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Abstract
Sarcoplasmic reticulum (SR) Ca2+ release plays an essential role in mediating cardiac myocyte
contraction. Depolarization of the plasma membrane results in influx of Ca2+ through L-type Ca2+

channels (LTCCs) that in turn triggers efflux of Ca2+ from the SR through ryanodine receptor
type-2 channels (RyR2). This process known as Ca2+-induced Ca2+release (CICR) occurs within
the dyadic region, where the adjacent transverse (T)-tubules and SR membranes allow RyR2
clusters to release SR Ca2+ following Ca2+ influx through adjacent LTCCs. SR Ca2+ released
during systole binds to troponin-C and initiates actin-myosin cross-bridging, leading to muscle
contraction. During diastole, the cytosolic Ca2+ concentration is restored by the resequestration of
Ca2+ into the SR by SR/ER Ca2+-ATPase (SERCA2a) and by the extrusion of Ca2+ via the Na+/
Ca2+-exchanger (NCX1). This whole process, entitled excitation-contraction (EC) coupling, is
highly coordinated and determines the force of contraction, providing a link between the electrical
and mechanical activities of cardiac muscle. In response to heart failure (HF), the heart undergoes
maladaptive changes that result in depressed intracellular Ca2+ cycling and decreased SR Ca2+

concentrations. As a result, the amplitude of CICR is reduced resulting in less force production
during EC coupling. In this review, we discuss the specific proteins that alter the regulation of
Ca2+ during HF. In particular, we will focus on defects in RyR2-mediated SR Ca2+ release.

Introduction
Excitation-contraction (EC) coupling represents a signaling cascade that allows the cardiac
action potential to trigger myocyte contraction.[1] Depolarization of the cardiomyocyte
membrane leads to activation of voltage-gated L-type Ca2+ channels (LTCC) located in
plasma membrane invaginations known as transverse (T)-tubules. Ca2+ influx through
LTCC triggers a much greater release of Ca2+ from the sarcoplasmic reticulum (SR) via the
ryanodine receptor type-2 (RyR2), a process known as Ca2+-induced Ca2+ release (CICR).
[2] This abrupt elevation in the cytosolic Ca2+ concentration allows Ca2+ to bind to troponin
C, triggering the release of troponin I (TnI) from the myofilament, initiating contraction of
cardiomyocytes. During muscle relaxation, cytosolic Ca2+ is actively pumped back into the
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SR via sarco/endoplasmic reticulum Ca2+−ATPase 2a (SERCA2a) and extruded from
cardiomyocytes via the Na+/Ca2+ exchanger (NCX).[3, 4]

Heart failure (HF) is a major cause of morbidity and mortality in Western countries.[5] It is
a physiological state in which cardiac output does not meet the demands of the body.
Classically, systolic HF is caused by a reduction in ejection fraction and has higher
mortality,, compared with HF with preserved ejection fraction.[6] In this review, we will
focus on role of alterations in Ca2+ handling proteins in the pathogenesis of HF with reduced
ejection fraction. In response to HF, the heart undergoes maladaptive changes that ultimately
result in depressed intracellular Ca2+ cycling and decreased SR Ca2+ concentrations. Thus,
subsequent action potentials lead to depressed CICR, releasing less Ca2+ and producing less
force during EC coupling. Depressed CICR can result from a reduction in (1) trigger Ca2+

current through LTCC, (2) reuptake of Ca2+ into the SR, and/or (3) SR Ca2+ release through
RyR2. Over time, these alterations contribute to reduced SR Ca2+ loading, and as such,
interfere with the frequency-dependent enhancement of myocyte contractility. In this
review, we discussed specific alterations in Ca2+ handling proteins associated with the
pathogenesis of HF, with a focus on the complex pattern of alterations of RyR2 post-
translational regulation during HF.

