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Abstract
Accurately and precisely estimating free-living energy expenditure (EE) is important for
monitoring energy balance and quantifying physical activity. Recently, single and multi-sensor
devices have been developed that can classify physical activities, potentially resulting in improved
estimates of EE.

PURPOSE—To determine the validity of EE estimation of a footwear-based physical activity
monitor and to compare this validity against a variety of research and consumer physical activity
monitors.

METHODS—Nineteen healthy young adults (10 male, 9 female), completed a four-hour stay in a
room calorimeter. Participants wore a footwear-based physical activity monitor, as well as Actical,
Actigraph, IDEEA, DirectLife and Fitbit devices. Each individual performed a series of postures/
activities. We developed models to estimate EE from the footwear-based device, and we used the
manufacturer's software to estimate EE for all other devices.

RESULTS—Estimated EE using the shoe-based device was not significantly different than
measured EE (476(20) vs. 478(18) kcal) (Mean (SE)), respectively, and had a root mean square
error (RMSE) of (29.6 kcal (6.2%)). The IDEEA and DirectLlife estimates of EE were not
significantly different than the measured EE but the Actigraph and Fitbit devices significantly
underestimated EE. Root mean square errors were 93.5 (19%), 62.1 kcal (14%), 88.2 kcal (18%),
136.6 kcal (27%), 130.1 kcal (26%), and 143.2 kcal (28%) for Actical, DirectLife, IDEEA,
Actigraph and Fitbit respectively.
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CONCLUSIONS—The shoe based physical activity monitor provides a valid estimate of EE
while the other physical activity monitors tested have a wide range of validity when estimating
EE. Our results also demonstrate that estimating EE based on classification of physical activities
can be more accurate and precise than estimating EE based on total physical activity.

Keywords
Room calorimeter; oxygen consumption; free-living physical activity; shoe-based physical activity
monitor

INTRODUCTION
Over 60% of the United States population is currently overweight, and concerns of the
health risks associated with overweight and obesity are pervasive (8). The benefits of regular
physical activity for weight maintenance and weight loss are well known (15), and recent
data shows that prolonged sitting and inactive lifestyles may increase the risk of common
chronic diseases (25, 33). Furthermore, caloric restriction when combined with physical
activity improves metabolic and aerobic fitness (19). As a result, individuals attempting to
lose or maintain weight are recommended to modify their diets to reduce energy intake, sit
less and increase physical activity to increase energy expenditure (EE).

Most methods to estimate free-living EE have limitations that may prevent weight
management success. Subjective measures of energy intake and EE (i.e. self-report surveys)
can increase energy balance awareness but individuals typically under-report energy intake
and over-report physical activity (4, 38). The gold-standard methods of indirect calorimetry
and doubly labeled water are only feasible in the research settings because they are
expensive and require specialized, technical equipment. Furthermore, doubly labeled water
is limited in that it does not provide minute-by-minute EE data and thus can't provide details
regarding physical activity EE. Therefore the best option for estimating total EE (TEE) is to
use objective, minimally obtrusive devices that accurately and precisely quantify non-
exercise activity thermogenesis (NEAT) and exercise EE.

Accelerometers are a common sensor used to measure the duration and intensity of PA (3).
New technology has resulted in small, relatively unobtrusive accelerometers that are
appealing to both researchers and consumers. Accelerometers typically use validated
algorithms to estimate EE, achieving moderate to good validity in estimating physical
activity energy expenditure (PAEE) in a research setting (standard error (SE) between 7.4%
and 48.1% (1, 5)). However, accelerometers tend to underestimate PAEE and TEE when
used in non-weight bearing activities and/or free-living environments (5, 14, 21, 26). While
there are several brands of accelerometers that are currently used in research or available to
consumers, no single study has compared the EE estimation validity of these devices against
a gold-standard measure such as indirect room calorimetry.

