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Protein folding has been extensively studied, but many questions
remain regarding the mechanism. Characterizing early unstable
intermediates and the high–free-energy transition state (TS) will
help answer some of these. Here, we use effects of denaturants
(urea, guanidinium chloride) and temperature on folding and
unfolding rate constants and the overall equilibrium constant as
probes of surface area changes in protein folding. We interpret
denaturant kinetic m-values and activation heat capacity changes
for 13 proteins to determine amounts of hydrocarbon and amide
surface buried in folding to and from TS, and for complete folding.
Predicted accessible surface area changes for complete folding
agree in most cases with structurally determined values. We find
that TS is advanced (50–90% of overall surface burial) and that the
surface buried is disproportionately amide, demonstrating exten-
sive formation of secondary structure in early intermediates. Mod-
els of possible pre-TS intermediates with all elements of the native
secondary structure, created for several of these proteins, bury
less amide and hydrocarbon surface than predicted for TS. There-
fore, we propose that TS generally has both the native secondary
structure and sufficient organization of other regions of the back-
bone to nucleate subsequent (post-TS) formation of tertiary inter-
actions. The approach developed here provides proof of concept
for the use of denaturants and other solutes as probes of amount
and composition of the surface buried in coupled folding and
other large conformational changes in TS and intermediates in
protein processes.
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Determination of the mechanism of protein folding [unfolded
(U) → folded (F)] is a long-standing goal of biophysical

research. Folding of a single domain globular protein is a very
highly cooperative (thermodynamically two-state) process. From
analysis of folding kinetic data for CI2 and barnase, Fersht et al.
(1) concluded that proteins fold through a high–free-energy
transition state (TS) with partially formed elements of native
structure. Recently, Barrick and Sosnick (2) concluded that an
ensemble of unstable, rapidly reversible intermediates form early
in the folding mechanism, and that the most advanced and un-
stable of these undergoes a rate-determining conformational
change with transition state TS. This transit step, slower than
the reverse direction of previous rapidly reversible steps, is
followed by rapid propagation of folding. Most proposals for the
initial intermediates invoke unstable regions of α-helix and/or
β-sheet; these are thought to coalesce and/or rearrange to form
TS. Kay and coworkers (3) characterized a marginally stable early
intermediate of Fyn SH3 domain and found that interactions of
amide groups formed earlier in the folding pathway than inter-
actions of methyl groups, indicating that 2° structure formed be-
fore the 3° fold. Recent hydrogen exchange pulse-labeling
experiments analyzed with mass spectrometry by Englander,
Marqusee, and collaborators (4) indicate that folding of RNase H
occurs through a defined set of intermediates where each step of
folding adds more native-like elements of 2° structure. Late
intermediates in folding that contain most elements of native
structure except side-chain close packing have been observed (5).

Mutational analyses of many proteins indicate that TS for
protein folding are quite advanced (2). Here, we develop a dif-
ferent approach to characterize TS for noncovalent self-assembly
processes like protein folding using solute effects and heat ca-
pacity changes as physical probes yielding amounts of hydro-
carbon and amide surface buried in folding to and from TS, and
apply it to characterize TS and infer properties of intermediates
before TS for folding of 13 proteins. In addition to probing the
character of TS in the protein-folding mechanism in a unique
way, this research serves as a demonstration of the use of sol-
utes as probes of conformational changes and interface forma-
tion in the steps of any protein process.
The vast majority of the accessible surface area (ASA) buried in

folding an extended polypeptide into a globular protein is either
hydrocarbon (H) (∼70%) or amide (A) (∼20%), with an average
ratio ΔASAH/ΔASAA ∼ 3.5 for complete folding (6). [Structural
values of ΔASAH/ΔASAA range from 2.7 to 3.9 for 12 of the
proteins analyzed here; only one (FKBP) has a ratio outside this
range (∼5).] Different folding mechanisms lead to very different
predictions of the ΔASAH/ΔASAA ratio for folding from an
extended chain to TS. Formation of isolated elements of 2°
structure (particularly α-helix) buries proportionately less hydro-
carbon surface and proportionately more amide surface than does
overall folding. For example, ΔASAH/ΔASAA is 0.6 for for-
mation of an (AEAAKA)n α-helix (6) and 2.0 for formation of
isolated α-helical elements present in phage 434 cro repressor
(calculation described below), whereas for β-hairpin [Protein Data
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Bank (PDB) ID code 2EVQ] formation ΔASAH/ΔASAA ∼ 2.7.
For hydrophobic collapse mechanisms, the ratio ΔASAH/ΔASAA
for folding to TS is presumably as large or larger than the value for
complete folding.