Regulation of ryanodine receptors during excitation-contraction coupling
RyR2 represents the primary channel mediating the intracellular Ca2+ release that triggers
cardiomyocyte contraction during EC coupling.[7] This homotetrameric transmembrane
protein with a molecular weight of 565-kDa per monomer is located on the SR membrane.
[8] The amplitude of Ca2+ release via RyR2 is strongly modulated by second messengers
(Ca2+, Mg2+, cAMP) and various intracellular proteins. One major regulatory subunit
interacting with RyR2 is the 12.6-kDa cytosolic FK506-binding protein (FKBP12.6), also
known as calstabin2.[9, 10] FKBP12.6, a peptidyl-prolyl cis-trans isomerase, tightly
associates with RyR2, stabilizing its closed conformational state and facilitating channel
closure.[11, 12] Other accessory proteins that bind to RyR2 and inhibit channel open
probability include calmodulin and sorcin.[13, 14] Moreover, our studies have recently
revealed that a structural protein junctophilin-2 (JPH2) also binds to RyR2 and inhibits its
activity levels.[15]

Altered RyR2 regulation in HF
In addition to regulation by accessory and structural proteins, posttranslational modifications
of RyR2, such as oxidation,[16, 17] S-nitrosylation,[18–20] and phosphorylation[21–23]
have also been shown to regulate channel activity. The open probability of RyR2 is strongly
regulated by protein kinases that phosphorylate distinct residues on the channel, and
phosphatases that dephosphorylate RyR2 channel subunits. Several such enzymes are
associated with the RyR2 channel macromolecular complex, including protein kinases A
(PKA), Ca2+/CaM-dependent protein kinase II (CaMKII), and phosphatases PP1 and PP2A
allowing for rapid and selective regulation of the channel activity.[21, 22, 24, 25] Several
studies have been conducted to determine the relative importance of each of these regulatory
proteins, especially PKA and CaMKII, in modulating RyR2 activity in the failing heart.[26–
31] Results of these studies are discordant regarding the relative importance of CaMKII
versus PKA in modulating RyR2 activity. Our recent work suggests that this apparent
discordance may be due to different pathophysiological mechanisms in ischemic versus non-
ischemic HF.[ref 28] In the sections below, we have discussed in detail the current state of
knowledge.
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Regulation of RyR2 by PKA Phosphorylation in HF
One of the first reported changes in RyR2 regulation associated with HF pathogenesis was
altered PKA phosphorylation.[21] This discovery by the Marks lab has led to many related
studies on phosphorylation-dependent regulation of RyR2 in healthy and diseased hearts.
Many, but not all, studies have demonstrated increased phosphorylation of the main PKA
phosphorylation site on RyR2, serine 2808 (S2808) in HF.[21, 26, 28, 32–36] Chronically
increased S2808 phosphorylation on RyR2 may promote diastolic SR Ca2+ leak that, in turn,
depletes SR Ca2+ stores and reduces EC coupling.[37, 38]

Recently, some new insights were obtained in genetically altered mice in which the S2808
site was either constitutively activated (S2808D) or genetically inactivated (S2808A). Shan
et al. demonstrated that S2808D knock-in mice developed spontaneous HF and exhibited
increased mortality after experimental myocardial infarction (MI), as a result of severe SR
Ca2+ leak.[29] Conversely, it was shown that S2808A knock-in mice were relatively
protected from the development of HF following experimental MI.[35] In contrast, another
study showed that, although MI increased phosphorylation of RyR2 at the S2808 site,
genetic inhibition of S2808 phosphorylation in S2808A mice did not protect mice from
developing ischemic HF.[26] The reasons for these discrepant findings remain unknown at
this time, although differences in the time-points chosen for the assessment of cardiac
function after MI and differences in the size of the infarction may have contributed.

