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Abstract
Dystonia is a neurological disorder characterized by abnormal involuntary movements that are
prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies,
and rodents have been generated as models of genetic dystonias, and in particular DYT1, DYT11,
and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent
models exhibit pronounced motor deficits in specialized behavioral tasks, such as the rotarod and
beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress
triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent
model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by
trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human
patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to
patients, such as a reduction in striatal D2 dopamine receptor and binding activities. Additionally,
conditional knockout mouse models for DYT1 and DYT11 dystonia show that the loss of the
causal dystonia related proteins in the striatum lead to motor deficits. Interestingly, loss of the
DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance,
suggesting that gene therapy targeting of the cerebellum or intervention in its downstream
pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led
to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results
indicate that genetic animal models are an extremely powerful tool to elucidate the
pathophysiology and to further develop new therapeutics for dystonia.

1. Introduction
Dystonia is a neurological disorder characterized by sustained contractions of muscles,
which cause abnormal movement, twisting, and postures.1 Several methods of classifying
dystonia exist. The earliest method of classifying dystonia was to segregate it as either
primary or secondary.2 In primary dystonia, the dystonic symptoms are not caused by
another condition or environmental factor, and can be hereditary or nonhereditary. In
secondary dystonia, the dystonic symptoms are usually the result of another condition (e.g.
stroke, brain injury, or metabolic disease) or certain medications.3 A more recent
classification system has been developed that segregates dystonia based on clinical
characteristics and etiology.1 Current hypotheses suggest that dystonia is a
neurodevelopmental disorder4 that is caused by an abnormal motor circuitry in the cerebral
cortex, basal ganglia, thalamus, and cerebellum, which in turn leads to abnormal synaptic
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plasticity and altered neurotransmission5-10, and thereby likely causes the dystonic
symptoms.

The animal models of dystonia can be classified into two fundamental groups: phenotypic
and genotypic. The primary goal of the phenotypic animal models is to mimic the dystonic
phenotype seen in patients. One common method has been to inject pharmacological
compounds into specific brain regions, such as the cerebellum or striatum, or to systemically
attempt to reproduce an overt dystonic phenotype.7,11, 12 The advantage of this approach is
that it has the possibility of the potential identification of a brain region, cell receptor, or
signaling pathway that may contribute to dystonia onset. These models are also particularly
useful in analyzing secondary dystonia caused by brain injury or from the side effects of
drugs.13 However, one must consider that the primary goal of genotypic dystonia animal
models is to mimic the genetic mutations found in patients, which can be accomplished by
targeted mutagenesis or through insertional transgenic techniques. This type of model is
particularly useful to analyze the pathophysiology of genetic dystonias by examining the
normal function of the causal proteins and to analyze the mutated effects. The primary aim
of this review is to highlight the findings of genotypic models of DYT1, DYT11 and DYT12
dystonias using worms (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), and
rodents, and to illustrate their utility in elucidating dystonia pathophysiology, and to uncover
novel therapeutics.

2. DYT1 Dystonia
2.1 Background

DYT1 dystonia (OMIM 128100) is a primary, generalized, early-onset torsion dystonia.14

Patients typically present with symptoms in childhood, but can present as late as 26 years of
age.15, 16 Typically, symptoms first present in the limbs and then over several years in many
patients these symptoms become generalized.17 DYT1 dystonia is an autosomal-dominant
disorder with a reduced and incomplete penetrance of 30-40%. It is caused by a trinucleotide
(GAG) deletion in the DYT1/TOR1A gene, which encodes the ubiquitously expressed
torsinA protein.18 This mutation removes one of a pair of glutamic acid residues from the C-
terminal region of the torsinA protein. This mutation is commonly referred to as either
DYT1 ΔGAG or torsinAΔE. TorsinA is a member of the AAA+ superfamily (ATPases
associated with diverse cellular activities), and has been implicated in a variety of cellular
processes, including chaperone-mediated protein folding and vesiclular trafficking.19, 20

