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Abstract
Despite declines in heart failure morbidity and mortality with current therapies, re-hospitalization
rates remain distressingly high, impacting substantially on individuals, society, and the economy.
As a result, the need for new therapeutic advances and novel medical devices is urgent. Disease-
related left ventricular remodeling is a complex process involving cardiac myocyte growth and
death, vascular rarefaction, fibrosis, inflammation, and electrophysiological remodeling. As these
events are highly inter-related, targeting one single molecule or process may not be sufficient.
Here, we review molecular and cellular mechanisms governing pathological ventricular
remodeling.
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Introduction
It is predicted that as our population ages, the direct medical costs of all cardiovascular
diseases (including hypertension, coronary heart disease, stroke, and heart failure) will
triple, reaching $818 billion in 20301. Prominent within this population of patients are the
five million Americans who suffer from chronic heart failure, the final common pathway of
many forms of heart disease and the most common discharge diagnosis in Medicare for
several years running. This syndrome carries a mortality of approximately 50% at 5 years,
and its incidence and prevalence are expanding rapidly around the globe. Thus, not only is
the problem of heart failure enormous and growing, it contributes importantly to runaway
medical costs just as society is moving swiftly to contain those costs. As a result of these
converging influences, we are at a crucial juncture where novel therapeutic approaches for
heart failure are sorely needed. To accomplish this, comprehensive understanding of
biological processes leading to heart disease and disease-related ventricular remodeling is
required.
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In the setting of disease, the left ventricle (LV) manifests a robust plasticity response which
has been termed pathological remodeling2, 3. This process is the culmination of a complex
series of transcriptional, signaling, structural, electrophysiological, and functional events
occurring within the cardiac myocyte. In addition, other cellular elements within the
ventricle participate, including fibroblasts (promoting fibrosis), vascular smooth muscle
cells (promoting vascular stiffness), vascular endothelial cells (promoting endothelial
dysfunction), and leukocytes (promoting inflammation) (Figure). Current thinking holds that
these events – the heart's response to a variety of pathological insults – confer short-term
benefit. However, left unchecked, these remodeling events are maladaptive and predispose
to cardiovascular morbidity and mortality.

Current therapies, including angiotensin converting enzyme (ACE) inhibitors, angiotensin
receptor blockers (ARBs), aldosterone antagonists, and β-adrenergic receptor blockers (β-
blockers), manifest significant efficacy in reducing morbidity and mortality in patients with
chronic systolic heart failure4. However, in many instances disease progression continues
unabated. Further, less is known about the substantial proportion of disease where systolic
performance of the LV is preserved. Also, whereas novel disease targets are continually
being discovered, most therapeutics do not demonstrate consistent efficacy in patients;
indeed, many prove to be ineffective, even deleterious, before reaching Phase III clinical
trials. Here, we review many of the major molecular and cellular pathways governing LV
remodeling in the two broad types of heart failure, that with reduced (HFrEF) or preserved
(HFpEF) systolic function. In an accompanying article, we review relevant therapies5.

Classification of heart failure
Most current therapies, and clinical trials to evaluate novel therapies, target HFrEF,
previously termed systolic heart failure. However, it is estimated that 50% of heart failure
patients have a preserved left ventricular ejection fraction, or HFpEF6. Initial studies
attributed HFpEF to dysfunction of the myocardium during the filling phase of the cardiac
cycle; diastolic stiffness, prolonged isovolumic LV relaxation, and slow LV filling were
attributed to pathological dysfunction of the ventricular myocyte during diastole7. However,
it is clear that in some instances, the left ventricular myocardium is an innocent bystander,
manifesting dysfunctional filling due to volume overload, insufficiency of perfusion, or
inadequate filling times8. In many instances, it is likely that a combination of perturbed
diastolic relaxation9 and excessive volume due to extrinsic factors8 combine to perturb
ventricular filling.

Vascular stiffening and generalized systemic vascular dysfunction are observed in patients
with HFpEF10, 11. Reduced aortic distensibility and increased end-systolic elastance lead to
exaggerated fluctuations in blood pressure for the same change in afterload and preload6.
Indeed, therapeutic strategies that specifically target ventricular-arterial stiffening improve
exercise tolerance in elderly, hypertensive individuals12. In addition, impaired flow-
mediated vasodilation has been observed, implicating endothelial dysfunction in HFpEF
pathophysiology and suggesting the possibility of benefit with therapies targeting nitric
oxide bioavailability13. Pulmonary hypertension is also associated with HFpEF, and
elevated pulmonary artery pressures predict mortality in HFpEF patients14.

Whether HFrEF and HFpEF are truly distinct disorders, or rather represent a syndrome that
exists across a spectrum, is unknown. Also, within each of the two broad categories of
HFrEF and HFpEF, a wide variety of disease etiologies dictate pathogenesis. In other words,
heart failure, a syndrome defined on clinical terms, derives from numerous different
diseases, such as myocardial infarction, hypertension, cytokine or neuroendocrine
dyscrasias, genetic disorders, and more. One prominent example where “personalized
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medicine” has emerged to parse these elements is hypertrophic cardiomyopathy (HCM),
where distinct genetic variants have been identified and which are informative in predicting
phenotype and outcome15. Classically, familial HCM is caused by mutations in sarcomeric
genes that control cardiac myocyte myofilament movement and calcium handling. At least
one-third of patients presenting with HFpEF have normal extracellular matrix proteins (e.g.
collagen) suggesting that cardiomyocyte stiffness due to sarcomeric aberrations also
contributes to pathogenesis. It is conceivable that genetic testing for familial HCM may aid
in accurately diagnosing HFpEF early on.