To further improve estimates of EE using an objective measuring tool, new devices and
algorithms that have the ability to detect posture and type of activity have recently been
developed. These devices/algorithms are able to more accurately and precisely estimate EE
as they can distinguish between activities that have different metabolic rates (e.g. stand vs.
walk) and use activity specific EE relationships (2, 30, 34, 35). For instance, a neural
network developed by Staudenmayer et al. improved the activity specific root mean squared
error of the Actigraph accelerometer by up to 1.19 MET compared to the Freedson
regression equation (30).
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We have recently developed a footwear-based physical activity monitor that is intended to
do three things: classify activity, measure weight, and estimate EE. In previous work, we
demonstrated that this device is able to classify 6 major postures and activities (sitting,
standing, walking, ascending stairs, descending stairs and cycling) with 98% accuracy (27).
In a follow-up study, activity classification was used to develop accurate activity-specific
EE estimation (28) but other physical activity monitoring devices were not tested
simultaneously. Additionally, to improve the practicality of this device for weight
management, a revised prototype has been developed that has updated accelerometry
hardware and a new method of wireless communication with a smartphone. Therefore, the
purpose of this study was to validate the use of this footwear-based physical activity monitor
to estimate EE, and to compare the accuracy with EE estimated using other accelerometry
based devices. We hypothesized that the EE estimation from the footwear-based device
would not be significantly different from the measured EE via room calorimetry. We also
hypothesized that other research and consumer devices that do not use activity classification
would be less accurate and precise in estimating EE compared to the foot-wear based device.

METHODS
Subjects

Nineteen subjects (10 male, 9 female) were recruited from the Fort Collins and Denver
communities to participate in this study (Table 1). The protocol was approved by the
Colorado State University Institutional Review Board and participants gave written
informed consent prior to beginning the study. Subjects completed a physical activity and
health-history questionnaire (9), and were determined to be in good health by a physician.
Based on self-report, subjects were inactive to moderately active (less than six hours of
physical exercise per week), not taking any medications known to alter metabolism, and
weight stable over the past six months.

Study design
Each subject completed one 4-hour stay in a room calorimeter following a 4-hour fast. Prior
to data collection we measured each subject's height and weight. Subjects wore six physical
activity monitoring devices: one prototype shoe device (pair of shoes), three devices used in
research, and two consumer devices. Prior to entering the room calorimeter, subjects were
familiarized with the equipment in the room (e.g. cycle ergometer, treadmill). We recorded
metabolic data while each individual performed a series of randomly assigned postures and
activities (Table 2). The last hour of data collection consisted of free-living activities of the
individual's choice. Walking activities were performed on a treadmill (Trainer 480
Treadmill, Gold's Gym Merchandising Inc., Irving, TX), cycling was performed on a
stationary bicycle (Lode, Groningen, Netherlands), and stepping was performed by stepping
up and down on a single eight-inch step (Reebok Step, Reebok Intl., Canton, MA).

Metabolic measurements
Oxygen consumption and carbon dioxide production were measured using the whole-room
indirect calorimeter located in the Clinical Translational Research Center at the University
of the Colorado Anschutz Medical Campus (23). The accuracy and precision of the system
is tested monthly using propane combustion tests. The average O2 and CO2 recoveries
during the period when the study was performed were 98.7 (0.7%) and 99.3 (0.1%)
(mean(SD)), respectively. EE and substrate oxidation were calculated using the non-protein
RQ based on the equations of Jequier et al. (16).
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Prototype shoe device
Participants were fitted with the appropriately sized recreational walking shoes, equipped
with a pressure sensing insole and accelerometer (Figure 1). Technical specifications of the
prototype device have been explained in detail in previous work (27, 28), although the
device used in the current study was equipped with a different accelerometer. The hardware
included an insole that had five pressure sensors (force sensitive resistors) and a heel-
mounted tri-axial accelerometer. Pressure and acceleration data were collected at 25 Hz
from eight channels (five pressure and three acceleration)/shoe. Data were transmitted using
a Bluetooth transmitter to a smart phone. The sensor system is lightweight (<40g) and non-
obtrusive. We used a previously developed classification algorithm to classify activities into
one of four posture/activity groups which were applicable to the activities performed in this
study: “Sit”, “Stand”, “Walk”, and “Cycle”, (27).