Denaturant Probes of Changes in Amide and Hydrocarbon
Surface Area
Recently, the interactions of key denaturants, osmolytes, and
Hofmeister salts with the functional groups of proteins and
nucleic acid have been determined, allowing these solutes to be
used as thermodynamic and kinetic–mechanistic probes of the
amount and the composition of the surface buried or exposed in
the steps of a noncovalent protein or nucleic acid process like
helix formation, folding, or binding (6–14). For protein folding,
urea and guanidinium chloride (GuHCl) thermodynamic m-values
(derivatives of the standard free energy of folding with respect to
denaturant concentration) are determined almost entirely by the
preferential interactions of these denaturants with the hydrocarbon
and amide surface buried in folding (6):

m‐value≈ αHΔASAH + αAΔASAA; [1]

where αH and αA (Table 1) are interaction potentials quantifying
the preferential interaction of urea or GuHCl per unit area with
these two types of surface, obtained from analysis of thermody-
namic data for the preferential interactions of urea and GuHCl
with model compounds (6, 10). For GuHCl, αA is 20-fold larger
in magnitude than αH (Table 1) (10). For overall protein folding
(U → F), therefore, αAΔASAA is more than fivefold larger
in magnitude than αHΔASAH, so GuHCl folding m-values are
primarily determined by ΔASAA. For urea, αA is 3.7-fold larger
than αH (Table 1) (6), and therefore contributions from ΔASAA
and ΔASAH to urea folding thermodynamic m-values are simi-
lar. For cases in which folding and unfolding kinetics are sin-
gle-exponential (2, 14), Eq. 1 is also applicable to interpret
kinetic m-values (obtained from derivatives of the logarithms
of the folding and unfolding rate constants with respect to de-
naturant concentration), in which case ΔASAH and ΔASAA are
the changes in water-accessible hydrocarbon and amide surface
area in folding to or from TS (U → TS; TS → F).

Heat Capacity Probes of Changes in Hydrocarbon (and Amide)
Surface Area
Neither denaturant is optimal as a probe of changes in hydro-
carbon ASA (ΔASAH), but the heat capacity change is. The
overall (thermodynamic) heat capacity change for folding (ΔCp°)
is determined to a good approximation by the amounts of hy-
drocarbon and amide surface buried in folding (15–17):

ΔCo
p ≈ eHΔASAH + eAΔASAA; [2]

where eH and eA are intrinsic values of ΔCp° per unit area for
these two types of surface, obtained from analysis of hydrocar-
bon and amide transfer thermodynamic data (Table 1).
Whereas eH is only 2.4-fold larger in magnitude than eA, the
contribution of eHΔASAH to the overall ΔCp° of protein fold-
ing is ∼9-fold larger in magnitude than eAΔASAA. Eq. 2 (like
Eq. 1) is also applicable to interpret activation heat capacity

data obtained from the second derivatives of the unfolding and
folding rate constants with respect to temperature.

Results and Discussion
Quantifying Amounts of Amide and Hydrocarbon Surface Buried in
Folding to and from TS. The kinetics of folding and unfolding of
13 single-domain globular proteins with known structures and
ranging in size from 56 to 164 residues have been determined as
a function of denaturant concentration and temperature (18–32).
GuHCl or urea kinetic m-values and activation heat capacity
changes for folding and unfolding are summarized in Table S1.
Amounts of amide and hydrocarbon surface buried in folding to
and from TS (i.e., U → TS and TS → F) and for overall folding
(U → F), predicted from activation heat capacity change and
denaturant kinetic m-values using Eq. S1, are reported in Table 2.
Thermodynamic m-values and ΔCp° values for overall folding

(U → F) are determined from differences between kinetic/acti-
vation quantities for folding and unfolding. To validate the use of
kinetic m-values and activation ΔCp° values as structural probes
to determine amounts of amide and hydrocarbon ASA buried in
folding to and from TS, we compared values of ΔASAH and
ΔASAA for U → F predicted from the thermodynamic m-value
and ΔCp° with those calculated from structural data assuming
the extended polypeptide model of the denatured state (6). Fig. 1
and Table 2 demonstrate the very good agreement obtained
between predicted and structural values of ΔASAH and ΔASAA
for most of the proteins in the dataset. Individual (Fig. 1) and
summed (Fig. S1) values of ΔASAH and ΔASAA predicted from
m-values and activation heat capacities agree within experimental
uncertainty with those calculated from structural information for 9
of 13 proteins. (See SI Materials for discussion of uncertainties in
ΔASA and of proteins deviating from the line in Fig. 1.) Fig. S1
shows that, in seven cases, the experimentally determined value
of ΔASAH plus ΔASAA is equal to or slightly larger in magnitude
than that calculated from the structural data, validating the use of
the extended model of the unfolded chain for these calculations.
To determine how advanced TS is on the folding pathway from

