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Abstract
Despite that randomization is the gold standard for estimating causal relationships, many questions
in prevention science are left to be answered through non-experimental studies often because
randomization is either infeasible or unethical. While methods such as propensity score matching
can adjust for observed confounding, unobserved confounding is the Achilles heel of most non-
experimental studies. This paper describes and illustrates seven sensitivity analysis techniques that
assess the sensitivity of study results to an unobserved confounder. These methods were
categorized into two groups to reflect differences in their conceptualization of sensitivity analysis,
as well as their targets of interest. As a motivating example we examine the sensitivity of the
association between maternal suicide and offspring’s risk for suicide attempt hospitalization.
While inferences differed slightly depending on the type of sensitivity analysis conducted, overall
the association between maternal suicide and offspring’s hospitalization for suicide attempt was
found to be relatively robust to an unobserved confounder. The ease of implementation and the
insight these analyses provide underscores sensitivity analysis techniques as an important tool for
non-experimental studies. The implementation of sensitivity analysis can help increase confidence
in results from non-experimental studies and better inform prevention researchers and
policymakers regarding potential intervention targets.
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This paper describes and illustrates a set of tools, broadly known as “sensitivity analysis,” to
help understand the robustness of non-experimental findings to a potential unobserved
confounder. The goal of this paper is to discuss the relevance of common sensitivity analysis
methods to prevention research and to provide an easy-to-understand guide for interested
prevention researchers. We do not intend to discuss the technical nuances of sensitivity
analysis or to provide a comprehensive listing of all of the methods used to assess
sensitivity. However, interested readers can refer to works cited throughout the paper for
details and description of additional methods.
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Many studies in prevention research aim to investigate causal effects—either the effects of
early risk factors or experiences on later outcomes, such as the effects of adolescent drug use
on outcomes such as unemployment and drug use during adulthood (Stuart & Green, 2008),
or the effects of particular interventions, such as the Good Behavior Game (Kellam, Brown,
Poduska, Ialongo, Wang, Toyinbo et al., 2008). Understanding such causal effects is crucial
for determining what risk or protective factors should be targeted to improve outcomes or
whether a preventive intervention is effective. In some situations researchers can randomize
individuals to receive the intervention or the control condition, a method considered the gold
standard for estimating causal effects (Flay, Biglan, Boruch, Castro, Gottfredson, Kellam et
al., 2005). However, randomization is often infeasible or unethical, sometimes due to the
nature of the factor under study (such as drug abuse or childhood maltreatment). In those
cases questions of causal inference are left to be answered using non-experimental methods.

The Achilles heel of non-experimental studies is that the exposed and unexposed (or
treatment and control) groups may not be comparable, a phenomenon formally known as
confounding (Rothman, Greenland, & Lash, 2008). While observed confounding can be
addressed with methods such as propensity score matching (Stuart, 2010), methods to assess
the consequences of unobserved confounding are less readily available, and researchers tend
to shy away from the issue. Being able to determine the robustness of study findings to
potential unobserved confounding is crucial for theory testing and development. In addition,
the knowledge of to what extent the conclusions drawn from those studies are robust to
potential unobserved confounding can help with policy decision making.

The origin of sensitivity analysis to unobserved confounding has been attributed to a study
by Cornfield, Haenszel, Hammon, Lilienfeld, Shimkin, and Wynder (1959), which
quantified the role of unobserved confounding in the observed relationship between smoking
and lung cancer (Cornfield et al., 1959). Specifically, Cornfield et al. (1959) showed that an
unobserved confounder, such as a genetic factor, would need to lead to a nine-fold increase
in the odds of smoking in order to explain away the association between smoking and lung
cancer, and it was asserted that such a strong unobserved confounder was very unlikely to
exist. Since then, more recent examples demonstrate the use of sensitivity analysis to assess
unobserved confounding in various fields, such as sociology, criminology, psychology, and
prevention science (e.g., DiPrete & Gangl, 2004; Harding, 2003; Haviland, Nagin, &
Rosenbaum, 2007; Kitahata, Gange, Abraham, Merriman, Saag, Justice et al., 2009; Liu, in
press), though such examples are still relatively rare. For example, Haviland et al. (2007)
found that the estimated effect of gang involvement on subsequent violence was robust to a
fairly weak unobserved confounder but may be sensitive to an unobserved confounder
moderately associated with gang involvement and subsequent violence. Harding (2003)
found that the estimated effect of neighborhood choice on high school dropout was robust to
an unobserved confounder if high and low poverty neighborhoods were compared.
However, the effect was sensitive to an unobserved confounder if high and moderate
poverty neighborhoods were compared or if moderate and low poverty neighborhoods were
compared. As a final example, Liu (in press) found that an observed relationship between
high school dropout and subsequent adult criminal offending estimated using propensity
score matching remained significant even after taking into account an unobserved
confounder strongly associated with both high school dropout and criminal offending.