Development and Validation of EE Model for Shoe Device
EE models were developed for each posture/activity using data from this experiment and
methods described in Sazonova, et al. (28). A lag time of two minutes between the activity
that the subject performed and the room calorimeter data was used as it produced the least
error in the EE estimation. The EE models used anthropometric measurements,
accelerometer and pressure sensor signals as predictors for an ordinary least squares linear
regression. Metrics included: coefficient of variation (cv); standard deviation (std); number
of zero crossings (zc); and entropy H of the distribution X of signal values. The median
value of each of the four metrics combined from all five pressure sensors was used to form a
single pressure sensor metric (med(metric)). The complete set of potential predictors
consisted of 16 metrics: twelve (3×4) metrics from accelerometer sensors and four metrics
from pressure sensors.

We used the “leave-one-out” approach for cross-validation of the footwear device when
training and estimating the EE for each type of activity for every subject. The criteria for
determining the best set of predictors was the model that provided the best fit (by producing
the maximum adjusted coefficient of determination, R2

adj and the minimum Akaike
Information Criterion, AIC) in the training step and the best predictive performance (the
minimum mean squared error, MSE and the minimum mean absolute error, MAE ) in the
validation step.

Activity monitoring devices
Participants were equipped with three physical activity monitoring devices that are used in
research: Actical (Phillips Respironics, Inc., Bend, OR), Actigraph GT3X (Actigraph, LLC.,
Pensacoloa, FL), and IDEEA (MiniSun, Fresno, CA). The Actical was set to record one
minute epochs and we used the manufacturer's software to estimate EE, which is based on
the work of Heil et al. (13). The Actigraph was set to record an epoch length of one second
and we used manufacturer's software (Actilife version 5.10) and the Work/Energy and
Freedson et al. algorithm to estimate EE (10). Both devices were worn on an elastic belt
directly over either the right or left anterior superior iliac spine. The IDEEA has five
sensors, which were placed under the sole of each foot, on each thigh and over the sternum.
We used the estimated EE (per second) using the manufacturer's software with EE estimates
based on the activity being performed.

Participants also wore two devices currently marketed to consumers: The Directlife activity
monitor (Philips Electronics, Andover, MA) and Fitbit Tracker (Fitbit, Inc., San Francisco,
CA). The Directlife activity monitor is a triaxial accelerometer. Data from the device was
downloaded and EE (per hour) was estimated using the proprietary web-based software. The
Fitbit Tracker is an accelerometer device that also uses a web-based software application to
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provide estimated EE to the user. We downloaded data and used the software to estimate EE
(5-minute intervals). Both devices were worn on the same elastic belt that held the research
activity monitors.

Device Comparison
TEE was calculated from the room calorimeter for the time period that corresponded with
data collected from each device. The first 30 minutes of data from the room calorimeter
were not used, as minute-to-minute readings during this time are not accurate due to time
required for adequate respiratory gas mixture in the room. Thus, We compared measured EE
to estimated EE from the Actical, Actigraph, IDEEA and Fitbit devices over a three and a
half hour time period. Because the Directlife software only estimated hourly EE, we
compared measured and estimated EE over a 3 hour period. Because some device software
only calculated PAEE while other software estimated TEE, we adjusted for the difference by
estimating resting metabolic rate (RMR). RMR was estimated using the Harris-Benedict
equation (11) and then added to the EE estimated from Actical, Actigraph and Directlife to
permit a comparison of TEE across devices.