U and F, the fraction θ of the overall the denaturant m-value or
heat capacity change that occurs in formation of TS has been cal-
culated. As noted by Plaxco et al. (33) for a subset of these proteins,
the fraction θCU→TS of the overall heat capacity change that occurs
in folding to TS of these 13 proteins is less than the corresponding
fraction θmU→TS of the thermodynamic denaturant m-value for
folding to TS (Table S2). Because burial of hydrocarbon surface
largely determines the heat capacity change, and burial of amide
surface is equally or more important for determining denaturant
m-values as discussed above, the ranking θmU→TS > θCU→TS indi-
cates that amide ASA is preferentially buried in folding to TS.
Values of the fraction θASAU→TS of total (hydrocarbon plus am-

ide) ASA buried in folding (Eq. S2) ranges from 0.53 to 0.94, with 9
of the 13 proteins in the range 0.53–0.70 (Fig. 2 and Table S2). For
all 13 proteins, more than one-half of the total (amide plus hydro-
carbon) surface buried in folding is buried in folding to TS; the
average for the dataset is 65 ± 10%. Mutational analyses and sim-
ulations have previously concluded that TS of many proteins is ad-
vanced as discussed below. For all 13 proteins, values of θASAU→TS

are smaller than θmU→TS and greater than θCU→TS, as expected.
Several metrics can be used to quantify the extent to which

amide or hydrocarbon ASA is preferentially buried in folding to
TS and from TS to the globular protein. The simplest, applicable
to each protein individually, compares hydrocarbon:amide
ΔASA ratios r, defined as follows:

r=ΔASAH=ΔASAA; [3]

Values of r for U → TS, TS → F, and U → F are listed in Table
S3. For all 10 proteins where values of r for TS → F can be
accurately determined, Table S3 demonstrates that rU→TS <

Table 1. α-Values for urea and GuHCl (Eq. 1) and e-values (Eq. 2)
for the composition of the amide and hydrocarbon surfaces
buried in protein folding (SI Materials)

Property Amide Hydrocarbon

GuHCl α-value, cal·mol−1·m−1·Å−2 −2.2 ± 0.2 0.11 ± 0.05
Urea α-value, cal·mol−1·m−1·Å−2 −0.42 ± 0.01 −0.11 ± 0.03
ΔCp e-value, cal·mol−1·K−1·Å−2 −0.14 ± 0.04 0.34 ± 0.02
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rTS→F, showing that folding to the TS preferentially buries amide
ASA, whereas folding from the TS to the globular protein pref-
erentially buries hydrocarbon ASA.
Because overall ratios rU→F are different for different pro-

teins, we normalize rU→TS and rTS→F by the thermodynamically
determined rU→F and define these ratios as Ω values as follows:

ΩU→TS = rU→TS=rU→F; ΩTS→F = rTS→F=rU→F; [4]

For all proteins ΩU→TS ≤ 1 (13 examples) and ΩTS→F ≥ 1
(10 examples), confirming the preferential burial of amide ASA
in U → TS and of hydrocarbon ASA in TS → F (Fig. 3).

Interpreting Amide ΔASAA Values for Folding to TS; Comparison with
Results of Other Methods. Values of ΔASAA for folding to TS
determined from the analysis of kinetic m-values and activation
heat capacities (Table 2) allow us to estimate the amount of
secondary structure formed in folding to TS for each protein.
Formation of (AEAAKA)n α-helix (6) and β-hairpin (PDB ID
code 2EVQ) buries ∼22 Å2 and ∼12 Å2 of backbone amide ASA
per residue, respectively. Calculations of amide ASA (34) buried
in formation of individual 2° structural elements of Bs-Csp, HPr,
and phage 434 Cro protein (434 Cro) agree well with these
values (Table S4). From the number of residues in α-helices or

