virus infection and increased ILC2 numbers

in the lung was confirmed by Monticelli et al., who

employed a different strain of influenza virus, H1N1

PR8.33 Strikingly, in this study IL-33R blockade or deple-

tion of ILC2s with anti-Thy-1/CD90.2 antibodies in

Rag1�/� mice during influenza infection resulted in

decreased lung function, lower blood oxygen saturation

levels and loss of epithelial integrity, which suggests a

previously unknown restorative role of ILC2s. These

effects were effectively countered upon adoptive transfer

of lung ILC2s, but appeared independent of IL-13. The

authors further investigated the role of ILC2s in the

maintenance of epithelial integrity by performing gen-

ome-wide transcriptional profiling of lung-resident ILC2s.

From this analysis multiple genes emerged that were dif-

ferentially expressed and were associated with wound

repair.33 It was then suggested that amphiregulin, a mem-

ber of the epithelial growth factor family, may be a key

cytokine produced by ILC2s which mediates restoration

of lung function (Fig. 1). Indeed, direct delivery of

amphiregulin resulted in a significantly improved out-

come for influenza virus-infected Rag1�/� mice depleted

of ILC2s.33

The finding that ILC2s are recruited and activated dur-

ing viral infection to allow local repair may be relevant to

explain the phenomenon that asthma exacerbations can

be triggered by viral respiratory tract infections. Although

it can be assumed that ILC2 activation is self-limited, it is

conceivable that repeated infection may result in sus-

tained activation of ILC2s and type 2 immunity. In this

context, it may be of note that upon infection with H3N2

X31 influenza virus in mice ILC2 numbers in the lung

were still significantly increased at day 25 after infection

(B.W.S. Li and R.W. Hendriks, unpublished results),

although at day 10 the influenza virus is efficiently cleared

in this model.53 Further experiments are required to

investigate whether increased presence of ILC2s contrib-

utes to asthma exacerbation by making patients with

asthma more sensitive to allergen stimulation.

Development of group 2 innate lymphoid cells

The ILC2s belong to a novel family of developmentally

related ILCs. A feature that these lymphocytes have in

common is the absence of Rag-dependent rearranged

antigen receptors and the lack of classic lineage markers

on their cell surface. ILCs were recently classified into

three groups based on their signature cytokines and the
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transcription factors that regulate their development and