Conceptually, sensitivity analysis can be understood from both a statistical and an
epidemiological perspectives (Luiz & Cabral, 2010). Although the two perspectives differ in
their approaches to conceptualize sensitivity analysis, they both assess how strong the
effects of the unobserved covariate on the exposure and/or the outcome would have to be to
change the study inference. From a statistical perspective, Rosenbaum (2002, 2010)
emphasizes the difference between randomized trials and non-experimental studies; that is,
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in a non-experimental study, exposed and unexposed groups may differ on an unobserved
characteristic even after matching on observed characteristics. In other words, individuals
with the same observed covariates may have different probabilities of being exposed if they
have different unobserved covariates. A sensitivity parameter is used to quantify the
difference in the odds of exposure for two individuals with the same observed covariates (or
the same propensity score) but diverge on unobserved covariates. The goal is to determine
the smallest value of this parameter that will change the p-value of the “true” outcome-
exposure association to a non-significant level.

Sensitivity analysis can also be understood from an epidemiological perspective (e.g.,
Harding, 2003), as a tool to assess the extent to which a significant association found
between observed variables could be due to unobserved confounding. Sensitivity parameters
are used to quantify the strengths of the associations between a hypothetical unobserved
confounder and the exposure and outcome. The goal is to arrive at a “true” association
between the exposure and the outcome, adjusting for the hypothetical unobserved
confounder with various values of the sensitivity parameters.

We selected seven methods to present in this paper. In selecting these methods, we
attempted to keep a balance between introducing a broad range of methods that
accommodate different interests and data availability and selecting the methods that are
relatively straightforward to understand and easy to apply to a number of different settings.
For example, the selected methods capture the above-mentioned two different perspectives
to conceptualize sensitivity analysis. Additionally, these seven methods have different
targets of interest. Specifically, the first group, i.e. Rosenbaum’s three approaches
(Gastwirth, Krieger, & Rosenbaum, 1998) focus on the statistical significance of the “true”
outcome-exposure association, while the second group, i.e. Greenland’s (1996), Harding’s
(2003), Lin et al.’s (1998) and VanderWeele and Arah’s (VanderWeele & Arah 2011, Arah,
Chiba, & Greenland 2008) approaches obtain the point estimate of the “true” outcome-
exposure association with a 95% confidence interval. Other differences between these
approaches (such as study design and outcome distribution) are described later in the
manuscript and summarized in Table 1. Importantly, the seven selected methods are all
relatively straightforward to understand and can be computed by hand or with standard
statistical software.

Motivating Study
As a demonstration, we apply the seven sensitivity analysis methods to investigate potential
unobserved confounding in a recent study by Kuramoto, Stuart, Runeson, Lichtenstein,
Langstrom, and Wilcox (2010), which examined the association between maternal suicide
and their offspring’s hospitalization for suicide attempt. Parental suicide has been examined
as a risk factor for adolescent’s suicide attempt (Wilcox, Kuramoto, Lichtenstein,
Langstrom, Brent, & Runeson, 2010). However, the association between parental suicide
and offspring’s risk has been somewhat equivocal, with most of the research in this area
coming from short-term prospective or cross-sectional studies of referred samples.
Additionally, most previous studies compared offspring of suicide decedents with offspring
of living parents, which cannot clarify our understanding on the impact of parental suicide
over and beyond the impact of sudden parental death. Understanding the causal
mechanisms, and not just associations, is particularly crucial to suicide prevention to
identify populations in which prevention efforts can be targeted. For example, if parental
suicide was found to indeed cause offspring’s suicide attempt, then prevention efforts should
target individuals whose parents died from suicide. If it was found that such a relationship
can be easily explained away by some other factors, it is important to search for those
factors that may better explain hospitalization for suicide attempt. However, we cannot
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randomly assign parental suicide, leaving the investigation of such a relationship relying
solely on non-experimental studies. With such a goal, Kuramoto et al. (2010) compared
5,600 offspring who lost a mother to suicide before age 18 (exposed group) with 2,872
offspring who lost a mother to an accident (unexposed group). This comparison group
allowed a clearer distinction of risk, over and beyond the stress and disruption associated
with sudden parental death. Propensity score matching was used to make the exposed and
unexposed groups as similar as possible on observed characteristics such as deceased parent
and surviving parent’s psychiatric hospitalization. One to one nearest neighbor propensity
score matching with replacement (Stuart 2010) was used. The authors concluded that
maternal suicide was associated with a 1.86-fold increased risk (95% CI=(1.49, 2.32)) 1 of
their offspring being hospitalized for suicide attempt, as compared to matched offspring who
lost their mother to an accident, a result in congruent with the increasing body of literature
on the impact of parental suicide on offspring’s risk for suicidal behavior (Wilcox et al.,
2010; Niederkrotenthaler, Floderus, Alexanderson, Rasmussen, & Mittendorfer-Rutz.,
2012).