2.2 Invertebrate models of DYT1 dystonia
Worms (C. elegans) and fruit flies (D. melanogaster) have a short generation time and a
well-defined nervous system and these properties make them very good model organisms to
study neurological disorders.21-23 C. elegans have three torsin related genes: tor-1, tor-2, and
ooc-5. All three genes encode ATPases that are putative proteins for the Clp/Hsp100 and
AAA+ superfamilies.24, 25 Caldwell and colleagues conducted in vivo assays in C. elegans
to investigate the effect of these torsin proteins on polyglutamine-induced protein
aggregation.26 First, they observed that human torsinA expression, wild-type TOR-2
overexpression, or TOR-2 and OOC-5 co-expression these approaches were able to reduce
protein aggregation in C. elegans.26 However, expression of a mutated TOR-2 had lost its
ability to reduce the protein aggregation (Table 1).26 In another study, overexpression of
human torsinA or TOR-2 in C. elegans, specifically in dopaminergic neurons, was able to
protect dopaminergic neurons from 6-hydroxydopamine (6-OHDA) induced neuronal loss,
possibly through down regulation of the dopamine transporter.27 However, this protection
was decreased when either mutant torsinA or mutant TOR-2 proteins were expressed.27

Lastly, human torsinA was able to suppress endoplasmic reticulum (ER) stress response in
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C. elegans, both at baseline and in response to the protein glycosylation inhibitor
tunicamycin, which induces ER stress.28 However, in the presence of mutant human
torsinA, baseline ER stress was found to be increased.28

When human torsinAΔE was expressed either in the muscle or neurons of fruit flies,
temperature dependent locomotion deficits were observed.29 Additionally, protein
aggregation of mutant torsinA was observed at normal temperature.29 Fruit flies expressing
an 18 bp deletion in human DYT1/TOR1A, a mutation reported in a family with early onset
dystonia,30, 31 showed similar motor deficits after exposure to 38°C. Additionally,
abnormalities in synapses and larva neuromuscular junction were observed in these fruit
flies.31 Fruit flies only have a single torsin gene, dtorsin.32 Down-regulation of dtorsin
results in increased neuronal degeneration.33 Furthermore, a null mutation of dtorsin will
result in semi-lethality, sterility, locomotion deficits, and decreased dopamine levels in the
brains of the larva and adult heterozygotes.34

These invertebrate studies have been integral in identifying the function of torsinA, such as a
role chaperone-mediated protein folding, protection of dopaminergic neurons from
neurotoxicity, and ER stress, and the effects of modulating expression or introducing
mutations on behavior. These findings taken together support the continued use of
invertebrate animal models to study DYT1 dystonia, and in particular the role of cellular
functions.

2.3 Rodent Models of DYT1 dystonia
In mammals, there are four genes in the torsin family: torsinA, torsinB, torsin2A, and
torsin3A. The human DYT1/TOR1A gene and rodent Dyt1/Tor1a genes, in particular mice
and rats, are highly homologous, and therefore they are excellent model organisms.

2.3.1 Dyt1 ΔGAG knock-in, knockout, and knockdown mouse models of DYT1 dystonia
Multiple DYT1 genotypic dystonia models have been generated using rodents (Table 2).
The most significant model is the Dyt1 ΔGAG heterozygous knock-in (KI) line of mice, as
this line of mice recapitulates the trinucleotide deletion in Dyt1/Tor1a that is most often seen
in DYT1 dystonia patients. Similar to humans, this deletion results in a loss of one of a pair
of glutamic acid residues in torsinA.35, 36

The Dyt1 KI mouse exhibited motor deficits and abnormal gait, which while not overt
dystonia, is thought to represent a dystonia-like phenotype.35 Dyt1 KI mice also displayed a
subtle anxiety-like behavior and enhancement of cued fear memory.37 These results were
similar to DYT1 dystonia mutation carriers, who exhibited increased anxiety, verbal
memory retroactive interference, and higher semantic fluency performance.38