EE estimated by the shoe-based device during validation was compared to estimations made
from the five other devices. The shoe-based device used the previously described algorithms
to calculate EE on a minute-to-minute basis over the entire three and a half hours of activity.
We also developed two group-specific linear regression equations using the measured EE
and Actical data so that we could compare of one of the research devices to the prototype
device using the same participants. For each subject, we calculated the mean measured EE
during the last three minutes of each activity (e.g. standing, walking at 2.5 MPH) and the
mean Actical count for that same time period. We then used linear regression to determine
the relationship between Actical counts and measured EE. The first linear regression
equation included all activities, while the second excluded cycling, as EE associated with
this activity was not well estimated by the accelerometer (EE increased but counts remained
near zero). We also used the Actical group specific linear regression (no cycling) to estimate
the EE associated with sitting, standing, walking and cycling. An estimate of EE was
computed for each minute the activity of interest was performed during the protocol
(excluding the free-living period) and averaged over the duration of the activity for each
participant. We then compared the mean measured and estimated EE values for each
activity. A further comparison was made with the Fitbit device to see if manually classifying
activities via the web-based software would improve the EE validity of the device. The
activity labeling works by classifying each activity performed during the wearing of the
device, which then allows the software to apply to that time period a MET equivalent based
on a compendium of physical activities.

Statistical Analysis
Mean standard error (SE), root mean squared error (RMSE) and the percentage of the RMSE
with respect to the measured value (%RMSE) were calculated for each device. Because the
equivalence of variance assumption was not met we used a Kruskal-Wallis one-way analysis
of variance on ranks to test for significance between the measured and estimated values for
each device and between the shoes and the other devices. To determine if there was a
significant difference between measured and shoe/Actical estimated EE for each activity, we
used a paired t-test. If the Shapiro-Wilk test of normality failed, we used a Mann-Whitney
rank sum test. A p-value < .05 was considered significant.
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RESULTS
Participants who experienced multiple sensor failures or incomplete data were excluded
from the shoe device analysis, leaving 17 subjects with complete metabolic and sensor data.
Because Our previous study demonstrated that only one shoe is required to obtain valid EE
estimation, subjects with data from at least one shoe were included in the analysis (27). If
data from both shoes were available, the average estimated EE is presented. Due to
randomization of the activity protocol (see Table 2), only 12 subjects performed the cycling
activity. Table 3 reports the mean EE of all subjects analyzed for each device (shoe EE
model results for each activity are presented in the supplementary data, Table 1).

Device Comparison
EE estimation accuracy and precision varied according to the device (Table 3). The estimate
of EE using the shoes was not significantly different than the measured EE (p=.955) and had
the smallest RMSE of all devices. Out of the five research and consumer devices, the
IDEEA and Directlife were not significantly different than the mean measured EE (p=.06
and .76, respectively). When we used regression models developed from the Actical data
using the participants from this study to estimate EE (Figure 2), estimates of EE improved.
Mean predicted EE was 558.2 kcal and 527.9 kcal using the equation including all activities
and without cycling, respectively. In addition, RMSE values improved from 130.2 kcal
(25.9%) using the manufacturer's software to 101.7 kcal (20.2%) using the all activities
regression and 89.7 kcal (17.8%) using the regression that did not include cycling. Shoe and
Actical estimates of EE during sitting, standing and walking were not significantly different
than measured values but the Actical significantly underestimated the EE of cycling activity
(Table 4). Fitbit had the largest RMSE of 143.2 kcal (28.7%, p<.001). However after
labeling activities (Fitbit-CL), the mean RMSE was reduced to 64.3 kcal (12.9%). The
unlabeled estimates always underestimated EE, while the classified values were
underestimated about half of the time, and were more accurate in all but two subjects.

DISCUSSION
In this study, determined the validity of a shoe-based physical activity monitor which
incorporates insole pressure sensors and triaxial accelerometry to classify major postures/
activities and estimate EE. We hypothesized that this device would provide a valid estimate
of EE compared to room calorimetry. Additionally, we hypothesized that consumer and
research devices would be less accurate/precise when estimating EE. Our results
demonstrate that the shoe-based device accurately estimated TEE (478.1(20.0) vs.
476.5(18.4) kcal, measured vs. estimated, respectively) with a %RMSE of 6.2%.
Furthermore, of the five consumer and research devices, the DirectLife and IDEEA were
also not significantly different than the measured value, but we observed greater %RMSE
values of 13.6% and 17.5%, respectively compared to the shoe-based device.