Familial dilated cardiomyopathy (DCM) can manifest mendelian patterns of inheritance, and
mutations in at least 50 genes have been identified and linked to familial DCM16. These
include sarcomeric genes, including those coding for proteins localized to the Z disk, nuclear
membrane proteins, and proteins involved with connections to the plasma membrane. As
with HCM, not all patients with DCM manifest the same phenotype. Importantly, some
genetic variants, even within families, can cause either HCM or DCM, which renders
diagnosis and risk prediction difficult based on genetic testing. Recently, however,
mutations in the gene coding for the giant, sarcomeric protein, titin (TTN) have been
identified in 25% of patients with familial idiopathic DCM, whereas only 3 of 231 patients
with HCM harbor these mutations17. Mutations in this gene can also promote cardiomyocyte
stiffness18 which can contribute to HFpEF. Therefore, testing for mutations in TTN may aid
in differentiation of disease etiology and early diagnosis.

As research continues, more genetic mutations and polymorphisms will be identified, such
as race-driven genetic predispositions19 that lead to cardiomyocyte stiffness or fibrosis.
However, predicting disease based on genotype is further complicated by the fact that
modifying genes, epigenetic factors, and environmental influences contribute to the
complexity of the disparate phenotypes.

HFpEF is observed commonly in older women with a history of hypertension. Difficulty
treating HFpEF derives, at least in part, from its segregation with multiple co-morbidities
and a lack of standard definition20. In fact, trials using ACE inhibitors21, ARBs22, and β-
blockers23 have failed to demonstrate efficacy in patients with HFpEF. Aldosterone
antagonists are currently being tested in an NIH-funded trial called TOPCAT (Treatment of
Preserved Cardiac Function Heart Failure with Aldosterone Antagonist) (clinicaltrials.gov,
NCT00094302).

Although current therapies have decreased overall morbidity and mortality in patients with
HFrEF, individual responses are not uniform. For example, some heart failure patients on
ACE inhibitor therapy harbor increased plasma Ang II levels, suggesting that ACE
inhibition is incomplete24. Patients also respond variably to mineralocorticoid receptor
antagonists (MRAs)25, 26. Inhibition of β-adrenergic signaling is standard-of-care for HFrEF
patients27. However, beta-adrenergic receptor polymorphisms can render antagonist
treatment ineffective28. New therapies targeting beta-receptor downstream effectors are
being developed29.

Hypertensive ventricular remodeling
High blood pressure is the single most important risk factor for heart failure; approximately
75% of heart failure cases have antecedent hypertension30. As terminally differentiated
cardiac myocytes are inefficient at reentering the cell cycle, these cells respond to pressure-
overload stress by enlarging. This response, termed hypertrophy, ultimately leads to
ventricular wall thickening and stiffening.
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Based on Laplace's law, ventricular wall stress is proportional to both ventricular pressure
and cavity radius and inversely proportional to wall thickness31. Thus, increases in wall
thickness tend to diminish wall stress, decrease oxygen demand, and hence are adaptive.
When the pressure stress is persistent, however, the myocardium slowly transitions to a state
of decompensation and clinical heart failure. Our understanding of mechanisms underlying
this transition from adaptive hypertrophy to maladaptive failure remains incomplete.

In recent years, a large number of preclinical studies have demonstrated that blunting load-
induced hypertrophic growth of the LV is possible, even in the presence of persistent
afterload stress, without compromising contractile performance32-34. These studies, then,
have uncovered a potentially new target of anti-remodeling therapy, the hypertrophic
phenotype itself. This strategy is based on the notion that while short-term hypertrophic
remodeling may be adaptive, serving to normalize wall stress and oxygen demand,
persistent, long-term activation of this response is detrimental. If true, suppressing
pathological hypertrophy may be key to impeding progression to heart failure32. Suggestive
evidence in humans supports therapeutic targeting of the hypertrophic process35.

Atrophic remodeling
One goal of antihypertensive therapy is to slow, arrest, or possibly even reverse the
progression of cardiomyocyte growth. Indeed, the cardiac myocyte is capable of significant
shrinkage or atrophy36. This shrinkage leads to reductions in LV mass and occurs under
conditions of mechanical unloading (prolonged bedrest, mechanical support with a left
ventricular assist device, weightlessness during space travel) or increased catabolic state
(e.g. cancer)37-39. Atrophy is an energy-consuming process that involves changes in both
anabolic and catabolic processes40.

Whether atrophy is associated with changes in cardiac function may depend on its
magnitude, duration, and inciting factors. In a small number of patients with cachexia,
significant loss of LV mass was not associated with specific cardiac abnormalities as
compared with non-cachectic patients41. However, short-term mechanical unloading in
animals by heterotopic heart transplantation can reverse hypertrophy, whereas long-term
unloading was associated with decreased function and increased fibrosis42. Current
investigations are ongoing to determine whether cardiac atrophy causes diastolic
dysfunction during long-duration space flight37.