While the exposed and unexposed groups were matched on a large number of
characteristics, potential unobserved confounders remain a concern. For example, the
observed association may be partly explained by genetic predisposition to suicidal behavior,
which has been suggested to be associated with both suicide and offspring’s suicide attempt
(Brent & Mann, 2005; Lieb, Bronisch, Hofler, Schreier, & Wittchen, 2005). In order to
accommodate some methods (e.g., primal sensitivity analysis) that are most easily applied to
a 1:1 matched setting, and ease the comparison of these methods with other methods, the 1:1
matching with replacement was modified to resemble a 1:1 match without replacement. This
resulted in 5,600 matched pairs, with a total sample size of 11,200. In these pairs, 233
offspring of suicide decedents and 128 offspring of accident decedents were hospitalized for
suicide attempt. This modification did not change the inferences about the association
between maternal suicide and offspring’s suicide attempt.

Setting, Assumptions and Notation
In order to demonstrate and motivate the use of sensitivity analysis, we focus on a relatively
simple setting with a binary exposure, a binary outcome, and a binary unobserved
confounder. The focus on binary exposures and outcomes is common in the causal inference
literature (Stuart, 2010), helps simplify the sensitivity analysis techniques, and is a common
assumption in that setting (e.g., VanderWeele & Arah 2011; Harding 2003). The binary
unobserved confounder can also be thought of as a combination of a number of unobserved
confounders (Lin, Psaty, & Kronmal, 1998). Some of the methods discussed in this paper
can be generalized to accommodate continuous normally distributed unobserved
confounders, although the computation is more involved. The basic ideas remain the same
except that when the confounder is continuous, the relationships between the unobserved
confounder and the exposure and the outcome are expressed as mean differences rather than
OR’s (a brief discussion is provided later in this paper). In addition, some of these methods
can be generalized to accommodate continuous or censored outcomes (e.g. Lin et al.’s
approach; see Table 1).

Two common assumptions are made (though not necessarily required by every method, as
discussed later in the paper) to apply the seven methods to the motivating example. First, we
assume that the relationships between the unobserved confounder and the exposure and the
outcome do not vary as a function of the observed covariates. As VanderWeele and Arah
(2011) discussed when presenting their more general approach, it becomes virtually

1The original study estimated hazard ratio of 1.80 with a 95% confidence interval of 1.19, 2.74.

Liu et al. Page 4

Prev Sci. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



impossible to allow the specified parameters to differ across levels of the observed
covariates when multiple observed covariates are involved. Second, we assume no three way
interaction between the exposure, the outcome, and the unobserved confounder, an
assumption made by most studies using sensitivity analysis (e.g., Harding, 2003). While of
course these two assumptions are not always met in reality, demonstrating methods to
accommodate violation of these assumptions is beyond the scope of this paper. A brief
discussion is provided later in this paper; see VanderWeele and Arah (2011) and Lin et al.
(1998) for more detailed discussion of those approaches.

The following notation will be used throughout the paper:

x = binary treatment status/exposure

y = binary outcome

u = unobserved binary confounder

c = observed confounders

p(x) = prevalence of the exposure

p(u) = prevalence of the unobserved confounder

p(u|x=1) = prevalence of the unobserved confounder among the exposed group

p(u|x=0) = prevalence of the unobserved confounder among the unexposed group

ORyu = odds ratio of the relationship between the outcome and unobserved confounder

ORxu = odds ratio of the relationship between the exposure and unobserved confounder

ORyx• c = observed odds ratio of the relationship between the outcome and the
exposure from the data, adjusted for c (but not for u)

ORyx•cu = true (bias-free/bias-adjusted) odds ratio of the relationship between the
outcome and the exposure, adjusted for both c and u