Additionally, Dyt1 KI mice showed reduced release of striatal dopamine at baseline and
after amphetamine stimulation.39 Furthermore, a reduction in striatal D2 dopamine receptor
(D2R) binding was observed in the Dyt1 KI mice,40 which was consistent with post-mortem
and in vivo PET imaging studies that revealed a reduction in D2R binding in human DYT1
dystonia mutation carriers.41

Lastly, Dyt1 KI mice exhibited cerebellothalamocortical (CbTC) pathway abnormalities
using PET and DTI imaging techniques.42 This was similar to the white-matter alterations in
the sensorimotor cortex43 and the superior cerebellar peduncle44 in DYT1 dystonia and
primary dystonia patients, which suggest alterations in CbTC tract integrity.44, 45

Furthermore, the KI mice have shown alterations in corticostriatal long-term depression
(LTD).40 Neurotransmission deficits were also reported in cell culture of hippocampal
neurons from Dyt1 KI mice.46, 47
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Dyt1 KI mice had reduced torsinA protein levels in the brain,36, 48 which was consistent
with the accelerated degradation of mutant torsinA found in cultured cells.49, 50 Therefore,
to determine whether a loss-of-function mutation of torsinA leads to DYT1 dystonia, Dyt1
knockdown (KD) mice were developed. These mice had approximately 36% reduction of
torsinA protein, and also Dyt1 knockout mice were similarly developed. Similar to Dyt1 KI
mice, Dyt1 KD mice displayed motor deficits, increased locomotor activity, and alterations
of striatal dopamine metabolism51. In contrast, Dyt1 homozygous knockout (KO),36, 52 Dyt1
homozygous KI,35, 36 and KO/KI double mutant mice53 resulted in neonatal lethality,
suggesting that a gross loss of torsinA function impaired normal development in mice.
These findings are to date, consistent with no report of human carriers with mutations in
both DYT1 alleles.

2.3.2 Brain-region specific Dyt1 conditional knockout mice
Brain-region specific Dyt1 conditional knockout mice have been used to understand how
specific brain region or cell types contribute to the pathophysiology of the disease (Table 2).
When the phenotypes of conditional knockout mice match with those of Dyt1 KI mice, it is
proposed that the corresponding regions or cells have relevance to the pathophysiology. The
cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice, were generated by
crossing Emx1-cre54 and Dyt1 loxP mice, and exhibited motor deficits and hyperactivity.52

The striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mice, generated by crossing
Rgs9L-cre55 and Dyt1 loxP mice, exhibited motor deficits and reduced striatal D2R binding
activity.56 However, both cKO52 and sKO56 mice showed no significant alteration in striatal
monoamine levels. Next, cholinergic neuron-specific Dyt1 conditional knockout mice,
generated by crossing ChAT-cre57 and Dyt1 loxP mice, showed motor deficits. Furthermore,
striatal cholinergic interneurons in these mice showed alterations in response to muscarinic
receptor activation and D2R receptor activation, but no change in response to either GABAA
or metabotropic glutamate receptor activation.58 The cerebral cortex and striatum, along
with cholinergic innervation seemed to be important components of the basal ganglia
circuitry. These studies suggested that loss of torsinA function in these areas resulted in
motor deficits and these findings may prove important to better understanding the
pathogenesis of dystonia.

Another aspect of this puzzle that has yet to be investigated is using conditional knockout
techniques to show the contribution of the direct and indirect pathways of the basal ganglia.
Striatal medium spiny neurons (MSNs) expressing D1 dopamine receptor mediate the direct
pathway, which is thought to be involved in the initiation of movement, while striatal MSNs
expressing D2 dopamine receptor mediate the indirect pathway, and this may possibly
prevent unwanted movements. Therefore, the motor deficits in DYT1 dystonia may be
mediated, at least in part, through changes in D2R function in the basal ganglia circuit. The
relative contributions of presynaptic D2R on cholinergic interneurons and postsynaptic D2R
on medium spiny neurons to the pathophysiology of DYT1 dystonia remain to be
determined.