Ventricular remodeling in ischemic heart disease
Coronary artery disease is a leading cause of HFrEF43. In fact, most of our knowledge
regarding LV remodeling is derived from patients and animal models of myocardial
infarction. The extent of myocardial damage, as well as its location within the LV, directly
impacts the magnitude of LV remodeling44. Underlying mechanisms derive directly from
the infarction itself, including cell death and loss of contractile activity in the affected zone,
as well as secondary ventricular dilation and remodeling in infarct-remote zones due to
enhanced hemodynamic burden43. Over time, a process termed “infarct expansion” occurs,
wherein unremitting mechanical forces stretch the abnormally stressed tissue. The end-result
is a dilated LV with abnormal levels of wall stress and distorted and ineffective contractile
performance.

Reperfusion of the occluded, infarct-related artery is key to minimizing infarct size and
maintaining ventricular performance45. Significant advances in our understanding of the
biology of ischemic heart disease, including the critical importance of restoration
(percutaneous angioplasty) and maintenance (drug-eluting stents, anti-thrombotic agents) of
arterial perfusion to the at-risk zone have culminated in robust improvements in clinical
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outcomes45. Although these advances have provided significant declines in mortality, the
LV will inexorably, over subsequent months and years, remodel in response to abnormally
elevated load and demand, leading to ventricular dilation and ultimately dysfunction43.

Remodeling of the LV following myocardial infarction has been divided into stages44.
Following interruption of arterial perfusion from occlusion of a coronary vessel, death of
cardiac myocytes immediately ensues. These cells die via necrosis, apoptosis, or possibly
autophagy. Although cardiac stem cells have been identified in the adult heart, and cardiac
myocytes themselves are capable of re-entering the cell cycle under only limited
circumstances46-48, myocyte proliferation does not contribute significantly to the response to
infarct-related wave of cell death. In the next stage of infarct healing, dying cardiac
myocytes release intracellular proteins into the circulation and trigger an inflammatory
response. Inflammatory cells, including neutrophils, monocytes, macrophages, and
lymphocytes, infiltrate the tissue. These immune cells remove dead myocytes and pave the
way for healing. After the resolution of the inflammatory response, cardiac fibroblasts
proliferate and secrete extracellular matrix proteins, such as collagen I, to form a fibrotic
scar that replaces dead myocytes. The resulting tightly cross-linked, fibrotic scar with
significant tensile strength serves to prevent rupture. This remodeling of the LV continues
progressively in response to increases in wall stress, provoking cardiac myocyte hypertrophy
in the infarct border zone, wall thinning, and chamber dilation. This global adverse
remodeling response leads to increases in both LV end-diastolic and end-systolic volumes
and reduced ejection fraction43.

Contributing cellular events
Cardiac Myocyte Death

Biology—Cardiac myocytes carry out the contractile function of the myocardium, and they
are largely incapable of replication; hence, their survival is crucial. Following myocardial
injury, cardiac myocytes undergoing necrosis lyse, releasing intracellular contents, some of
which can be detected in the blood and used as markers of injury (e.g. creatine kinase,
cardiac troponins). Apoptosis, an energy-dependent, programmed cell death response, does
not entail release of intracellular contents and does not trigger an inflammatory response; it
is reversible up to a “point of no return”. An emerging literature suggests that necrosis may
itself be a programmed cellular process, rather than uncontrolled disintegration of the cell49.
Further, recent evidence suggests that necrosis and apoptosis are integrally linked and may
be different faces of a single process (“necroptosis”)49.

Often, dying cells manifest evidence of up-regulated autophagy, an evolutionarily ancient
process of ordered recycling of intracellular contents50, 51. Considerable debate has centered
around whether this autophagic cascade reflects the cellular response to stress, serving to
promote cell survival, or represents a process which, itself, contributes to cell death52.
Consensus has emerged recently, however, that at least in some instances, autophagic cell
death (programmed cell death type II) exists53, including in heart muscle54. That said,
divergent views exist52. Irrespective of whether autophagy can trigger cardiomyocyte death,
considerable evidence supports a model where cardiomyocyte autophagy can be adaptive or
maladaptive, depending on the context55-59.

As a Therapeutic Target—Although all three types of cell death/intracellular remodeling
occur within the heart, it is not entirely clear whether these are truly distinct and discrete
events or represent a continuum of overlapping biochemical and molecular processes.
Nevertheless, selective inhibitors targeting apoptosis (caspase inhibitors), necrosis
(inhibitors of mitochondrial permeability transition pore [MPTP] opening), and necroptosis
(necrostatin 1) have been employed in the heart60. Suppression of apoptosis decreases
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adverse remodeling and subsequent progression to heart failure in models of ischemia/
reperfusion61, MI-induced heart failure62, and nonischemic cardiomyopathy63. However,
optimal timing of therapy, targets for inhibition within apoptotic signaling cascades, precise
mechanisms of inhibition, and even the cell types involved, remain unresolved. Of note,
several pharmacological therapies in current clinical use may suppress cell death. For
example, Ang II and norepinephrine can each trigger cardiomyocyte apoptosis, and their
respective blockers antagonize these responses64, 65.