This study demonstrates that an unobtrusive shoe-based physical activity monitoring device
that combines plantar pressure and accelerometry can accurately and precisely estimate EE.
The accuracy and precision of this device is likely due to the activity-specific EE models
and the ability to detect changes in posture (e.g. sitting vs. standing). The activities with the
best EE estimation validity were sitting (10.4 %RMSE) and walking (8.8 %RMSE), while
standing and cycling were only slightly less accurate/precise (12.6 and 14.8 %RMSE
respectively). The decreased accuracy and precision of predicting EE of standing may be
attributed to the wide range of activities that were included in this classification, such as
transitioning, active standing, quiet standing, and lifestyle activities that requires only arm
movement (e.g. sweeping).
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Each of the models developed to estimate EE utilized a different combination of the 14
possible metrics in the linear regressions (see supplementary data Table 1). The subject's
weight and the log(BMI) were understandably predictive characteristics of EE in all four
models, owing to the fact that an individual's weight and body composition are predictive of
both resting and activity metabolic rate. Pressure and acceleration sensors at the foot allow
the device to extract important information from the movement of the legs which relate to
specific activities. For instance, during walking activity, the number of zero crossings (zc) of
the acceleration in the anterior-posterior direction (Acc3) contributed to the prediction of
EE. As the step frequency increases with an increase in the speed of ambulation, the number
of zero crossing of the anterior-posterior acceleration will increase and thus contribute to the
accurate prediction of EE during walking.

Overall, these results suggest that placing multiple sensor types at the foot is an effective
method for estimating EE given that it allows for accurate classification of typical postures/
activities. Generally, algorithms developed to estimate EE through classification have less
bias, standard error and RMSE than estimations made by regression equations alone (30).
However, a limitation of accelerometers is that movements with little or no trunk movement,
such as standing and cycling, are most likely to be misclassified (35). The shoe-based
device, with its capability of classifying standing and cycling activities with good accuracy,
will therefore more accurately estimate the EE of these activities.

Currently, there is no consensus as to how many classes need to be used to distinguish
between postures/activities with distinctly different metabolic demands. Our prototype shoe-
based device only made estimations of EE based on four activity classes (supine, sit, stand
and walk). Others have used single accelerometers and pattern recognition techniques to
classify as many as 15 activities with relatively good classification accuracy (~90%) (2, 17,
20, 30). However, there is likely to be a balance between the number of necessary activity
classifications and maintaining high classification accuracy. Recent attempts at classification
have been employed in order to identify and distinguish low-to-moderate intensity activities
(24, 36), and also to classify a wide range of activities from sedentary to those which are
common for exercise (2, 30, 34). Future research should continue to examine which
activities are necessary for accurate and precise EE estimation models and also practical for
the function of the device as a weight management tool (e.g., to allow real-time activity
feedback via a smartphone).

In addition to classifying activities, the relatively good validity of the footwear device may
be due to the nature of our leave-one-out validation technique which used the same subjects
to calibrate and validate the device. It is well known that group-specific models are most
accurate and precise when they are applied to the same group from which they were created
(7). For this reason, we elected to develop two group-based regression equations using the
Actical to make a comparison of the shoe-based device with another device that used a
group specific model. The Actical regressions using all activities and without cycling
resulted in estimates of EE that were not significantly different from the mean measured EE
value (p=.07 and p=0.42, respectively). Both group-specific regressions were more accurate/
precise than using the manufacturer's software to estimate EE, but it should be noted that
these regressions were not cross-validated in an independent sample and likely overestimate
the ability to predict EE. We also examined activity-specific EE estimations of the shoes and
Actical device (group specific linear regression without cycling) and found that, with the
exception of the Actical during cycling, both devices estimates of EE were not significantly
different than the measured values. However, the %RMSE was greater for the Actical
compared to the shoes. A partial explanation for the relatively poor estimates of cycling EE
using the Actical is that we used the regression equation that did not include cycling, but
given the similarities in the linear regressions, this would only improve the predictive ability
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slightly. More importantly, these results highlight the challenge of using a hip-mounted
accelerometer to estimate cycling EE given the small and workload independent
accelerations experienced at the hip during this activity. In general, the activity-specific
results suggest that both devices can provide reasonable estimates of EE during typical
activities if a group-specific calibration is used. Software that uses group-based models are a
current limitation in the field of physical activity monitoring because manufacturers
typically supply the user with a regression based on a population of healthy, lean
individuals, yet the device may be used by individuals who do not match this group (37).
Future work should will need to determine whether the current algorithms are valid on a
variety of populations (i.e. physically active, obese, children and elderly).