Several studies have suggested the role of the cerebellum in the pathophysiology of
dystonia. For instance, cerebellectomies of either dystonic (dt) rats or tottering mutant mice
were able to improve their dystonic-like symptoms.7, 59 Moreover, crossing the tottering
mutant mice with pcd mutant mice, which have Purkinje cell-specific degeneration, were
similarly able to improve in their dystonic-like symptoms.60 Therefore, Purkinje cell-
specific Dyt1 conditional knockout (Dyt1 pKO) mice were generated by crossing Pcp2-cre61

with Dyt1 loxP mice. These mice had alterations in Purkinje cell dendritic morphology and
showed an improvement in motor performance compared to wild-type mice.6253 Since
Purkinje cells integrate cerebellar signals and the cerebellum modulates the basal ganglia

Oleas et al. Page 4

Mov Disord. Author manuscript; available in PMC 2014 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



circuits,63 loss of torsinA function in Purkinje cells may balance the abnormal basal ganglia
circuits and attenuate the dystonic symptoms.

2.3.3 Transgenic rodent models of DYT1 dystonia
A line of transgenic mice overexpressing human torsinAΔE driven by the neuron-specific
enolase promoter displayed self-clasping of hind limbs, hyperkinesia, altered circling
behavior, abnormal gait, brain stem pathology, and disrupted striatal dopamine levels.64, 65

A second line of transgenic mice were generated using the human cytomegalovirus (hCMV)
immediate early promoter in order to drive the overexpression of human torsinAΔE, and
these have been referred to as hMT mice. The hMT mice exhibited motor learning deficits,66

motor deficits,67 and abnormal gait.67 Furthermore, there was an increase in dopamine
turnover,67 altered dopamine release, decreased basal locomotion induced by
amphetamine,68 and decreased dopamine transporter function.69

The hMT mice have been extensively studied using electrophysiological techniques. The
hMT mice exhibited defected LTD, an enhanced long-term potentiation (LTP), and a deficit
of synaptic depotentiation (SD).70 A shortened pause response by thalamic stimulation in
cholinergic interneurons was also found, due to an altered D2R function affecting the
synaptic convergence between thalamostriatal and corticostriatal responses.71 Furthermore,
the hMT mice exhibited an excitatory, instead of inhibitory, striatal cholinergic interneuron
response after dopamine D2R activation,72, 73 and also had a decreased D2R receptor
level.74 Additionally, electrophysiological studies revealed that there was a critical alteration
of striatal dopamine D2R-mediated function both in cholinergic interneurons as well as in
the control of GABAergic synaptic transmission in MSNs of the hMT mice.72, 75These
observations are compatible with current theories on the pathogenesis of dystonia,
suggesting that both an increased propensity to “potentiation” (LTP-like) and a failure of
“depression” mechanisms (LTD- and SD-like) lead to a “loss of inhibition” in the motor
system which might, at least in part, explain the pathogenesis of the excess of abnormal
movements observed in dystonic patients, though this remains speculative.9

A third line of transgenic mice overexpressing human torsinAΔE in dopaminergic neurons of
the midbrain resulted in motor deficits and altered dopamine release in response to cocaine.
These findings suggested that disruption of torsinA activity by overexpressing the mutant
torsinA in dopaminergic neurons affected dopamine transmission. 76

A fourth line of transgenic mice was generated using a murine prion protein promoter, and
this line of mice revealed that overexpressing wild-type or torsinAΔE caused inclusion
bodies predominantly in the brainstem, nuclear envelope abnormalities, altered monoamine
levels, and motor deficits.77 However, both the wild-type and torsinAΔE were expressed as
fusion proteins with a carboxyl terminal attachment of a V5-His tag. The functional
consequences of these fusion proteins have not been well characterized. Realizing the
deficiency of the approach, the same research group generated transgenic rats expressing
human torsinAΔE from the human torsinA promoter. The mutant rats showed altered
synaptic plasticity, motor deficits, and nuclear membrane alterations.78