Cardiac Myocyte Hypertrophic Growth
Biology

A central tenet in cardiac biology is the notion that most adult cardiac myocytes are
terminally differentiated cells and therefore do not proliferate; rather, they respond to stress
by growing, shrinking, or dying. Recent work has revealed that a fraction of cells within the
ventricle are, in fact, capable of re-entering the cell cycle and proliferating46-48, 66, 67,
although the size of this fraction is the subject of intense debate. Nevertheless, the
preponderance of evidence indicates that the majority of cardiomyocytes are incapable of
dividing and respond to stress by eliciting a hypertrophic growth response. As part of this, a
wide range of transcriptional and post-translational events occurs, including activation of a
pattern of gene expression reminiscent of that observed during fetal development (“fetal
gene program”).

Besides mechanical loading, cardiac myocytes respond to a variety of other growth cues,
including cytokines, growth factors, catecholamines, vasoactive peptides, and hormones.
Some evidence suggests that cell size is regulated by shared signaling pathways, whereas
cell shape and sarcomeric organization are regulated by distinct pathways68. If borne out by
additional studies, this observation might facilitate precise definitions of cellular phenotype-
specific regulatory mechanisms.

As a Therapeutic Target
Although no therapeutic agents target hypertrophic growth directly, some strategies in
current use alter the hypertrophic response secondarily, including suppression of
neurohormones (catecholamines, Ang II, aldosterone), calcium (e.g. L-type Ca2+ channel
blockers), or preload (e.g. vasodilators or diuretics). However, efficacy of these strategies
varies and is dependent on the pathway that is modulated. Further, as there is redundancy
among these pathways, downstream points of convergence may be more suitable to inhibit
or reverse cardiac hypertrophy. Potential targets include oxidative stress, serine/threonine
phosphatases, non-gated Ca2+ influx/Ca2+ signaling, downstream effectors of rapamycin or
G-protein-coupled receptors, protein kinases, and chromatin remodeling agents (e.g. histone
deacetylases)69.

Overlapping mechanisms exist in pathological (pressure overload) and physiological
(exercise) hypertrophic growth, such as increased expression of genes responsible for
cardiac myocyte structure, ion transport, and proteolysis70. However, genes associated with
metabolic processes and muscle contraction may be up-regulated to a greater extent in
response to exercise70. Furthermore, capillary growth does not keep pace with myocyte
growth in disease models, which, in concert with fibrotic change, limits oxygen delivery to
the myocardium71, 72.
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Cardiac Myocyte Hyperplasia
Biology

Whereas growth of the adult heart has been classically held not to involve a significant
hyperplastic response, recent evidence has demonstrated existence of progenitor cells
resident within the myocardium, as well as cardiomyocytes capable of re-entering the cell
cycle, findings which contradict the traditional idea that the heart is a strictly post-mitotic
organ46-48, 66, 67. These dividing cells may participate in cardiac homeostasis at basal levels
and potentially replace dying cardiac myocytes, albeit, at low levels. Cardiac progenitors
include cells characterized by expression of cell surface markers including c-Kit73, Sca-174,
or Islet-175, and cardiac “side population” (SP) cells76. Self-adherent clusters of cells termed
“cardiospheres” have been developed from human biopsy specimens77, 78. The neonatal
heart harbours cardiomyocytes capable of re-entering the cell cycle, promoting wound
repair47, 79.

Cardiac progenitors have been localized to the epicardial surface of the heart, where they
contribute to coronary vasculature formation during embryogenesis80. These epicardial cells
are pluripotent and migrate into the myocardium, undergoing epithelial-to-mesenchymal
transition to give rise to multiple cell types81, 82. Nevertheless, cardiac stem cells, regardless
of their true identity, are unable to mount a proliferative response sufficient to replace dying
myocardium in the setting of injury. One goal is to develop pharmacological strategies that
enhance regenerative potential of resident progenitor cells sufficient to contribute to reversal
of tissue loss83.

Fibrosis
Biology

A hallmark feature of ventricular remodeling is deposition of excessive extracellular matrix
(ECM). This surplus ECM, which constitutes “scar” or fibrosis, promotes both contractile
dysfunction and rhythm disturbances84. As a result, cardiac fibrosis contributes to morbidity
and mortality in many forms of heart disease. Indeed, the amount of fibrotic scar in the
myocardium correlates strongly with increased incidence of arrhythmias and sudden cardiac
death85-87.

ECM deposition and fibrosis formation occur through the action of cardiac fibroblasts. In
the setting of pathological stress, fibroblasts proliferate and differentiate into myofibroblasts,
thereby gaining the capacity to contract and secrete collagen I, collagen III, and
fibronectin84. Proliferation and activation of these cells, the most abundant cell type in the
myocardium, derives from a variety of sources, including resident fibroblasts, adult
epicardial cells undergoing endothelial to mesenchymal transition81, 88, and circulating,
collagen-secreting bone marrow-derived cells89.