The use of commercially available physical activity monitors is becoming increasingly
popular in research to objectively quantify physical activity at the individual and group
level, as well as for personal use to monitor physical activity levels related to weight
management and/or fitness goals. The validity of these devices is critical to quantifying
current and changing levels in physical activity. Of the three research-based devices, only
IDEEA was not significantly different than the mean EE, yet had a greater error than
previously reported (39), and a moderately high RMSE. The mean EE estimated by the
device had an 11.7% error against the room calorimeter, and the RMSE was 88.2 kcal
during three and a half hours of data collection. The IDEEA device is unique among the
commercially available devices validated in this study because it uses multiple sensors and
sensor types, and more sophisticated algorithms to estimate EE. While being impractical for
use outside of a research lab, the success of the IDEEA device illustrates the effectiveness of
multiple sensors to provide a valid estimate of EE.

Like previous investigations, we found the Actical and Actigraph devices significantly
underestimated EE during a protocol of sedentary to moderately vigorous activities (5, 6, 21,
22, 29). The Actical and Actigraph devices also had large %RMSE values of 25.9 and
26.8% respectively. One explanation for the limited performance of these devices is that we
used a range of activities, including cycling, uphill walking and stepping, in our protocol.
These activities are a challenge for hip mounted accelerometers because the acceleration
magnitude and/or frequency doesn't scale with the metabolic demand (14, 31, 32). However,
there are two limitations to our approach used to quantify EE using the Actical and
Actigraph devices. First, we estimated resting metabolic rate, rather than using a subject-
specific value. This likely introduced some error in the estimates of total EE. Second, we did
not utilize pattern-recognition techniques to estimate EE. Recent studies that have used
artificial neural networks to estimate EE from an Actigraph device have reported
improvements in estimating EE of ~30-60% (30, 34). Therefore it is possible that the
accuracy and precision of the Actical and/or Actigraph could be significantly improved
using this approach and future studies are needed to confirm this possibility.

This study was the first to compare the validity of several consumer and research activity
monitoring devices together against room calorimetry. Furthermore, to our knowledge it was
the first EE validation of the Fitbit tracker, a device marketed for consumer use. One of the
most accurate and precise devices overall was the Directlife consumer device, with an
RMSE of 62.1 kcal (14%). Bonomi et al reported the Directlife device to provide a valid
estimate of EE over a 14-day period using double labeled water with a standard error (SE) of
the estimated TEE to be .9MJ per day, (8.96 kcal per hour) or 7.4% of the measured TEE
(1). Our results determined that the SE was .44MJ per day, or 2.9%. The main disadvantage
of Directlife device is the web-based software which only allows a user to determine EE on
an hourly basis. While the hourly resolution may be sufficient for monitoring EE patterns
over the course of several days, it may be inconvenient for individuals attempting to track
changes in EE during specific period of the day (e.g. after work only). The time resolution
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also likely contributed to the error in a shorter study such as ours. Additionally individuals
see only physical activity EE, so that RMR needed to be estimated from a prediction
equation to make similar comparisons of total EE among all devices. With respect to the
Fitbit device, it was accurate only after manual activity classification, a process that is very
time consuming.