In contrast to the above findings, a recent study by Benkusky et al.[36] demonstrated that
S2808A knock-in mice were not protected from non-ischemic HF due to pressure overload.
Consistent with this finding, Respress et al.[28] showed that there was only a non-significant
increase in S2808 phosphorylation on RyR2 in WT mice subjected to non-ischemic HF. In
this particular model of non-ischemic HF caused by transverse aortic constriction, no
significant changes were observed in the phosphorylation status of S2808 on RyR2, as well
as the PKA phosphorylation site S16 on phospholamban (PLN). Consistent with these
findings in animals, patients with non-ischemic dilated cardiomyopathy (DCM) also did not
show increases in the phosphorylation status of S2808 on RyR2.[28] Thus, it seems that the
potential involvement of S2808 phosphorylation on RyR2 in HF development may depend
on the disease etiology, with current evidence suggesting that enhanced PKA-dependent
phosphorylation of S2808 on RyR2 may only play a role in the development of ischemic
HF.

Regulation of RyR2 by CaMKII in HF
In addition to PKA, RyR2 channels are also phosphorylated by CaMKII, which primarily
phosphorylates a nearby site (serine 2814) on RyR2.[22, 27] Hoch et al. were among the
first group of scientists to demonstrate increased expression of the CaMKII-δC isoform in
cardiac muscle of patients with HF.[39] Following this report, Zhang et al. showed that
cardiac-specific overexpression of CaMKII-δC in mice causes abnormal Ca2+ handling and
development of HF.[40] Conversely, Zhang et al. showed that overexpression of AC3-I, a
peptide inhibitor of CaMKII, delayed the onset of HF in mice following MI.[41] Various
studies have demonstrated that increased RyR2 phosphorylation by CaMKII upregulation
contributes to enhanced SR Ca2+ leak in HF.[37, 38, 42] The role of CaMKII
phosphorylation of RyR2 in HF is further supported by the findings that pressure overload
increases CaMKII phosphorylation of RyR2, enhances diastolic SR Ca2+ release events, and
promotes HF in mice, and the fact that this phenotype can be reversed by genetic inhibition
of CaMKII activity in CaMKII-δ deficient mice.[43, 44] These studies suggest a dominant
role of abnormal CaMKII regulation of RyR2 in HF.
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Our recent studies provided additional insights into the importance of the S2814
phosphorylation site on RyR2 as a downstream target of CaMKII in HF. Respress et al.[28]
demonstrated that patients with non-ischemic DCM, but not ischemic cardiomyopathy,
exhibited increased levels of CaMKII phosphorylation of RyR2. Genetic inhibition of
CaMKII phosphorylation of S2814 on RyR2 (S2814A) in mice protected against pressure
overload induced non-ischemic HF but not against MI-induced ischemic HF.[28] Taken
together, these studies identified RyR2 as a downstream target of CaMKII in HF and suggest
that CaMKII phosphorylation of RyR2 is important in the pathogenesis of non-ischemic HF.
[28]

Regulation of RyR2 by PP1 and PP2A in HF
The fact that RyR2 phosphorylation can be chronically increased in HF despite
downregulation of β-adrenergic receptors raised the idea that RyR2 hyperphosphorylation
might be the result of altered local signaling, rather than defective global cAMP and Ca/
CaM-dependent signaling. Seminal by Marx et al. revealed that RyR2 is in fact a
macromolecular channel complex that contains protein kinases (PKA, CaMKII) and protein
phosphatases (PP1, PP2A) targeted to the pore-forming channel subunits.[21] Although PP1
and PP2A have similar catalytic mechanisms, substrate recognition mechanisms on RyR2
for PP1 and PP2A may be distinct. For example, Huke et al. showed that whereas PP1 can
dephosphorylate both S2808 (the major PKA site) and S2814 (the major CaMKII site),
PP2A can only dephosphorylate the S2814 site on RyR2.[45]