Generally when performing sensitivity analyses, researchers should specify a range of
parameter values that are suggested by the literature or based on the relationships between
observed confounders and the exposure and outcome (e.g., Harding 2003) to examine the
sensitivity of study inferences under different specifications. This approach is particularly
useful when some parameters require outside knowledge that is not easily obtained.
However, for demonstration purposes and to make the results from different methods
comparable, we specify a single set of parameters to be used in the motivating example.
Since the relationship between the hypothetical unobserved confounder (u; such as genetic
predisposition) and the exposure (ORxu) and the outcome (ORyu) (net of all the covariates
matched on) were not readily available in the literature, they were obtained by examining
the relationships of the observed confounders (c) available in the motivating study with the
exposure (having a mother die of suicide; ORxc) and the outcome (offspring’s
hospitalization for suicide attempt; ORyc). The ORs between the observed confounders and
the exposure ranged from 0.98 to 7.39, with the strongest factor being the deceased parent’s
history of psychiatric hospitalization (ORxc=7.39). The ORs between the observed
confounder and the outcome (y) ranged from 0.95 to 1.84, with the strongest factor being the
psychiatric hospitalization of the surviving parent prior to the death of the parent
(ORyc=1.84). To err on the conservative side, we fixed the values of ORxu and ORyu at
these two highest values of the observed OR’s (i.e., ORxu=7.39; ORyu=1.84). Some
approaches require the specification of p(u|x=1)and p(u|x=0) instead of ORxu. The
prevalence of an unobserved confounder such as genetic predisposition to suicidal behavior
in the general population is not available; hence, we specified a range of p(u|x=0) from 1%
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to 25% with the fixed ORxu=7.39 to obtain varying p(u|x=1). In the remainder of the paper,
we introduce each of the seven methods and apply these methods to the motivating example.
Details of the computations, sample R code, and links to relevant Excel spreadsheets and
web equation solvers can be found in the eAppendix.

Rosenbaum’s Approaches
Rosenbaum’s approaches, in general, are interested in finding the thresholds of the
association(s) between the unobserved confounder and the exposure (ORxu) and/or between
the unobserved confounder and the outcome (ORyu) that would render the test statistics of
the study inference (ORyx•cu ) insignificant. This method is most frequently used when the
observed confounders have been dealt with using matching methods (such as propensity
score matching) that form matched pairs of exposed and unexposed individuals who are
similar on the observed covariates. These approaches are further broken down into primal,
dual and simultaneous analysis (Gastwirth et al. 1998), which differ in their specified
parameters. Primal sensitivity analysis varies the association between the unobserved
confounder and the exposure (ORxu, with an upper bound denoted Γ), while setting ORyu at
infinity. In contrast, dual sensitivity analysis varies the association between the unobserved
confounder and the outcome (ORyu, with an upper bound denoted Δ), while setting ORxu at
infinity. Simultaneous sensitivity analysis varies both ORxu and ORyu. The primal and dual
sensitivity analyses are, therefore, special cases of the simultaneous sensitivity analysis. We
focus our further discussion on primal and simultaneous sensitivity analysis, as the steps
involved in dual sensitivity analysis are similar to primal sensitivity analysis, except that the
parameter that is varied is ORyu instead of ORxu.

Primal Sensitivity Analysis
ORxu estimates are bounded by Γ: 1/Γ ≤ ORxu ≤ Γ, where Γ ≥12. The upper (p+) and lower
(p−) bounds on the probability of being exposed, accounting for u, can then be calculated. In
particular, p+ is of most interest and can be expressed as Γ/1+Γ.

A modified McNemar’s exact test (McNemar, 1947) is then used to examine the association
between x and y, accounting for u (i.e., by computing an upper-bound p-value using p+
instead of the observed probability of exposure of 0.5 in the matched pairs). In Equation 1, T
as the total number of discordant pairs (those where the outcomes differ within the pair), and
a as the number of discordant pairs, in which the exposed had an outcome and the
unexposed did not. This is repeated with different values of Γ to find the value of Γ at which
the upper-bound p-value becomes non-significant (e.g., p>0.05). A higher value of Γ
required to render the upper-bound p-value non-significant is preferred, as it indicates that
ORyx•cu is more robust to unobserved bias, i.e., a stronger association between the
unobserved confounder and the exposure is necessary for the ORyx•cu to become non-
significant.

(Eq. 1)

The primal sensitivity analysis for a 1:1 matched design with a binary outcome can be
implemented by hand, using the ‘rbounds’ package in R (Keele, 2010) or using an available
Excel spreadsheet (Love 2008; see the eAppendix for details). These tools can also be used
for continuous outcomes; for example, by using a function written for Stata (Gangl, 2004).

2Note that this is not a loss of generality; if the unobserved confounder is negatively associated with exposure status, we could simply
redefine the unobserved confounder to meet this scenario.
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Although generalization of this technique to study designs beyond 1:1 matches is possible
(e.g., Rosenbaum, 2002; Keele, 2010), it is not as easily implemented.