β-sheets in these folded proteins and the above per-residue values,
we estimate the contribution to ΔASAA from burial of the chain
backbone in forming all of the native 2° structure in folding from
U to F (Table S5) and compare with values of ΔASAA de-
termined from the experimental data for folding from U to TS
(Table 2). For 11 of the 13 proteins investigated, the amount of
amide ASA buried in folding from U to TS is either greater than
(seven proteins) or approximately equal to (four proteins) the
amount of backbone amide ASA buried in forming all of the na-
tive 2° structure (Table S5). Only for RPS6 and T4L is the amount
of amide ASA buried in folding fromU to TS less than the amount
of backbone amide ASA buried in forming all of the native 2°
structure (Table S5). This comparison indicates most simply that
the 2° structural elements of these folded proteins are already
present in TS. The additional amide ASA buried in seven of the TS
investigated may result from reductions in side-chain amide ASA
in 2° structure formation or interactions of 2° structures, or from
organization of residues that are not involved in 2° structures
formed in TS.

Analysis of All-2° and More Advanced Structural Models of Folding
Intermediates and TS. As a structural test of the interpretation
that the native 2° structure is present in TS, models of putative

Table 2. Predicted values of amide and hydrocarbon ΔASA for U → TS, TS→ F, and U → F; comparison with structural values for U → F

Protein
PDB

ID code

Predicted U → TS ΔASA Predicted TS → F ΔASA Predicted U → F ΔASA
U → F ΔASA from

structure*

Hydrocarbon,
Å2

Amide,
Å2

Hydrocarbon,
Å2

Amide,
Å2

Hydrocarbon,
Å2

Amide,
Å2

Hydrocarbon,
Å2

Amide,
Å2

NTL9 1CQU (51) −1,282 ± 339 −471 ± 86 −958 ± 335 −328 ± 61 −2,241 ± 485 −799 ± 128 −2,726† −729†

Bc-Csp 1C9O (52) −1,800 ± 122 −801 ± 106 −908 ± 45 −133 ± 27 −2,708 ± 154 −934 ± 129 −3,436 −1213
Bs-Csp 1NMG (53) −2,292 ± 238 −923 ± 238 −207 ± 266 −2 ± 71 −2,499 ± 358 −926 ± 256 −3,425 −1,054
FynSH3 1NYF (54) −1,534 ± 94 −577 ± 75 −1,362 ± 66 −306 ± 48 −2,905 ± 152 −883 ± 122 −2,726 −691
434 Cro 2CRO (55) −2,673 ± 469 −1,278 ± 333 −840 ± 506 −113 ± 147 −3,514 ± 698 −1,391 ± 400 −3,705† −1,106†

PLB1 1HZ6 (56) −1,231 ± 115 −703 ± 84 −686 ± 101 −308 ± 39 −1,916 ± 180 −1,011 ± 122 −3,259 −1,220
CI2 2CI2 (57) −1,672 ± 95 −562 ± 75 −1,575 ± 93 −397 ± 59 −3,248 ± 174 −959 ± 134 −3,259 −834
HPr 1POH (58) −2,629 ± 186 −890 ± 125 −2,370 ± 346 −542 ± 88 −4,999 ± 428 −1,431 ± 207 −4,656 −1,525
ACP 1APS (59) −2,472 ± 256 −1,647 ± 344 −2,638 ± 166 94 ± 174 −5,110 ± 326 −1,554 ± 439 −5,391 −1,652
ACP-1 2VH7 (60) −2,647 ± 346 −2,215 ± 455 −2,786 ± 266 −409 ± 207 −5,434 ± 491 −2,624 ± 608 −5,765 −1,818
RPS6 1RIS (61) −3,026 ± 315 −909 ± 127 −3,065 ± 431 −494 ± 96 −6,091 ± 564 −1,402 ± 219 −5,796 −1,561
FKBP 1FKD (62) −2,760 ± 271 −1,916 ± 396 −3,243 ± 253 −447 ± 242 −6,003 ± 437 −2,364 ± 588 −6,529† −1,295†