There is also emerging evidence that reduced PP activity may contribute to altered RyR2
phosphorylation levels in HF. For example, Ai et al. demonstrated reduced amounts of PP1
and PP2A within the RyR2 complex.[37] In addition, pharmacological inhibition of PP2A
activity in cardiomyocytes results in hyperphosphorylation of RyR2 at site S2814,
promoting diastolic Ca2+ release events.[46, 47] Together, these studies suggest that reduced
PP1 and PP2A activity in the RyR2 macromolecular complex can underlie the abnormal
Ca2+ handling seen in the failing heart.[46, 47] However, similar to the controversy
regarding the role of PKA and CaMKII in the specific etiologies of HF, recent studies by
Belevych et al. showed that levels of PP1A catalytic subunits did not change in a
tachycardia-induced HF dog model, whereas both regulatory and catalytic subunits of PP2A
were downregulated in this model.[46] This is in contrast to other studies which showed
reduced protein levels and PKA phosphorylation of inhibitor-1 (I-1, an inhibitor of
phosphatase-1) in human failing hearts, implicating the role of altered PP1 activity.[48]
Overexpression of a truncated, constitutively active I-1 form reversed contractile
dysfunction in previously failing myocytes.[49, 50] Moreover, genetic overexpression of I-1
in mice enhanced contractility, leading to an increase in RyR2 phosphorylation at S2814, but
not S2808, and increased diastolic SR Ca2+ release events and arrhythmogenicity.[51]

In addition to PPs, cyclic nucleotide phosphodiesterases (PDEs) have also been identified in
the RyR2 complex, where they regulate intracellular levels of cAMP and cGMP.[21] Within
the cardiac PDE family, multiple isoforms are expressed varying in mechanistic action as
well as subcellular location.[52] Of the six major classes, PDEs 2/3/4 regulate the activity of
PKA through the hydrolyzing of cAMP.[53] Specifically, PDE4B mediates cAMP at the
level of the plasma membrane,[54] while PDE3A and PDE4D are thought to directly
regulate cAMP levels on the SR.[55] Therefore, these isoforms aid in the control of β-
adrenergic stimulation, PKA-mediated phosphorylation of RyR2, and cardiomyocyte
contraction.[33] In contrast, PDE4 inhibition increases the frequency of SR Ca2+ release,
[33] and the incidence of atrial fibrillation upon β-adrenergic stimulation, suggesting that
PDE is another critical regulator of RyR2 phosphorylation through cAMP/ PKA activation.
Based on current literature, lack of PDE-mediated regulation of PKA through dysregulation
of β-adrenergic receptor/cAMP compartmentalization also contributes to RyR2
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hyperphosphorylation, cardiac remodeling, and HF. Specifically, it has been shown that
reduced levels of PDE4D3 in patients with HF may contribute to RyR2
hyperphopshorylation and channel defects.[33] In summary, the exact roles of PP1, PP2A,
and PDE4 in RyR2 phosphorylation and HF pathogenesis remains to be elucidated, although
emerging data suggest that the balance between kinase, phosphatase, and phosphodiesterase
activity is altered in HF.

RyR2 and oxidation in HF
Redox signaling serves as another important posttranslational modulator of RyR2 open
probability.[16, 17, 56] Each monomer of RyR2 contains roughly 90 cysteine residues, 20 of
which are in a reduced state under normal conditions. Many of these cysteines are potential
targets for various redox modifications, including S-nitrosylation, S-glutathionylation, and
disulfide crosslinking.[18] Endothelial nitric oxide synthase (eNOS), which is localized to
caveolae where it compartmentalizes with beta-adrenergic receptors and LTCC, allows NO
to inhibit β-adrenergic-induced inotropy.[57–60] In contrast, neuronal NOS (nNOS) has an
opposite, facilitative effect on contractility, wherein, it stimulates SR Ca2+ release via RyR2.
[18, 19] This opposite effect is further evidenced by the observation that nNOS deficiency
reduces inotropic response, whereas eNOS deficiency enhances contractility due to
corresponding changes in SR Ca2+ release.[20] In addition to redox modulation by
nitrosylation, cardiac SR is reported to contain NADH oxidase as well as NOX2 oxidase
(that utilizes NADPH instead of NADH) both of which regulate the RyR2 complex under
physiological conditions.[61–63]