Scar formation following myocardial infarction arises from replacement fibrosis, where
regions of myocyte “drop out” are replaced by scar. In contrast, fibrosis arising during
hypertension-induced pressure overload and in remote regions following myocardial
infarction is reactive (perivascular or interstitial), leading to decreased compliance and
diminished oxygen diffusion capacity. Both individual myofibroblasts and collagenous septa
within the left ventricle facilitate and propagate the arrhythmic phenotype of the remodeled
heart90, 91.

As a Therapeutic Target
Cardiac fibrosis is an independent and predictive risk factor for heart failure in both
ischemic and non-ischemic cardiomyopathy92-94. Recent work has demonstrated that cardiac
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fibrosis, long held to be irreversible, may regress under certain circumstances81, 95. Some
evidence suggests that modulation of cardiac fibrosis alters the arrhythmic phenotype in
patients with heart disease96, 97. To date, no therapeutic strategy has been developed to
specifically target fibrosis in the heart. Cardiac fibroblasts are unique and phenotypically
distinct from fibroblasts isolated from other tissues (as reviewed elsewhere98); they also
display phenotypic heterogeneity within the heart itself. In addition, the precise phenotypes
of fibroblasts from normal, injured, and failing hearts are ill defined, and mechanisms
underlying the transition from normal wound healing to maladaptive fibrotic remodeling
remain unresolved. Interestingly, the abundance of newly formed, thin collagen fibers
increases in the remote region of infarcted heart, but decreases with time in the infarct zone,
suggesting collagen maturation in the infarct zone99. Furthermore, neurohormonal inhibition
leads to an increase in scar maturation while diminishing remote, reactive fibrosis100. As
infarct-associated scar is necessary to prevent ventricular rupture, it may be advantageous to
target new collagen fiber formation to allow for scar maturation.

Irrespective of these challenges, there is reason to believe that therapies focusing on cardiac
fibrosis may prove salutary in the treatment of ventricular remodeling. Some therapies in
current use may target, at least in part, cardiac fibroblasts. Specifically, Ang II provokes
cardiac fibroblast proliferation and net accumulation of collagen in vitro and cardiac fibrosis
in vivo101, 102. Interestingly, expression of Ang II receptors in cardiac fibroblasts exceeds
that in cardiac myocytes103, and ARBs appear to have antifibrotic actions104. In patients
with hypertensive heart disease, losartan reduced cardiac fibrosis and serum collagen
markers105. In addition, treatment with HMG Co-A reductase inhibitors (“statins”) resulted
in reduced fibrosis and reduced collagen synthesis106, 107. Small molecule inhibitors of
histone deacetylases (HDACs) attenuate fibrosis in a preclinical model of pressure
overload108 via mechanisms involving transcriptional silencing of the gene coding for
connective tissue growth factor (unpublished observations).

Inflammation
The immune system plays a significant role in ventricular remodeling, and its persistent
activation may lead to long-term cardiac injury. Specifically, activation of a variety of
inflammatory molecules and pathways, the complement system, T cells, and the formation
of autoantibodies have been reported in heart failure patients109-111. Consequently, a number
of strategies have been proposed to mitigate the harm caused by these inflammatory events;
most have failed112, 113. In the 1970's, it became apparent that immunosuppression with
glucocorticoids or nonsteroidal anti-inflammatory agents conferred risk in patients with
ischemic heart disease114, 115. More recently, however, early results of studies seeking to
decrease autoantibody titers are promising116. High doses of intravenous immunoglobulin
therapy to neutralize autoantibodies and the complement system improve heart failure
symptoms, but long-term use is required117, 118. The few trials using immunoadsorption
therapy in patients with dilated cardiomyopathy, where autoantibodies are thought to play a
role in pathogenesis, were promising119, 120. Therapeutic plasma exchange, where large
amounts of plasma are removed from the circulation and replaced with 5% albumin,
potassium chloride, calcium gluconate, and then terminally supplemented with
immunoglobulins to replace the removed proteins, is being tested121.

Vascular Remodeling
Biology

A wide range of cardiovascular diseases are marked by vascular remodeling. For example,
both hypertension and immunosuppressive treatment are associated with vessel wall
thickening122, 123. In preclinical models of myocardial infarction, hypertrophy in the border

Xie et al. Page 8

Circulation. Author manuscript; available in PMC 2014 July 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



zone of the infarct is associated with diminished coronary flow reserve, increases in the
media/lumen ratio, and increases in medial thickness124.

Development of significant coronary collateral circulation is a major mechanism of vascular
remodeling. A recent meta-analysis reported diminished mortality risk in patients with high
collateralization compared to those with low collateralization125. Another study reported
that while collaterals may be protective during early stages of infarct healing, after infarction
is complete their presence is not an independent predictor of clinical outcome126. Some
evidence suggests that promoting angiogenesis in the setting of pressure overload can
protect the heart from injury127.

As a Therapeutic Target
A large number of clinical trials of therapeutic neovascularisation employing gene or protein
therapies have failed. This failure may stem, at least in part, from single, high dose
administration of therapy128. For example, short-term exposure to VEGF (vascular
endothelial growth factor) leads to leaky vessels that regress, whereas prolonged exposure
promotes formation of more stable vessels129. To address this, novel polymers that degrade
slowly and sustain release of growth factors have been employed130. However, it is unlikely
that a single growth factor will be sufficient to promote neovascularization and limit adverse
remodeling. Therefore, development of proangiogenic therapies will likely require
combination therapy comprising multiple growth factors, such as FGF-2, HGF, MCP-1,
GM-CSF, PDGF-BB, TGF-β131. In addition, careful selection of end points in trial design
and appropriate methods for evaluating those end points may increase the likelihood of
success of future proangiogenic therapies. Mode of delivery as well as timing of delivery
may also be important.