T4L 1B6I (63) −5,534 ± 570 −1,796 ± 255 −1,841 ± 189 −542 ± 79 −7,375 ± 643 −2,338 ± 328 −9,806 −2,606

*ΔASA calculated for an extended model of the denatured state.
†ΔASA values from Guinn et al. (6).
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Fig. 1. Comparison of amide (A) and hydrocarbon (B) ΔASA values for U → F from analysis of experimental data (using Eqs. 1 and 2) with values calculated
from structural data for F and an extended-chain model for U (Table 2). The lines represent equality of experimental and structural values. Fig. S1 compares
experimental and structural values for the sum of amide and hydrocarbon ΔASA for U → F.
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folding intermediates (designated Iss), which preserve the native
2° structure (abbreviated ss) but eliminate as much as possible of
the native 3° structure, were made for proteins with α-helical
(434 cro), β-sheet (Bs-Csp), and mixed (HPr) secondary struc-
tures. In these models, the native elements of α-helix and β-sheet
structure are connected to the extent possible by extended chain
segments like those in the model of U. Values of amide and
hydrocarbon ΔASA for folding of U to form these proposed Iss
intermediates are summarized in Table S4, together with θ and
r values calculated from these ΔASA values.
Table S4 reveals that Iss models for all three proteins exam-

ined are significantly less advanced than TS in terms of the sum
of amide and hydrocarbon ASA buried (θASA

U→Iss << θU→TS).
For all-α 434 Cro and all-β Bs-Csp, the amount of amide surface
buried in forming all of the elements of native 2° structure is only
50–60% of that buried in folding to TS, whereas for HPr our Iss
model buries almost 100% of the amount of amide surface
buried in folding to TS. To create more advanced models that
may approximate the TS, we added native-like φ and ψ angles in
the regions connecting 2° structure elements but avoided creat-
ing the contacts between these elements present in the native
state. For all three proteins, we found more advanced models for
which ΔASATS, θASA

U→TS, and r values (Table S4) are more
comparable to those predicted from ΔCp and m-values and so
designate these as TS. These structures for 434 Cro and Bs-Csp
are shown on the activation free-energy diagrams of Fig. 4 using
θASA values for the fraction of total ASA buried in folding to the
structure as the position on the reaction coordinate.

Comparison with Other Models of TS. TS for several of the proteins
studied here have been investigated previously by other methods.
Relaxation dispersion NMR spectroscopy showed that a mar-
ginally stable intermediate in Fyn-SH3 (1NYF) folding contains
the β-structure formed by the central portion of the polypeptide
chain, but lacks the 2° structural elements nearer the N and C
termini. The kinetic m-value/activation heat capacity analysis
presented here predicts that ∼56% of the ΔASA of folding
occurs in forming the high–free-energy Fyn-SH3 TS and that the
amount of amide surface buried in forming TS is ∼1.5-fold
greater than the backbone amide surface buried in forming the
elements of Fyn-SH3 2° structure. Our results indicate that TS
may be quite close on the reaction coordinate to the intermediate
characterized by Kay and coworkers. Mutant ψ-value analysis,
where metal ion binding sites are introduced to probe for contacts
in TS, indicates that TS for protein L (1HZ6) contains the entire
(28-residue) β-sheet network (35) (and some nonnative structure)
but little if any of the native (21-residue) α-helical structure.
Simulations and Φ-value analysis, where the effect of Ala sub-
stitutions on TS stability are observed, indicate that TS for

chymotrypsin inhibitor (2CI2) contains the 14 residues of α-helix
but not the 18 residues of β-sheet of the native protein (36). The
kinetic m-value/activation heat capacity analysis presented here
predicts that the amide ASA buried in forming TS is comparable to
the amount of backbone amide surface predicted to be buried in
forming all of the 2° structure of both these proteins (Table S5).
Possibly there is extensive burial of side-chain amide surface in
the TS of these proteins, or possibly the mutation analyses may
underestimate the amount of 2° structure in TS. Additional
experiments and structural analysis (like that performed here) will
be needed to distinguish between these and other explanations.
Structural models of the proposed TS ensemble for six of the

proteins investigated here have been predicted from unfolding
or folding simulations. These included two small all-β cold shock
proteins [Bc-Csp (37), Bs-Csp (38)] and four larger mixed α/β
proteins [chymotrypsin inhibitor (39, 40), HPr (41), acylphospha-
tase (42), and ribosomal protein S6 (43)]. Properties like radius of
gyration or numbers of native and nonnative contacts are reported
for U, TS, and F states, but these characteristics are not directly
related to ΔASAH and ΔASAA. Qualitatively, these simulated TS
ensembles are quite advanced on the folding pathway, in agree-
ment with the experimentally determined results in Fig. 2 and
Table S2. However, simulations in many cases predict a relatively
concerted formation (or disruption) of 2° and 3° structure in folding
(or unfolding) to TS, whereas analysis of the experimental data
indicates that most if not all of the 2° is formed before TS in
folding. ASA calculations on predicted TS and intermediate com-
plexes from simulations will permit more detailed comparisons.