In HF, a shift in the cellular redox potential creates a more oxidized state with increases in
reactive oxygen species (ROS) and NO.[64–66] This shift in balance has a significant
impact on SR Ca2+ handling proteins affecting EC coupling, in particular RyR2.[64–66] In
the initial phases of HF, increases in NO levels may be an adaptive response to myocardial
dysfunction, elevated cytokines, and increases in ROS.[64] This is evidenced by the
observation that S-nitrosylation (>3 sites per monomer) leads to reversible RyR2 activation.
[18] However, as HF becomes more advanced, oxidation of proteins supersedes
nitrosylation. Whereas, nitrosylation is a reversible process, oxidation leads to irreversible
activation (beyond a certain threshold).[18] Moreover, oxidation of reactive thiols induces
cross-linking between RyR2 subunits resulting in channel activation that can be reversed by
S-nitrosylation.[56] In addition, nNOS deficiency leads to an increase in ROS that may lead
to oxidation of reactive thiols on RyR2.[67] Thus, whereas S-nitrosylation seems to control
the basal redox state of the channel and is an adaptive process in initial stages of HF,
oxidation is a pathological process found in advanced HF.[16] Finally, in addition to the
direct effects of ROS on RyR2, oxidation can also activate RyR2 by means of CaMKII
oxidation and activation.[68] Recent evidence suggests that CaMKII activity can be
enhanced by methionine oxidation of M281/M282.[68] These findings highlight the
complex and interdependent nature of various posttranslational modifications of RyR2 that
can alter channel activity during HF. For more information regarding the role of oxidative
stress in HF, please see the review article by Tsutsui et al.[69]

RyR2 and structural proteins in HF
Structural remodeling also plays an important role in the pathogenesis of HF.[70] One of the
important aspects of structural remodeling at the cellular level is the remodeling of T-
tubules, which can indirectly impact Ca2+ handling.[71] HF leads to a reduction in the
overall density as well as irregularities in T-tubule patterning.[70, 72, 73] Specifically, the
changes include an increase in longitudinal component and a reduction in the transverse
component.[74] As indicated above, proper CICR is critical for contraction in
cardiomyocytes. T-tubules ensure that LTCC and RyR2 are in close proximity to each other
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for optimal CICR. Disruptions in the dyadic distance leads to desynchronized CICR and a
reduction in the force of contractility.[15, 70, 71, 74] An important role of T-tubule
disruption in HF pathogenesis is also indicated by the fact that mechanical unloading
reverses T-tubule remodeling and normalizes CICR in left ventricle in a rat model of
ischemic HF as well as in right ventricle in a rat model of pulmonary artery hypertension.
[70, 75] In addition to its effect on CICR, T-tubule disruption in HF also alters propagation
of action potential further hampering EC coupling.[76] Recently, our lab and Wei et al.[15,
73] found that junctophilin-2 (JPH2), a structural protein, may be a critical mediator of T-
tubule remodeling in HF. Our data revealed that an acute reduction in JPH2 levels lead to
variability in dyadic distance, loss of EC coupling gain, resulting in aberrant SR Ca2+ leak
through RyR2 and eventual HF development.[15] Complementary to our results, Wei et al
showed that in early stages of heart failure in a rat model of HF, the T tubule disruption was
accompanied by reduction in JPH2 levels.[73] Overall, there is strong evidence that
alterations in T-tubule structure alter SR Ca2+ regulation and play an important role in the
pathogenesis of HF. These structural changes are intertwined with electrical remodeling, and
together, have become critical therapeutic targets for the treatment of HF. Current research
is aimed at determining whether downregulation of JPH2 is in response to or an actual cause
of HF.