Simultaneous Sensitivity Analysis
The simultaneous sensitivity analysis allows researchers to vary not only ORxu (with an
upper bound Γ) but also ORyu (with an upper bound Δ). The goal is to find the combinations
of Γ and Δ at which ORyx•cu becomes statistically non-significant. The steps are similar to
primal sensitivity analysis. One first specifies values for Γ and Δ, which can be used to
calculate the upper and lower bounds of the probability of being exposed given the
unobserved confounder (p+ and p−). In particular, p+ can be calculated using Equation 2,
where p(θ)=Δ/(1+Δ) and p(π)=Γ/(1+Γ). We then use p+ and the numbers of discordant pairs
to calculate the upper bound p-value of ORyx•cu using McNemar’s exact test.

(Eq. 2)

A combination of values of Δ and Γ for which the test-statistic becomes non-significant is a
point at which the result is sensitive to an unobserved confounder. Although there is no
specific package available, this analysis can be hand computed or easily programmed using
Excel or R for a 1-1 matched pair design (see the eAppendix for details).

Application of Rosenbaum’s Approaches
Primal sensitivity analysis

Using the counts of discordant pairs, i.e., a=226 and T=347, and different values of Γ, four
methods (hand computation, ‘rbounds’ package in R, computation using R codes and Love’s
spreadsheet) were used for the analysis. The results suggest that when Γ ≥ 1.55, the
association between maternal death by suicide and offspring’s hospitalization for suicide
attempt would no longer be significant (with a p-value of .054).

Simultaneous sensitivity analysis
Using the counts of discordant pairs, as well as the specified parameters (Γ=7.39, Δ=1.84),
we computed p+ and the upper-bound p-value by hand and by using R codes. Results
suggest moderate sensitivity of the study inference to an unobserved confounder, as when Γ
is 7.39 and Δ is 1.84, ORyx•cu is no longer significant (with a p-value of .08).

Methods to Obtain ORyx•cu with Confidence Interval
While Rosenbaum’s approaches were primarily concerned with finding the point at which
effects became non-significant, the following methods quantify the unobserved confounder
under certain specifications and then arrive at an estimate of the target of interest, ORyx•cu
(i.e., the true relationship between x and y), and an associated confidence interval, adjusting
for the unobserved confounder. Two groups of methods are presented. The first group
(Greenland’s and Harding’s approaches) utilizes the association between x, y and u to create
the actual data as if u was observed, which is then used to estimate the ORyx•cu. The second
group (Lin et al.’s and VanderWeele and Arah’s approaches) utilizes the association
between x, y, and u to compute an adjustment or bias factor that is then used to obtain the
ORyx•cu.

Greenland’s and Harding’s approaches
Both approaches break down the observed 2x2 table of x and y into eight combinations of x,
y and u, imagining the data that would be observed if u was observed. Table 2a presents the
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observed 2x2 cross-tabulation of x and y. Table 2b presents the 2x2 cross-tabulation of x
and y stratified by u, which we would see if u was observed. The goal is to estimate the cell
counts a-h by specifying aspects of u so that Table 2b can be re-created.

Greenland’s and Harding’s approaches slightly differ in the necessary parameter inputs and
in the manner in which these a-h cell counts are obtained. In his paper, Harding (2003) set u
to be evenly distributed in the population (i.e., p(u)=0.5), but this can be easily modified.
Harding’s approach requires the specification of ORyu and ORxu. Given those values and
the observed data ((a+e), (e+f), (c+g), (d+h)), these eight cell counts (a-h) can be solved
using Equation 3.

(Eq. 3)

Instead of specifying ORyu and ORxu Greenland (1996) specifies the prevalence of the
unobserved confounder in the unexposed individuals (p(u|x=0)) and the exposed individuals
(p(u|x=1)).

Greenland’s approach then finds the cell counts e-h using the values specified by the user
(p(u|x=1), p(u|x=0) and ORyu) through Equation 4.

(Eq. 4)

Instead of specifying p(u|x=1) and p(u|x=0), an alternative approach is to specify ORxu and
p(u|x=0) and then calculate the implied p(u|x=1) using Equation 5.

(Eq. 5)

Once we know four of the eight cell counts, the values of a-d can be easily obtained from the
observed data and the values of e-h using simple algebra.