A shoe-based physical activity monitor that can provide a valid estimate of EE may be a
practical tool for weight management. This device is minimally obtrusive as it would fit into
an existing shoe, and the software could be accessed using a smartphone. Individuals would
be able to track their EE as well as be able to see how they are spending their time. For
instance, this device is able to detect changes in posture (e.g. time spent lying, sitting or
standing) and could alert an individual to make more transitions to standing; which research
shows may have health benefits (1212, 18). This device could therefore be implemented into
existing weight management programs. Future research includes the development of a
smartphone interface and quantifying changes in activities and associated EE during an
intervention period.

In conclusion, a device that utilizes an instrumented insole and foot-mounted accelerometer
can accurately and precisely estimate EE during typical free-living tasks. Other research and
consumer physical activity monitors had a wide range of accuracy and precision when
estimating EE. Collectively, these results support the use of multi-sensor devices that can
accurately classify activity and use the activity classification to estimate EE, particularly in
weight management applications.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
a) A pair of shoes equipped with sensors, wireless transmitter and batteries. Arrows show
Anterior-Posterior (AAP), Medial-Lateral (AML) and Superior-Inferior (ASI) axes of
accelerometer. b) A pressure sensitive insole with force sensitive resistors. PH is heel
pressure sensor, PMO,PMM,PMI are 5th, 3rd and 1st metatarsal head sensors, respectively,
and PHX is the hallux sensor.
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Figure 2.
EE vs. Actical counts. Linear regression lines are shown using data from all activities and
data from all activities except cycling. All activity regression equation: y = 0.0018x +
2.1581 (R2 = 0.5666) (solid line); No cycling regression equation: y = 0.0019x + 1.8228 (R2

= 0.7244) (dashed line).
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Table 1

Physical characteristics of participants

Subject Characteristics (N=19, 10M, 9F) Age (yrs) Height (m) Weight (kg) BMI (kg/m2)

26.9 (6.6) 1.73 (.10) 75.1 (17.1) 25.1 (4.6)

Values are mean (SD).
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Table 2

Description of Protocol

Activity Description Time

Equilibration Quiet resting, data excluded 30 min

Supine laying on bed 20 min

Sitting watching TV 20 min

performing computer work 20 min

Standing Quiet 10 min

Active 10 min

Random assignment; 6 of 8 possible activities Walking, 2.5mph 10 min each; 60 min total

Walking, 3.5mph

Uphill, 2.5%, 2.5mph

Stepping

Sweeping

Cycling, 75W

Standing

Sitting

Free-living Any of the above activities, self-selected
pace and posture

60 min, or until completion of 4 hours of data
collection
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Table 3

Mean measured and estimated EE for each device

Device (N) Measured EE (kcal) Estimated EE (kcal) RMSE (kcal) RMSE (%)

Shoes (17) 478.1 (20.0) 476.5 (18.4) 29.6 6.2

Actical
*
 (19)

503.3 (19.2)
383.2 (16.9)

a,b 130.2 25.9

Actical
†
 (19)

503.3 (19.2) 558.2 (29.4) 101.7 20.2

Actical
‡
 (19)

503.3 (19.2) 527.9 (28.6) 89.7 17.8

Actigraph
*
 (16)

494.2 (20.0)
375.0 (20.6)

a,b 132.6 26.8

IDEEA (18) 504.2 (20.3) 445.3 (23.2) 88.2 17.5

Directlife
*^

 (19)
455.4 (17.8) 448.5 (13.1) 62.1 13.6

Fitbit (16) 499.0 (23.8)
362.8 (18.9)

a,b 143.2 28.7

Fitbit-CL (16) 499.0 (23.8) 515.8 (13.0) 64.3 12.9

Mean room-measured and device-estimated EE, standard error (SE) of the estimate, root mean squared error (RMSE) and %RMSE. Measured EE
values differ due to different sample sizes and participants for each device.

Fitbit-CL: Fitbit using manual classification.

*
Harris-Benedict equation adjustment.

†
Estimated EE from subject-specific linear regression model (Actical only, all activities).

‡
Estimated EE from subject specific linear regression model without cycling (Actical only).

^
3-hour comparison.

a
Significant difference from measured.

b
Significant difference from Shoes.
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