L-type Ca2+ channels in HF
EC coupling in failing hearts can also be depressed due to altered regulation of the LTCC
(CaV1.2) on the plasma membrane. The LTCC is composed of a pore-forming α1C subunit
and the auxiliary subunits β, α2δ, and γ, which are involved in channel trafficking to the
sarcolemma and modulation of the voltage-dependence of channel gating.[77, 78] While
some investigators have reported an increase in ICa,L in left ventricular hypertrophy and HF,
others have demonstrated an unaltered or downregulated LTCC in HF.[78] This
contradiction is evidenced by the fact that although the single-channel activity of LTCC is
enhanced in failing heart, whole-cell current is unaltered.[79] A recent study showed that
failing hearts have impaired Cav1.2 trafficking.[80, 81] These investigators demonstrated
that `Bridging integrator 1' (BIN1), a membrane scaffolding protein that causes Cav1.2 to
traffic to T tubules, is reduced in human failing cardiomyocytes. Hong et al. reported that
although the total Cav1.2 was not changed in the failing heart, lack of BIN1 leads to reduced
abundance of Cav1.2 channels in T-tubules that in turn reduces ICa,L.[81] In a more recent
study, Goonasekera et al. showed that reduced LTCC led to a compensatory elevation in
neuroendocrine stimulation and RyR2-mediated SR Ca2+ leak, which actually increased the
gain of ECC.[82] This enhanced ECC gain resulted in pathologic cardiac hypertrophy and
failure through calcineurin/nuclear factor of activated T cells (calcineurin/NFAT) signaling.
Although these findings require further investigation, they suggest complex reciprocal
signaling between the LTCC and intracellular pro-hypertrophic signaling pathways.

SERCA2a in HF
The cardiac isoform of SERCA (SERCA2a) controls the rate of cytosolic Ca2+ removal and
the refilling of SR Ca2+ load in cardiomyocytes. Decreased expression and activity of
SERCA2a leads to impaired SR Ca2+ uptake and reduced SR Ca2+ load in cardiomyocytes,
which, in turn, compromises SR Ca2+ release and impairs cardiomyocyte contractility.[83]
Reduced SERCA2a function is a hallmark of failing hearts and has been found in many
experimental models of HF and end-stage HF patients.[83] Normalization of SERCA2a
function has been shown to increase contractility and improve hemodynamics along with
survival in rodent and large animal models of HF.[84–88] These animal studies have led to
SERCA2a gene therapy that is currently being evaluated in a clinical trial.[83]
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The activity of SERCA2a is directly regulated by accessory subunits, including
phospholamban (PLN) and sarcolipin (SLN). PLN, a small protein comprised of 52 amino
acid residues, has proven to be the major inhibitory regulator of SERCA2a. Similar to the
regulation of RyR2, PKA and CaMKII also play an important role in the regulation of PLN,
as they can phosphorylate PLN at sites Ser16 and Thr17, respectively.[89, 90] In its
dephosphorylated state, PLN exists predominantly as monomers that bind to and inhibit
SERCA2a activity. On the other hand, phosphorylated PLN forms pentameric complexes,
which have a lower affinity for SERCA2a, allowing for enhanced activity. The role of PLN
in the pathogenesis of HF has been confirmed in animal models where inhibition of PLN
restored SR Ca2+ load, delaying the progression of cardiac dysfunction and pathological
remodeling.[90, 91] However, loss of PLN did not rescue other genetic mouse models of
HF, questioning a causal association between the two.[92]

In addition to PLN, SLN, a 31-amino acid protein, also regulates SERCA2a activity.[93]
SLN can bind to SERCA2a through PLN and cause a “superinhibition” of SERCA2a.[94,
95] Transgenic mice with cardiac-specific overexpression of SLN exhibit an impairment of
cardiac contractility and ventricular hypertrophy, associated with a reduced amplitude and
increased decay time of Ca2+ transients in isolated papillary muscle.[96] Moreover, mice
lacking both PLN and SLN display increased SERCA2a pump activity, resulting in
elevations in the amount of SR Ca2+ load and systolic Ca2+ transient.[97] However, over
time, constitutive activation of SERCA2a in this mutant model becomes detrimental to
cardiac function.[97] These findings suggest the importance of the dynamic regulation of
SERCA2a by PLN and/or SLN in the maintenance of cardiac contractility under normal
conditions and during pathological states.