Various transgenic rodent models overexpressing wild-type torsinA or mutant torsinAΔE

using different promoters have been produced (Table 3). Most of the transgenic rodent
models showed an impairment of motor behavior. However, investigators should be cautious
when interpreting these results because the observed behavioral and cellular abnormalities
could have been a result of non-physiological and ectopic protein expression. Furthermore,
it was difficult to generate proper control animals for these transgenic mice due to
differences in the transgene insertion site, copy number, expression level, and pattern of
expression.
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3. DYT11 dystonia
3.1 Background

DYT11 dystonia (OMIM 159900) is the major subtype of myoclonus-dystonia (M-D), and is
characterized by myoclonic jerks with dystonic symptoms.79, 80 Additionally, it is often
accompanied by psychiatric symptoms, such as depression and anxiety disorders. DYT11
dystonia generally presents in childhood, but in some individuals can present in late
adulthood.81 It is caused by mutations in SGCE, which encode the transmembrane
glycoprotein ε-sarcoglycan.79 SGCE is maternally imprinted and paternally expressed.82

Furthermore, it has been demonstrated that there is exclusive paternal expression of ε-
sarcoglycan in the brains of mice83 and humans.84

3.2 Rodent models of DYT11 dystonia
Epsilon-sarcoglycan was first identified in mice as a homolog of α-sarcoglycan.85, 86 Two
lines of Sgce knockout mice have been reported. The first lacks exon 4, which results in a
frame-shift mutation and has exhibited significant relevant phenotypes.83, 87 Another mouse
line was generated and it lackedexons 6 through 9, which did not result in a frame-shift
mutation, and did not exhibit an overt phenotype.88 We will focus on the findings from the
first line of mice.

3.2.1 Sgce heterozygous KO mice
Sgce heterozygous knockout (KO) mice lacking exon 4 were generated by crossing Sgce
loxP83 with CMV-cre89 mice (Table 2). Paternally-inherited Sgce KO mice showed
myoclonus and deficits in fine motor coordination and balance, motor learning in the beam-
walking test, and anxiety and depression-like behaviors.87 The motor learning deficit was
recently demonstrated in DYT11 dystonia patients with impaired saccadic adaptation,90 and
this was thought to be a form of cerebellar motor learning.91 Sgce KO mice also exhibited
abnormal nuclear envelopes in striatal neurons and cerebellar Purkinje cells, suggesting that
DYT11 dystonia belongs to a growing family of nuclear envelopathies.92-94 Additionally,
loss of ε-sarcoglycan did not cause a reduction of other sarcoglycan isoforms (α, δ, and ζ),
suggesting that ε-sarcoglycan did not make a sarcoglycan complex similar to other
sarcoglycans.93 Furthermore, the levels of striatal dopamine and its metabolites in Sgce KO
mice were significantly increased.87 The hyperdopaminergic state seemed to be potentially
further strengthened by evidence that DYT11 dystonia patients had a reduction in striatal
D2R binding.95 Similarly, Sgce KO mice exhibited reduced striatal D2R protein levels and
an increased dopamine release after amphetamine administration.96 In conclusion, these
studies suggested that DYT11 dystonia had functional alterations of the monoamine system
in the striatum, and that the Sgce KO mice reasonably modeled DYT11 dystonia.

3.2.2 Brain-region specific Dyt1 conditional knockout mice
Brain region-specific Sgce knockout models have been generated to dissect brain circuits
involved in the pathogenesis of DYT11 dystonia. Paternally-inherited striatum-specific Sgce
conditional knockout (Sgce sKO) mice exhibited motor deficits, but no myoclonus and also
had normal nuclear envelopes in the striatum.93 Paternally-inherited cerebellar Purkinje cell-
specific Sgce conditional knockout (Sgce pKO) mice showed motor learning deficits, but no
myoclonus and a normal nuclear envelope in the cerebellar Purkinje cells.94 The results
suggested that loss of ε-sarcoglycan function in the striatum and in the cerebellar Purkinje
cells contributed to motor deficits and motor learning deficits observed in the complete Sgce
KO mice.87 In contrast, loss of ε-sarcoglycan function in these regions alone did not
contribute to myoclonus or nuclear envelope abnormalities, suggesting that other brain
regions or a combination of these brain regions may contribute to these phenotypes.
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4. DYT12 dystonia
4.1 Background