As some of these growth factors tend to promote salvage of ischemic myocardium, early
treatment may prove beneficial. Conversely, a study employing a mouse model of cardiac-
specific induction and inactivation of a VEGF-sequestering soluble receptor reported that
VEGF activity even at late stages of heart remodelling was sufficient to rescue function132.
This study also suggested that a point-of-no-return may still exist, as augmenting
neovascularization at late time points did not reverse fibrosis or myocyte hypertrophy.

Metabolic remodelling
Biology

Patients with diabetes and obesity are at increased risk of developing coronary artery
disease, hypertension, and heart failure133. Under normal physiological conditions, the
metabolic demands of the heart are met by metabolism of fatty acids and glucose, and to a
lesser extent lactate and ketone bodies134. With the onset of insulin resistance and obesity-
driven type II diabetes, uptake of metabolic substrates into cardiomyocytes becomes
dysfunctional; fatty acid utilization is increased at the expense of glucose, which contributes
to myopathy characterized by ventricular dilation, cardiomyocyte hypertrophy and death,
interstitial fibrosis, and perturbations of diastolic relaxation. In animal models of obesity,
triglycerides accumulate in the heart coupled with impaired mitochondrial function to
oxidize the increased lipid load135. Several molecular and cellular mechanisms have been
implicated in diabetic cardiomyopathy, including disordered activation of forkhead
transcription factors, mTOR (mammalian target of rapamycin), microRNAs, mitochondrial
dysfunction, the unfolded protein response, proteasome activation, and autophagy136, 137.

The term “obesity paradox” has been coined to describe the association between obesity and
improvements in heart failure outcomes138; among patients with similar heart failure
severity, obese patients manifest improved survival compared with normal-weight
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patients139, and higher BMIs are associated with lower mortality risk140. Whether this
association relates to mechanism is unknown, but conceivably may be attributed to
depression of the neurohumoral system or an increase in nutritional or metabolic reserve.
For example, the adipokine, leptin, which regulates appetite and energy balance has direct
cardioprotective effects against ischemia/reperfusion injury141.

The obesity paradox was tested in animal model, where insulin-insensitive rats were fed a
high-fat diet and compared to insulin-insensitive lean rats, allowing for measurement of an
effect of obesity in isolation. Obese rats manifested relative ischemia/reperfusion tolerance
associated with activation of RISK (reperfusion injury salvage kinase) and nitric oxide
synthase signalling pathways142.

The myocardium itself can have direct effects on metabolism within other organs. For
example, natriuretic peptides such as ANF (atrial natriuretic factor) and BNP (B-type
natriuretic peptide) are secreted from cardiomyocytes in response to stress143. These
peptides, circulating levels of which are elevated in heart failure, have lipolytic effects on
adipose tissue, which is specific to primates144. Recently, it was reported that
cardiomyocyte-specific expression of MED13, a transcriptional regulator, or pharmacologic
inhibition of miR-208a, antagonizes high-fat diet-induced obesity and improves insulin
sensitivity and glucose tolerance145.

As a Therapeutic Target
Therapy that specifically targets cardiomyopathy due to obesity and diabetes does not
currently exist. However, some strategies targeting weight loss manifest benefit to the heart.
Weight loss from lifestyle changes or bariatric surgery is associated with decreases in LV
dimensions, wall thickness, mass, and left atrial dimensions146. Removal of subcutaneous
fat by liposuction does not elicit beneficial metabolic changes147. Also, whereas orlistat (a
gastrointestinal lipase inhibitor) and sibutramine (a monoamine reuptake inhibitor) both to
lead to weight loss and glycemic homeostasis, they have no significant effects on cardiac
structure or dimensions148.

Recently, a proteasome inhibitor, MG-132, was shown to manifest anti-oxidative and anti-
inflammatory functions in an animal model of diabetic cardiomyopathy149. In addition,
inhibition of phosphodiesterase-5 with tadalafil attenuated inflammation, improved fasting
glucose and triglyceride levels, decreased body weight and reduced infarct size in an
ischemia/reperfusion injury model in obese, diabetic mice150. Synthetic mimetics of
natriuretic peptides have been approved for treatment of acute heart failure, although the
largest study so far of nesiritide, a recombinant form of human B-type natriuretic peptide,
failed to detect improvements in mortality or rehospitalization151.

Electrophysiological remodeling
Patients with left ventricular hypertrophy are at significantly increased risk of malignant
arrhythmias, accounting for a substantial component of the mortality associated with cardiac
hypertrophy. Indeed, arrhythmia, especially ventricular tachyarrhythmia, is a major cause of
death in patients with left ventricular heart failure. Sustained ventricular tachycardia and/or
ventricular fibrillation can occur immediately post-MI, during the remodelling process, or
late following injury.