For both Harding’s and Greenland’s approaches, ORyx•cu is then estimated by using these
cell counts as frequency weights to re-create a dataset that contains information on the
unobserved confounder. From this re-created data, a weighted logistic regression can be
performed to obtain ORyx•cu, including its confidence interval (Harding, 2003). It is also
possible to supplement the original data by explicitly creating the number of observations
that reflect each cell count and then performing regular logistic regression.

Lin et al.’s and VanderWeele and Arah’s approaches
Although both Lin et al.’s (1998) and VanderWeele and Arah’s (VanderWeele and Arah
2011, Arah et al. 2008) approaches also aim to arrive at the ORyx•cu with a confidence
interval, they use a slightly different approach than the Greenland and Harding approaches
discussed above. It is important to note that Lin et al.’s and VanderWeele and Arah’s
approaches both allow relaxing the no-three-way-interaction assumption. In addition,
VanderWeele and Arah’s approach allows the relationships between the unobserved
confounder and the exposure and outcome to vary as a function of observed covariates. To
ease the comparison between these methods to other methods presented above, we maintain
these assumptions in the motivating example.
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In Lin et al.’s approach, the information about the relationship between y and u is first
summarized by an equation that estimates an adjustment factor (AF) derived from the
following parameters specified by the researcher: p(u|x=1), p(u|x=0), OR(yu|x=1) and
OR(yu|x=0) using Equation 6.

(Eq. 6)

When assuming no three way interaction, i.e. OR(yu|x=1) =OR(yu|x=0), the equation is
simplified to Equation 7.

(Eq. 7)

ORyx•cu can then be calculated by dividing ORyx•c by AF. The confidence interval for
ORyx•cu can be obtained using the same AF and dividing the upper and lower bounds of the
confidence interval for ORyx•c by the AF.

VanderWeele and Arah (VanderWeele and Arah 2011; Arah et al. 2008) proposed a more
general framework to assess sensitivity to an unobserved confounder, which can
accommodate continuous or categorical outcomes and exposures and observed and
unobserved confounders, while also relaxing the two assumptions discussed in the beginning
of this paper. Briefly, they suggest that the bias for any outcome distribution can be
estimated as long as one can specify two conditions for each level of the observed
confounders, c: 1) the relationship between u and y across different levels of x (u′ denotes a
chosen reference value for u), e.g., {E(y| x=x1, u=u, c) − E(y| x=x1, u=u′, c)} and {E(y|
x=x2, u=u, c) − E(y|x=x2, u=u′, c)}, and 2) the comparison between the prevalence of u
when x is at different levels with the overall prevalence of u set, e.g., p(u|x=x1, c)-p(u|c) and
p(u|x=x2, c)-p(u|c). Interested readers can refer to VanderWeele and Arah (2011) for
formulas to apply this method. While attractive in its generality, VanderWeele and Arah
(2011) also discuss the challenges in using such a general setting as it requires a large
number of parameters to be specified. They recommended simplifying the approach for
specific settings. Applying this general method to our specific setting (i.e. x, y, and u are all
binary) and assumptions (i.e., 1) the relationships between y and u and between x and u are
the same across different levels of c; 2) no three way interaction between x, y, and u), we
can estimate the bias in the ORyx•c using the following simple Equation 8, which is
essentially equivalent to Equation 7 in Lin et al.’s approach:

(Eq. 8)

Similar to Lin et al.’s approach, we can then divide the ORyx•c by this bias term to obtain
ORyx•cu, as well as its confidence intervals.

Application of Methods to Obtain ORyx•cu with Confidence Interval
As a reminder, to ease the comparison between methods, we fixed the values of ORxu and
ORyu at the two highest observed values (ORxu=7.39; ORyu=1.84). For methods that
require the prevalence of the unobserved confounder, we specified a range of p(u|x=0) from
1% to 25% and then obtained p(u|x=1) using p(u|x=0) and ORxu=7.39 (see the eAppendix
for detailed computation and sample R code). Results are summarized in Table 3 for the
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range of p(u|x=0) specified. Similar results were observed across different methods, with
ORyx•cu estimates decreasing with increasing p(u|x=0). However, the confidence interval
never included one, suggesting that the study inference is not sensitive to an unobserved
binary confounder that is associated with seven-fold increased odds of having a mother die
from suicide as compared to accident and approximately two-fold increased odds of the
offspring being hospitalized for suicide attempt.