Furthermore, the small ubiquitin-like modifier type 1 (SUMO1) has also been shown to
regulate the activity of SERCA2a through a novel posttranslational modification, termed
SUMOylation, which is thought to increase the intrinsic activity of SERCA2a ATPase.[98,
99] Kho et al. found that the level of SERCA2a and SUMO1 were reduced in animal models
of HF and in failing cardiomyocytes isolated from HF patients.[99] In the same study, using
a transverse aortic constriction-induced HF mouse model, the authors demonstrated that
SERCA2a levels could be restored by increasing SUMO1 expression using gene transfer,
thereby improving cardiac performance and decreasing mortality.

NCX1 in HF
Another membrane protein essential in Ca2+ homeostasis in cardiomyocytes is the Na+/
Ca2+-exchanger type 1 (NCX1). During diastole, NCX1 removes 1 Ca2+ ion from the
cytosol in exchange for influx of 3 Na+ ions. As such, this represents another major
mechanism, along with SERCA2a, of restoring cytosolic Ca2+ to pre-systolic levels. HF is
characterized by elevated cytosolic Ca2+ levels due to reduction in CICR and reduced
SERCA2a activity as detailed above, which in turn leads to a compensatory increase in
NCX1 expression and activity.[100–103] However, the upregulation of NCX1 may become
maladaptive over long periods of time due to several reasons. First, in contrast to SERCA2a,
NCX1 does not replete SR Ca2+ stores and, thus, does not help in restoring the diminished
CICR. Second, upregulation and/or increased activity of NCX1 can be potentially pro-
arrhythmogenic.[102–105] Overall, the role of NCX is unclear in the pathogenesis of
contractile dysfunction in HF but its detrimental role in causing lethal arrhythmias in the
setting of HF has been established by several studies.
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Conclusion
Several studies have confirmed that diastolic Ca2+ leak from the SR is increased in
myocytes isolated from animals as well as patients with HF. In addition, there is abundant
evidence that remodeling of the RyR2 macromolecular channel complex and changes in
posttranslational modifications contribute to channel dysfunctions that underlie this SR Ca2+

leak. This enhanced SR Ca2+ leak observed in HF can impair cardiac performance, although
defects in SERCA2a and NCX1 regulation may further exacerbate the excitation-contraction
coupling defects in HF. The cellular consequences of persistent SR Ca2+ leak probably
include reduced SR Ca2+ loading, which suppresses the next systolic SR Ca2+ release and
contractile event. Additional studies are required to determine how different post-
translational modifications conspire to generate SR Ca2+ leak in failing hearts, and how one
can intervene therapeutically to restore SR Ca2+ handling and cardiac function. A better
understanding of the molecular mechanisms underlying defects in RyR2 may spur the
development of novel therapeutic approaches to specifically inhibit SR Ca2+ leak pathways
in HF.
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Figure 1.
Schematic representation of changes in Type 2 Ryanodine receptors (RyR2) and related
proteins in heart failure (HF). Left, represents Ca2+ handling in a cell from normal heart, and
right, represents Ca2+ handling in a cell from a failing heart. 1) shows increased RyR2
activity represented by a wide open RyR2 due to post-translational modification by
increased protein kinase A (PKA) and Ca2+/CaM-dependent protein kinase II (CaMKII)
activity, reduced protein phosphatases (PP) 1 and PP 2A activity, reduced junctophilin 2
(JPH2) leading to abnormalities in T-tubule structure and increased oxidation by reactive
oxygen species (ROS), 2) represents complex changes in L-type Ca2+ channel (LTCC) as
discussed in the text, 3) represents reduced SR/ER Ca2+-ATPase (SERCA2a) activity and
corresponding increased phospholamban (PLN) and Sarcolipin (SLN) activity, and 4)
represents increased Na+/Ca2+ exchanger (NCX) activity, in heart failure. ↑ represents
increase and ↓ represents decrease.
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