In recent years, “electrical remodeling”, a term which encompasses alterations in multiple
electrogenic transport processes within the cardiac myocyte, has emerged as an important
pathophysiological mechanism in many types of cardiac pathology152, 153. Yet, our
understanding of mechanisms underlying the myriad facets of electrical remodeling is
limited. As a result, means of treating hypertrophy-associated arrhythmias remain
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disappointingly ineffective. Also, there is substantial evidence that alterations in
transmembrane Ca2+ fluxes – a central feature of electrical remodeling – contribute to the
pathogenesis of hypertrophy and failure by abnormally activating Ca2+-responsive signaling
pathways.

Mechanisms underlying ventricular arrhythmia are multifactorial, but they derive, at least in
part, from disordered electrical currents arising from prolongation of ventricular action
potentials153. The resulting delay in the recovery of excitability, a consistent feature of
ventricular hypertrophy, predisposes to early and late after-depolarizations. Superimposition
of myocardial fibrosis, with altered electrotonic coupling between cells, slowed conduction,
and dispersion of refractoriness, exacerbates the pro-arrhythmic phenotype.

Lengthening of ventricular cardiomyocyte action potential duration is commonly observed
in both cardiac hypertrophy and failure, a phenotype which contrasts with the action
potential shortening in the stressed (fibrillating) atrium. In the setting of excessive afterload,
action potential duration increases more in subepicardial myocytes than in subendocardial
myocytes154. In a canine model of pacing-induced heart failure, action potential duration
increased significantly more in mid-myocardial cells than in subepicardial cells155.

Action potential prolongation is caused by a wide range of changes in myocyte ion channels
and electrogenic ion transporters (reviewed elsewhere153). Briefly, loss of voltage-gated Na+

channel inactivation leading to a late inward sodium current is increased in failing
cardiomyocytes156. In addition, down-regulation of outward K+ currents157, up-regulation of
inward Ca2+ currents, and changes in Ca2+ current inactivation all contribute158, 159. Indeed,
in many models of heart failure, diminished outward, repolarizing current secondary to
down-regulated K+ channel levels (particularly Ito) is observed152, 160.

In contrast with heart failure, up-regulated inward Ca2+ current contributes to action
potential prolongation in ventricular hypertrophy, particularly in models of modest
hypertrophy. In fact, the density of L-type Ca2+ current (ICa,L) may be inversely correlated
with disease progression, being increased in mild-to-moderate hypertrophy and decreased in
severe hypertrophy and failure. Importantly, entry of small amounts of Ca2+ from the
extracellular space triggers release of much larger amounts of Ca2+ from intracellular stores,
amplifying even modest changes in inward Ca2+ flux. Also, in many species, membrane
impedance is relatively high during phase 2 of the action potential, so changes in ICa,L have
significant effects on action potential morphology and duration.

The Na+-Ca2+ exchanger (NCX), which catalyzes the bidirectional exchange of three Na+

ions for a single Ca2+ ion, is a major mechanism of Ca2+ elimination during diastole. As one
net positive charge moves per reaction cycle, NCX generates a transmembrane current that
approaches one-half the magnitude of ICa,L. Alterations in NCX activation in heart disease
can contribute to late after-depolarizations and triggered ventricular activity.

Normal electrical conduction depends on cell-cell connections through gap junctions, such
as connexin 43, and these connections can be disorganized in the failing heart disrupting
normal impulse conduction161. Further, in the failing heart, phosphorylation of the
ryanodine receptor by Ca2+/calmodulin-dependent protein kinase II (CaMKII) results in
calcium leakage from sarcoplasmic reticulum (SR)162 with concurrent down-regulated
expression of the sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and reduced
Ca2+ uptake into the SR163. The resulting depletion of SR Ca2+ stores coupled with
elevations in cytoplasmic Ca2+ potentiates development of ventricular arrhythmia152.
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Aging
Processes involved in maladaptive ventricular remodeling are age dependent, and most
patients with heart disease are older. Indeed, one caveat to translating pre-clinical results
into the human context is that most animal studies are performed using young animals.
Mortality due to myocardial infarction increases with age, a fact not explained by larger
infarcts164. Aging in mice is associated with an attenuated inflammatory response and
decreased macrophage-mediated phagocytosis of dead cells165. In addition, aged mice have
decreased numbers of myofibroblasts and perturbed extracellular matrix deposition resulting
in malformed scar165. Cell death is also affected by age-related accumulation of
mitochondrial damage and DNA mutations166. Cumulative organelle damage with age may
also increase the need for clearance by autophagy, a process that declines with age51.
Cardiomyocyte hypertrophy is more pronounced in aged heart, contributing to cardiac
dysfunction167, and the intrinsic capacity of the heart to regenerate diminishes with
aging46, 168.

Environmental Exposures
Cumulative environmental exposures alter disease risk, therapeutic responsiveness,
biomarker expression, and cellular phenotypes in the heart. This can begin as early as during
fetal development. Epidemiological data suggest that an adverse intrauterine environment
increases the risk of cardiovascular disease in adulthood169. For example, prenatal hypoxia
leads to altered expression of proteins such as protein kinase C epsilon, heat shock protein
70, and endothelial nitric oxide synthase169. However, these environmental exposures are
not always mimicked reliably in preclinical studies using laboratory animals. Even when
non-genetically modified laboratory rodents are fed a high fat diet to induce obesity and
cardiac dysfunction, they do not develop atherosclerotic plaques as seen in humans. In
chimpanzees, heart disease is primarily mediated by aberrant myocardial fibrosis and not
vascular atherosclerotic plaque despite high levels of cholesterol and LDL170.