Implications for the Protein-Folding Mechanism. The amide and
hydrocarbon ASA results and structural analysis presented here
provide strong experimental support for a general mechanism of
protein folding in which most if not all of the native elements of
secondary structure form before TS, and begin to coalesce into
more native-like structures in TS, as previously proposed (2, 4,
44–46). A rapidly equilibrating mixture of largely unfolded
chains with various subsets of these elements of 2° structure
comprises the ensemble of early folding intermediates. Nucle-
ating each structural element is unfavorable and propagation in
the observed range of element lengths is not sufficiently favor-
able to make them stable so formation of each is characterized
by an equilibrium constant Ki < 1; the overall equilibrium con-
stant for forming a species with all these elements present (the
putative Iss) is the product of these Ki (KIss = ΠKi). Although Iss
should be very unstable, ASA analysis of Iss and possible TS
species for 434 Cro and Bs-Csp described above indicates that Iss

Fig. 2. Distribution of θASAU→TS values quantifying the fraction of the total
hydrocarbon plus amide ΔASA that is buried in folding to TS for 13 proteins
(Table S2).

Fig. 3. Distribution of Ω-values quantifying preferential burial of amide
surface in folding to TS (ΩU→TS ≤ 1) and preferential burial of hydrocarbon
surface in folding from TS to F (ΩTS→F ≥ 1) (Table S3).
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is significantly less advanced than TS in terms of ASA buried,
and therefore that Iss may not be the least stable on-pathway
folding intermediate before TS (i.e., Ipre). Therefore, organization
of these elements of 2° structure into native-like tertiary structure
begins before the TS.
In the Barrick–Sosnick analysis (2), the folding rate constant

kf = KIprektransit, where KIpre is the equilibrium constant for forming
Ipre from U and ktransit is the rate constant for the rate-determining
step with TS. We conclude that KIss ≥ KIpre and that the transit step
with rate constant ktransit is either (i) organization of the backbone
(and side chains) of one or more of the regions that are not part
of the 2° structure in the most unstable on pathway intermediate,
(ii) coalescence of one or more elements of structure, or (iii) both.
TS models like those in Fig. 4 with sufficient backbone organization
to nucleate formation of the native 3° structure from the isolated
elements of 2° structure agree with the ASA characteristics of TS.

Conclusions
The analysis of kinetic m-values and activation heat capacity
changes for protein folding and unfolding presented here quan-
tifies the changes in amide and hydrocarbon surface area (ASA) in
folding to and from the highest free energy TS; this information
was not obtainable by other methods. We propose that changes in
amide, hydrocarbon, and total ASA are the natural reaction
coordinates of protein folding. From both the kinetic and struc-
tural analyses, we conclude that TS has both the elements of 2°
structure of the native protein and the organization of other
regions of the backbone required to nucleate the formation of 3°
structure in subsequent folding from TS. The instability of TS is
the result of the instability of the individual elements of 2°
structure and of nucleation of 3° structure; subsequent propaga-
tion of 3° structure formation is of course highly favorable.

In addition to its contribution to our understanding of the
protein-folding mechanism, this research provides proof of concept
for the use of solute m-values and heat capacity changes to probe
mechanisms, determine steps with coupled folding or other large
conformational changes, and quantify the amount and composition
of the surface buried or exposed in these intermediates or TS,
information that is difficult or impossible to obtain by other
methods. An example is the mechanism of open complex forma-
tion and stabilization in transcription initiation by Escherichia
coli RNA polymerase (RNAP) at a DNA promoter (47). Here,
information about interactions of solutes and noncoulombic
(Hofmeister) interactions of salt ions with nucleic acid functional
groups is also needed; this has been obtained for urea (11, 12), and
research with other solutes and salts is in progress. The small
effects of urea and Hofmeister salts on the rate and equilibrium
constants for the step involving opening of 13 bp of duplex pro-
moter DNA provide evidence that RNAP opens this region in the
active site cleft (14, 48, 49). The large effects of urea, glycine be-
taine, and different Hofmeister salts on the subsequent step(s) that
stabilize the initial open complex provide evidence for large-scale
coupled folding and assembly of mobile elements of RNAP to form
a clamp on the downstream duplex DNA (14, 48–50). Solutes are
also excellent probes of intermediates and TS for RNA folding,
because burial of base ASA is disfavored by all solutes whereas
burial of backbone ASA is favored by some solutes (12, 13).
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