DYT12 dystonia (OMIM 128235), or rapid-onset dystonia-parkinsonism (RDP), is
characterized by symptoms of both dystonia and parkinsonism, which include resting
tremor, akinesia, bradykinesia, and postural instability.97 In DYT12 dystonia, the human
patients’ symptoms can appear within minutes to a few days, and do not remit.97-101 The
symptoms can be triggered by a physiological stressor, such as a high fever or
pregnancy.98, 102 DYT12 dystonia is caused by missense mutations in the ATP1A3 gene,
which encodes the Na+, K+-ATPase α3 isoform. The α3 isoform is only expressed in
neurons and cardiac cells.97, 103 It is hypothesized that the loss of the α3 isoform during
stress may interfere with the normal response to physiological stressors. These responses
have been referred to as stress induced channelopathies, and this type of finding has been
observed in other diseases, such as myasthenia gravis and chronic fatigue syndrome.8, 104

4.2 Rodent model of DYT12 dystonia
Na+, K+-ATPase α3 isoform-deficient mice were generated as a DYT12 dystonia model
from gene targeting that resulted in aberrant splicing of the gene.105 The heterozygous
Atp1a3 KO mice exhibited an increase in locomotor activity at baseline and in response to
methamphetamine in the open-field test. Additionally, the heterozygous Atp1a3 KO mice
showed impaired learning in the Morris water maze and decreased hippocampal NR1
subunit of NMDA receptor. More importantly, the heterozygous Atp1a3 KO mice had no
motor deficits prior to stress induction, but following an immobilized stress protocol, female
heterozygous Atp1a3 KO mice exhibited motor deficits in the rotarod and beam-walking
tests.106 The stressed Atp1a3 KO mice also exhibited alterations in their sensory response to
warm stimuli, circling behavior, and the monoamine neurotransmitter system. Moreover, in
a separate study stress increased the susceptibility to depression-like phenotypes in Atp1a3
KO mice.107

5. Dystonia animal models and preclinical drug discovery
Currently there is no known cure for dystonia. However, physical therapy, medications, and
surgery aim to lessen symptoms. Positive symptomatic outcomes have resulted from
botulinum toxin treatment for focal dystonia,108 medications such as the anticholinergic
trihexyphenidyl, and from the use of gamma-aminobutyric acid (GABA) derivatives for
primary dystonia.109 Deep brain stimulation for generalized and cervical dystonia have also
been shown effective in select cases.109 However, not all patients respond favorably to these
treatments likely as a result of the heterogeneity of dystonia, and the differences in
underlying pathophysiology. Therefore, there is tremendous need for new and more
effective treatments for dystonia.

Although none of the genetic dystonia rodent models exhibit overt dystonic symptoms, the
beam-walking and rotarod tests have successfully detected motor deficits in a majority of
genotypic rodent models.35, 39, 48, 51, 56, 58, 66, 67, 76-78, 87, 93, 94, 106 Two particular
cases worth noting are the DYT12 and DYT1 dystonia mouse models. In DYT12 dystonia
patients, symptoms are often triggered by a stressor, resulting in a rapid progression of
dystonic symptoms and parkinsonism. In the mouse model of DYT12 dystonia, there are no
beam-walking deficits but when a stress protocol is used, the deficits emerge.106