Recently, sialic acid N-glycolylneuraminic acid (Neu5Gc), a molecule not synthesized in
humans but found in red meat and milk products, was identified in the endothelium of
human atherosclerotic plaque171. This sugar, foreign to humans but not other mammals,
promotes generation of antibodies and inflammation and is associated with carcinoma
progression in humans172. In a recent epidemiological study of major dietary sources, high
red meat intake was associated with coronary heart disease173. These data raise the
possibility that this sugar could be used as a biomarker for patient stratification and
therapeutic effectiveness, as well as being a therapeutic target itself (e.g. generation of
neutralizing antibodies). Recent evidence implicates intestinal microbiota in the link
between red meat consumption and cardiovascular risk174, as bacterial metabolism of red
meat-derived l-carnitine can promote atherogenesis175.

Sex Differences
Coronary artery disease, the leading cause of HFrEF, occurs more commonly in men than
women6, 176. By contrast, HFpEF affects women more commonly than men by a proportion
of 2:1. Underlying mechanisms remain unclear, although sex differences have been
described in cardiac structure, left ventricular diastolic function, ventricular-arterial
stiffness, and aging177. Males, both human and animal models, tend to develop eccentric LV
remodeling in response to stress, whereas females develop concentric remodeling177. In
addition, women display enhanced regression of LV hypertrophy after aortic valve
replacement compared to men, suggesting enhanced susceptibility to afterload stress in
women178. Cardiac structural differences have also been demonstrated in regards to
concentric LV remodeling and systolic hypertension which are enhanced in aging
women179, 180. This may be exacerbated by the co-morbidities of aging, such as obesity,
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diabetes, and physical inactivity which may occur more frequently in women than
men181, 182.

One possible mechanism underlying sexual dimorphism in heart disease involves mutations
in mitochondrial DNA. Mitochondrial DNA encodes proteins associated with oxidative
phosphorylation and is inherited from the mother's egg. Therefore, mutations in
mitochondrial DNA would be passed on only by women, which can lead to family cohorts
in which the offspring of female members are at risk for disease, whereas the offspring of
male members are not. Some mitochondrial DNA mutations or seemingly neutral
mitochondrial DNA polymorphisms may not be pathogenic in offspring immediately, but
rather lead to inability to adapt to aging or environmental exposures, triggering emergence
of pathology later in life. In fact, mitochondria harboring mutant DNA may selectively
proliferate in response to a defect in the respiratory electron transport chain, rendering these
mutant mitochondria more prevalent in post-mitotic cells such as cardiac myocytes. Sex-
specific hormones also affect mitochondria. Ubiquinol-cytochrome-c reductase, a
component of complex III within the respiratory electron transport chain, is reduced in the
absence of ovarian hormones183.

Unlike the Y chromosome, the X chromosome is enriched in genes essential for
development and viability. X-chromosome silencing occurs to inactivate one of the two X
chromosomes in female cells. Originally, it was thought that silencing is maintained
throughout the individual's lifespan; however, it has been shown more recently that loss of
X-chromosome silencing can occur with aging184. Furthermore, approximately 15% of X-
linked genes escape inactivation in a manner which differs across regions of the X
chromosome185. Genomic imprinting of complex traits can also depend on sex186.

Conclusion
Heart failure is exploding in incidence and prevalence around the world. Defined by clinical
criteria, this syndrome derives from a wide range of underlying disease etiologies and is
marked by a diverse spectrum of structural, functional, electrophysiological, cellular, and
molecular events. At one level, it comes as little surprise that only a small number of
therapeutic strategies have emerged with efficacy, given these complexities. The effects of
genetic, neurohumoral, environmental, and age-related influences -- and more -- combine to
dictate pathogenesis and clinical outcome. Ultimately, these complexities must be elucidated
in the context of the individual patient to optimize therapeutic success. That the myocardium
comprises a host of cell types, each manifesting unique transcriptional, signaling,
remodeling, proliferative, and death responses, underscores the seemingly insurmountable
complexity of the challenge we face. However, unequivocal successes achieved already, and
the expanding scope of the problem, will continue to drive progress in this fascinating field.
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Figure.
Mechanisms of pathological ventricular remodeling. In response to pathophysiological
stimuli, such as ischemia/reperfusion or excessive mechanical load, multiple molecular and
cellular processes contribute to ventricular remodeling. These include cardiomyocyte loss
through cell death pathways, such as necrosis, apoptosis, or possibly excessive autophagy.
Cardiomyocytes become hypertrophic in response to both mechanical and neurohumoral
triggers. Accumulation of excess extracellular matrix leads to fibrosis. Metabolic
derangements, insulin resistance, and lipotoxicity can occur. Finally, structural changes and
alterations in ion transporting processes culminate in a pro-arrhythmic phenotype.
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