function.29,54 Group 1 ILCs (ILC1s) are characterized by

the production of interferon-c (IFN-c) and highly express

the transcription factor T-bet. The well-known natural

killer (NK) cell is a prototypical member of this group,

but other ILC1 subsets that are phenotypically and devel-

opmentally distinct from NK cells have recently been rec-

ognized.55 Group 3 ILCs (ILC3s) produce IL-17 and/or

IL-22 and are dependent on transcription factor retinoic

acid receptor-related orphan receptor-c (RORct). A

prominent member of this heterogeneous group of cells

is the lymphoid tissue inducer cell, which plays a critical

role in the formation of secondary lymphoid organs dur-

ing embryogenesis.56 Several other ILC3 subsets have

recently been discovered, including RORct+ NKp46+ cells

secreting IL-22 and RORct+ NKp46� cells producing both

IFN-c and IL-17.57–60 Whether ILC1s and ILC3s are dis-

tinct and stable cell populations or whether they are dif-

ferent forms of the same plastic cell type remains to be

elucidated.29 Especially, since ILC3s may switch from

IL-22 to IFN-c production, whereby RORct expression is

progressively lost and the transcription factor T-bet is

essential for IFN-c expression.61–63

It is thought that ILCs arise from common lymphoid

progenitors in the bone marrow, which are Lin– IL-

7Ra+ Flt3+. ILC2s require inhibitor of DNA binding 2

(Id2) for their development, which functions as an inhibi-

tor of transcriptional activity of basic helix-loop-helix E

proteins, such as E12, E47, HEB and E2-2. Deficiency

studies indicate that lack of Id2 results in an absence of

NK cells, RORct+ ILCs and ILC2s.25,64–66

RORct+-deficient mice have normal ILC2 numbers25,26,

but the structurally related transcription factor RORa was

shown to be important for ILC2 development in the bone

marrow.67,68 Development of ILC2 from common lym-

phoid progenitors in vitro following culture with IL-7 and

IL-33 was very inefficient, although not completely abol-

ished. Although RORa-deficient mice appear to be able

to develop low numbers of cells with an ILC2 phenotype,

these are unable to proliferate in response to IL-25

stimulation.67

Interestingly, Notch signalling, which is known to be a

master regulator of T-cell lineage commitment in the thy-

mus,69 is also of particular importance in ILC2 develop-

ment in vitro to block B-cell potential in addition to

repressing differentiation of several other lineages.67,69

Moreover, ILC2 development also requires T-cell factor 1

(Tcf1) encoded by the Tcf7 gene, a transcription factor

that is implicated in T-cell lineage specification; Tcf7�/�

mice lack ILC2s and are unable to mount ILC2-mediated

type 2 immune responses.70 Although the physiological

role of Notch in ILC2 development in vivo remains to be

determined, these findings indicate that ILC2s may be

closely related to T cells. This is also reported by the

recent identification of GATA3 as a critical early regulator

of ILC2 development.71,72 Conditional deletion of the

Gata3 gene in established Th2 cells showed that Gata3 is

critical for the expression of IL-5 and IL-13, but not of

IL-4.73 Likewise, Gata3 deletion in ILC2s abolished the

expression of IL-5 and IL-13 in the mouse74 and Mjos-

berg et al.49 showed that Gata3 is crucial for function of

human ILC2s. Using an inducible Gata3 ablation strategy

it was shown by the group of Diefenbach that intestinal

ILC2 development and homeostasis required Gata3

expression.71 Analysis of chimeric mice, as well as mice

over-expressing Gata3 at the common lymphoid

progenitor stage, demonstrated an essential and dose-

dependent role for Gata3 in ILC2 development.72 Finally,

we found that enforced expression of Gata3 in mice was

sufficient to enhance Th2 and ILC2 activity, leading to

increased susceptibility to eosinophilic inflammation after

mild exposure to HDM (R.W. Hendriks, unpublished

results). Collectively, these results identify Gata3 as a crit-

ical early regulator of ILC2 development, thereby extend-

ing the paradigm of Gata3-dependent control of type 2

immunity to include both innate and adaptive lympho-

cytes.

Concluding remarks

Group 2 innate lymphoid cells are gaining increasing rec-

ognition and the evidence gathered so far implicates them

in the pathogenesis of allergic asthma and provides clues

to their contribution to fighting viral infections and resto-

ration of the airway epithelium. Interestingly, ILC2s were

recently also found in the skin, where they carry out a

dual role as an immune regulator and a pro-inflamma-

tory effector cell and were shown to functionally interact

with mast cells.50,52 Stimulated dermal ILC2s promote an

eosinophil influx and mast cell activation and lead to

spontaneous dermatitis in areas routinely exposed to

body fluids. It remains unknown whether ILC2s also

interact with mast cells in the context of allergic airway

inflammation. In response to allergens or viruses, ILC2s

are activated by a number of cytokines produced by epi-

thelial cells and DCs, of which IL-25, IL-33 and TSLP are

most studied. However, ILC2s in the lung and bone mar-

row also express the cysteinyl leukotriene receptor 1 (Cys-

LT1R) and challenge with leukotriene D4, which can bind

CysLT1R, was recently shown to increase the proportions

of IL-5+ ILC2s in the lung.51 On the other hand, ILC2s in

peripheral blood of humans express the pro-resolving G

protein-coupled receptors, N-formyl peptide receptor

ALX/FPR2 and chemokine receptor-like 1 (CMKLR1).

Their ligands, such as lipoxin A4 (LXA4), have anti-

inflammatory functions by inhibiting neutrophil activa-

tion and regulation of epithelial cytokine release. Impor-

tantly, LXA4 was found to decrease the release of IL-13

by ILC2s in nanomolar concentrations.75 These findings

therefore highlight a potential therapeutic strategy to con-
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trol asthma in patients who do not respond to corticos-

teroids.

Nevertheless, a large number of questions still need to

be answered, especially regarding the interactions between

ILC2s and the adaptive immune system. Knowledge on

interaction between ILC2 and Th2 cells may be important

for controlling allergic asthma. Although it has been

reported that ILC2s can express MHC class II,31,40 interac-

tion between ILC2s and Th2 lymphocytes is largely unex-

plored. Interestingly, very recent functional analyses

revealed that RORct-expressing ILCs can process and pres-

ent antigen in the context of MHC class II and thereby

limit commensal bacteria-specific CD4 T-cell responses.76

Despite the obvious central role of type 2 immunity in

allergic asthma, the efficacy of humanized antibodies

directed against individual cytokines IL-4, IL-5 and IL-13

appears disappointing.77 Because of the function of

GATA3 as a master regulator in both Th2 cells and ILC2s,

inhibiting its function and thereby targeting all Th2 cyto-

kines may be an attractive treatment modality for asthma

in humans. In this context, the observed capacity of the

glucocorticoid fluticasone to inhibit GATA3 translocation

from the cytosol to the nucleus would be an excellent

starting point for drug discovery strategies.78
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