Comparisons and Synthesis of Methods
The seven approaches described differed in their targets of interest, implementable study
designs, as well as the necessary specifications of parameters. Rosenbaum’s approaches
focus on obtaining the value Γ (upper bound of ORxu) and/or Δ (upper bound of ORyu) at
which ORyx•cu becomes non-significant. Given that it uses information on the actual
number of pairs in the study, this method reflects the uncertainty of the analysis associated
with sample size. The results of sensitivity analyses may then change as sample size
changes: the values of Γ and Δ tend to be slightly larger as sample size increases. In other
words, the study conclusion tested may appear to be more robust when the sample size is
large. The other class of methods we described, which we labeled the ORyx•cu with
confidence interval approaches, obtains both the point estimate of the treatment effect and
its confidence interval. This group of methods does not use the actual sample from the
original study, thus sensitivity results do not change as a function of the sample size.
Additionally, these seven methods also differ in the study designs in which they can be
implemented. The software to implement Rosenbaum’s approach can generally only be
applied to 1:1 matching designs. Compared to Rosenbaum’s approaches, the ORyx•cu with
confidence interval approaches are more flexible in that they accommodate any study
design.

Each of these techniques requires the specification of a different set of parameters related to
the unobserved confounder. The differences in the parameters specified across methods
suggest that researchers should choose a method based on the parameters that they feel
comfortable specifying, or on which there is existing literature. The advantage of
Rosenbaum’s approach is that users are able to directly specify the values of both ORyu and
ORxu, which may be more readily obtained from the literature. However, unlike the other
approaches descried in the paper, Rosenbaum’s approach does not allow users to conduct
sensitivity analysis on results from published studies, since it requires the number of
discordant pairs, which is not always readily available. Greenland’s, Lin et al.’s and
VanderWeele and Arah’s approaches require the specification of p(u|x=0) and/or p(u|
x=1).While Harding’s approach does not require the specification of these parameters, the
computation is more involved.

As a motivating example, we applied these seven methods to assess the sensitivity of an
observed relationship between maternal suicide and offspring’s hospitalization for suicide
attempt to an unobserved binary confounder, such as genetic predisposition to suicidal
behavior. Rosenbaum’s primal approach suggests that the study inference will be no longer
significant when the upper bound of ORxu is greater than 1.55. While this would imply
sensitivity to unobserved confounding, it is important to keep in mind that this method
assumes a situation in which the unobserved confounder perfectly predicts the outcome of
interest, e.g., genetic predisposition to suicidal behavior perfectly predicts offspring’s
hospitalization for suicide attempt. As a result, this method may overstate the study
sensitivity.

The simultaneous approach yielded an inference closer to the approaches that estimate
ORyx•cu with its confidence interval, which suggests that the association between maternal
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suicide and offspring’s hospitalization for suicide attempt is relatively robust to an
unobserved confounder. However, the simultaneous approach still suggested that the
Kuramoto et al. (2010) study is somewhat sensitive to an unobserved confounder. This
evidence of this heightened sensitivity may relate to the fact that Rosenbaum’s approaches
depend on the sample size in the original study and, in particular, the number of discordant
pairs, which is relatively small in the Kuramoto et al. study since the outcome is rare.

Other Sensitivity Analysis Methods
Although we focused on a few particular sensitivity analysis techniques because of their
relative ease of implementation and fairly intuitive explanations, other sensitivity analysis
methods are available. For example, Schneeweiss (2006) described methods that quantify
the unobserved confounder under certain specifications and then arrive at an estimate of
ORyx•cu, but do not provide an estimate of the confidence interval. Harding (2009) used a
sensitivity analysis based on omitted variable bias calculations for ordinary least squares
regression (an approach relatively common in economics; Harding, 2009). Ridgeway (2006)
and McCaffrey, Ridgeway, and Morral (2004) discussed a method that can be applied to
studies that utilize propensity score weights and is available in the ‘twang’ package for R
(Ridgeway, 2006). Methods are also available that yield nonparametric bounds on the
treatment effects, without characterizing the relationship between the unobserved
confounder with the exposure and the outcome (Manski, Sandefur, McLanahan, & Power,
1992). A method using Monte Carlo methods and Bayesian analysis techniques to allow
sensitivity parameters to come from specified distributions is described in McCandless,
Gustafson, & Levy (2007) and Steenland & Greenland (2004), with R and WinBUGS code
provided. One of the advantages of simulations methods is that the confidence intervals
obtained may be more accurate than those provided by the simpler approaches. See Arah et
al. (2008) for a practical example of sensitivity analysis using Monte Carlo simulation.