Furthermore, the beam-walking deficits in Dyt1 KI mice, could be rescued using the
anticholinergic trihexyphenidyl, a common human dystonia medication.40 We believe these
two studies provide some preliminary evidence that the beam-walking test may be an
indirect test for dystonia in genotypic rodent models though this will need further validation.
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We posit that potential therapeutics aimed at treating genetic dystonias could possibly rescue
beam-walking deficits observed in respective genotypic models. For example, an in vivo
screen using transgenic C. elegans resulted in the identification of the antibiotic ampicillin
as being able to enhance wild-type torsinA activity and rescuing beam-walking deficits and
torsinA protein levels in the Dyt1 KI mice.110 The effect of ampicillin on DYT1 dystonia
patients is now currently being investigated in a clinical trial (NCT01433757). In another
case, loss of the torsinA protein in the Purkinje cells of the cerebellum (Dyt1 pKO) in
combination with the global Dyt1 ΔGAG mutation (Dyt1 KI) in mice exhibited lower
numbers of slips compared to Dyt1 KI mice on the beam-walking test.53 This finding
indicated the possibility that the molecular lesions of torsinA in cerebellar Purkinje cells by
gene therapy or intervention in the signaling pathway downstream of the cerebellar Purkinje
cells may rescue motor symptoms in DYT1 dystonia patients. Additionally, further
refinement of drugs targeting the corticostriatal pathway and its modulatory pathways will
hopefully provide new treatments for DYT1 dystonia and other related dystonias. It is likely
that other candidate tests like beam-walking will emerge as we better understand the animal
models of dystonia.

6. Improving existing models for dystonia and future directions
One approach for the development of a better animal model would be gene targeting
mediated by zinc finger nucleases (ZFNs), which are engineered proteins that bind to DNA
at specific sites and produce double strand breaks in DNA.111 The advantage of ZFNs lies in
targeting efficiency and the possibility of creating gene modifications from different
organisms,111 omitting the need for producing embryonic stem cell based chimeric animal
models.112 Since ZFN technology can be applicable to various organisms,113, 114 it can be
useful to generate novel Dyt1 KI or Dyt1 knockout rats. Rats have larger bodies and brain
sizes compared to mice, and this may facilitate easier in vivo electrophysiological,
behavioral, and imaging studies.

Additionally, the engineered rodent dystonia models developed to date suffer from the lack
of overt motor deficits. Future efforts should focus on developing models with early onset
and pronounced symptoms. The process of generating such models will also provide insights
into novel factors that contribute to onset and severity of symptoms. Recent studies have
shown that Dyt1 homozygous KO mice lethality varied from 12 hours to 3 weeks depending
on the genetic background.115 Therefore, it is possible that motor symptoms might also be
influenced by genetic background. Additionally, it has been shown that additional gene
mutations can affect the temporal onset of motor deficits, such as is the case of mutant mice
harboring both the Dyt1 KI and Sgce KO mutations.48 Finally, stress induced motor deficits
in the DYT12 dystonia mouse model suggest that environmental factors could also influence
the onset and severity of the phenotype. Combinations of these approaches will hopefully
lead to better mammalian models and facilitate the development of novel therapeutics.

7. Conclusion
Although all engineered rodent models have not revealed overt dystonic symptoms, motor
deficits in these models may correspond to dystonic symptoms in humans. In addition to
behavioral similarities between genotypic models of dystonia and patients, biochemical
similarities also exist. For example, reductions in striatal D2R and/or its binding activities
are common findings in both DYT1 and DYT11 dystonia mouse models. Analysis of these
rodent models also demonstrates the pathophysiological changes in the corticostriatal,
thalamostriatal, and cerebellothalamocortical pathways and understanding these changes
will be critical to therapy development. It is our hope that further investigation of these
pathways will lead to novel therapeutics to treat dystonia. Using a combination of
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invertebrate and rodent models, ampicillin, a common antibiotic, was shown to rescue motor
deficits in animals and is a candidate for human trials. Moreover, Dyt1 pKO mice indicated
that molecular lesions of torsinA in cerebellar Purkinje cells placed by gene therapy or
alternatively intervening in the signaling pathways downstream of cerebellar Purkinje cells
may both be able to rescue motor symptoms. These results indicate that the genetic animal
models developed can be useful to further study the pathophysiology of dystonia and to
attempt to develop novel therapeutics.
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