Discussion
While observed confounding in non-experimental studies can be addressed by methods such
as propensity score matching, researchers have not had good tools to handle potential
unobserved confounding. This paper discussed different methods of sensitivity analysis that
quantify the sensitivity of study results to unobserved confounding. When applying these
methods to Kuramoto et al. (2010), they yielded a fairly consistent result suggesting that the
relationship between maternal suicide and offspring’s hospitalization for suicide attempt is
relatively robust to an unobserved confounder strongly associated with maternal suicide and
moderately associated with offspring’s hospitalization for suicide attempt. The sensitivity
analysis gives us the confidence to conclude that the observed association between parent’s
suicide and off spring’s suicide attempt is likely to be causal. Our study conclusion suggests
that prevention strategies need to particularly focus on individuals whose parents died from
suicide, for example by ensuring access to counseling services. Future studies should
replicate the study findings to establish true causality, and of course most studies, this one
included, also have other limitations, such as measurement error and other threats to
validity. In addition, future studies should further investigate the mechanism of such a
relationship, such as behavioral changes that might mediate the relationship between
parent’s suicide and offspring’s hospitalization for suicide attempt.

Most of the methods described in this paper can be implemented relatively easily with
available software packages or by hand. The preferred sensitivity analysis for a particular
study may be driven by the target of interest, the study design, the details of a potential
unobserved confounder that can be easily specified using external sources, and its ease of
implementation. However, as the methods discussed rely on slightly different sets of
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assumptions and come from different perspectives, it may also be helpful to explore several
sensitivity analysis tools. In addition, it is important to note that the second set of methods
(ORyx•cu with confidence interval) do not require the original data and can be implemented
using just the results in a published study. This allows researchers to conduct sensitivity
analyses for published results, enabling them to determine how much confidence should be
placed in those results.

Although more general and more complex approaches are available, the availability of these
simple approaches leaves researchers little excuse for not performing sensitivity analyses
when conducting non-experimental studies. Although we are not aware of their use in that
context, these methods may also be useful for non-experimental comparisons conducted
within the context of randomized trials, such as to handle non-compliance (e.g., Jo and
Stuart, 2009). We hope that this paper will raise awareness and the use of these important
methods. By giving researchers insight into how sensitive studies may be to unobserved
confounding, these methods can serve a critical role in non-randomized studies aiming to
establish causal relationships. Importantly, these methods can inform prevention researchers
and policy makers when drawing conclusions from non-experimental studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 2a

Observed Data: 2x2 Table for x and y

y=0 y=1

x=0 a + e b + f

x=1 c + g d + h
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Table 2b

Underlying True Data: 2x2 Table for x and y Controlling for u

y=0 y=1

u=0 x=0 a b

x=1 c d

u=1 x=0 e f

x=1 g h

Prev Sci. Author manuscript; available in PMC 2014 December 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Liu et al. Page 18

Ta
bl

e 
3

E
st

im
at

ed
 O

R
yx

•c
u 

(9
5%

C
I)

 U
si

ng
 S

en
si

tiv
ity

 A
na

ly
si

s 
M

et
ho

ds
 th

at
 O

bt
ai

n 
O

R
yx

•c
 a

nd
 C

on
fi

de
nc

e 
In

te
rv

al
a

p(
u|

x=
0)

1%
5%

10
%

15
%

20
%

25
%

A
pp

ro
ac

h

G
re

en
la

nd
1.

77
 (

1.
42

,2
.2

2)
1.

57
 (

1.
24

,1
.9

8)
1.

46
 (

1.
15

,1
.8

6)
1.

42
 (

1.
12

,1
.8

2)
1.

41
 (

1.
10

,1
.8

0)
1.

40
 (

1.
10

,1
.7

9)

H
ar

di
ng

b
1.

77
 (

1.
42

, 2
.2

2)
1.

57
 (

1.
24

, 1
.9

8)
1.

46
 (

1.
15

,1
.8

6)
1.

42
 (

1.
11

,1
.8

2)
1.

40
 (

1.
10

,1
.8

0)
1.

41
 (

1.
10

,1
.8

0)

L
in

/V
an

de
rW

ee
le

 a
nd

 A
ra

h
1.

77
 (

1.
42

, 2
.2

1)
1.

57
 (

1.
26

, 1
.9

6)
1.

46
 (

1.
17

, 1
.8

2)
1.

42
 (

1.
14

,1
.7

7)
1.

41
 (

1.
13

,1
.7

5)
1.

41
 (

1.
13

,1
.7

6)

a O
R

yu
=1

.8
4,

 O
R

xu
=

7.
39

, O
R

yx
•c

 =
1.

86

b p(
u)

 w
as

 o
bt

ai
ne

d 
fr

om
 th

e 
sp

ec
if

ie
d 

p(
u|

x=
0)

, p
(x

)=
50

%
 a

nd
 O

R
xu

=
7.

39
.

Prev Sci. Author manuscript; available in PMC 2014 December 01.


