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Abstract
How a seizure terminates is still under-studied and, despite its clinical importance, remains an
obscure phase of seizure evolution. Recent studies of seizure-related scalp EEGs at frequencies
>100 Hz suggest that neural activity, in the form of oscillations and/or neuronal network
interactions, may play an important role in preictal/ictal seizure evolution [2, 31]. However, the
role of high-frequency activity in seizure termination, is unknown, if it exists at all. Using
information theoretic measures of network coordination, this study investigated ictal and
immediate postictal neurodynamic interactions encoded in scalp EEGs from a relatively small
sample of 8 patients with focal epilepsy and multiple seizures originating in temporal and/or
frontal brain regions, at frequencies ≤100 Hz and >100 Hz, respectively. Despite some
heterogeneity in the dynamics of these interactions, consistent patterns were also estimated.
Specifically, in several seizures, linear or non-linear increase in high-frequency neuronal
coordination during ictal intervals, coincided with a corresponding decrease in coordination at
frequencies <100 Hz, suggesting a potential interference role of high-frequency activity, to disrupt
abnormal ictal synchrony at lower frequencies. These changes in network synchrony started at
least 20–30 sec prior to seizure offset, depending on the seizure duration. Opposite patterns were
estimated at frequencies ≤100 Hz in several seizures. These results raise the possibility that high-
frequency interference may occur in the form of progressive network coordination during the ictal
interval, which continues during the postictal interval. This may be one of several possible
mechanisms that facilitate seizure termination. In fact, inhibition of pairwise interactions between
EEGs by other signals in their spatial neighborhood, quantified by negative interaction
information, was estimated at frequencies ≤100 Hz, at least in some seizures.
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1. Introduction
Significant research efforts in the epilepsy community have aimed to improve our
understanding of how epileptic seizures start and spread in the brain, from the cellular level
to the macroscale network level. In the last several decades, many studies have focused on
quantifying the electrophysiological and neurodynamic correlates of seizure initiation, with
the ultimate goal to develop approaches for seizure prevention [21]. Also, a large number of
studies have investigated seizure propagation, particularly its representation by source
models such as the dipole, with the ultimate goal to develop spatially targeted intervention
approaches for seizure arrest [24]. Despite its clinical importance, seizure termination has
received significantly less attention than initiation and propagation, and remains an obscure
phase of seizure evolution. Yet, its study may have a significant impact on the development
of efficient interventional approaches, i.e., it may be critical to the design of treatments that
induce or reproduce termination mechanisms that are triggered in self-limited seizures.
Understanding seizure termination may also provide important insights into the brain’s auto-
regulatory processes that allow it to return to a neurodynamic equilibrium, as well as into the
postictal epoch. This latter phase is still poorly understood and is often associated with
clinical symptoms, such as confusion and amnesia [27, 11]. Ictal events vary from a few
seconds to several minutes, but the heterogeneity of seizure duration and distinct self-
limiting mechanisms that cause seizures to stop remain elusive. There are relatively few
studies that focus on seizure termination [19, 37, 25]. These have shown that once all
activated neuronal pools have been synchronized during the ictal phase, neuronal firing
progressively decreases and ultimately stops, for reasons not clearly understood. Recent
computational studies have shown that seizure termination and decreased neural activity in
the postical interval may be mediated by changes in intra-and extra-cellular ion dynamics
and synaptic excitability [18, 9]. In addition to local processes, long-range network
interactions may be involved in ictus termination. For example, there is experimental
evidence that maximum intra-hemispheric synchrony prior to seizure offset may trigger
inhibitory processes [36]. Finally, a few more recent studies have proposed algorithms for
automatic detection of seizure termination [28, 38]. In order to design efficient treatments
that aim to prevent or arrest seizures, we need a better understanding of the neurodynamic
correlates of self-limited seizure termination, not only at the micro/mesoscales, i.e., that of
individual neurons and neuronal ensembles measured by local field potentials, but also at the
macroscale. This is the scale targeted by promising approaches for seizure control, such as
non-invasive stimulation, and is thus of significant interest.

The dynamics of seizure evolution are clearly complex, and involve potentially multiple
coupled electrophysiological and neurodynamic processes. Several studies have identified
seizure-related high-frequency (>100 Hz) oscillations (HFO) and related network
interactions in intracranial EEG. HFOs have been specifically associated with seizure
evolution and the epileptogenic region, and may potentially represent spatio-temporal
electrophysiological markers of this process [14, 39, 15, 26, 43]. In contrast, no measurable
HFOs in the immediate postictal period have been detected [43]. Recent studies have also
reported seizure-related and spasm-related high-frequency waveforms and aberrant network
synchrony in scalp EEG [2, 44, 12, 15, 13, 31]. However, for this activity to be measurable
at the scalp, it probably originates from areas of the brain beyond the epileptogenic region,
and may represent a more spatially distributed phenomenon. Increased distributed stochastic
activity or neural ‘noise’ prior to seizure onset may make these HFOs easier to detect in
scalp or intracranial EEG, by increasing signal-to-noise ratio through the mechanism of
stochastic resonance [6]. To date the neural generators of scalp-measurable high-frequency
activity in the epileptic brain remain unclear. Furthermore, the occurrence and potential role
of such activity during the brain’s transition from ictal to postictal periods, and thus in
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seizure termination, are unknown. We hypothesized that transient high-frequency activity
acts as a form of destructive interference in aberrantly coordinated brain networks during the
ictal interval, and facilitates the disruption of abnormal neural synchrony. In turn, this allows
seizures to stop and the brain to return to a neurodynamic equilibrium in the postictal
interval. Using the information theoretic measures previously reported in [31], we examined
high-frequency network coordination estimated from scalp EEGs recorded during ictal and
immediate postictal intervals in 8 patients with focal epilepsy who had multiple focal
seizures. There are several studies on preictal and ictal network synchrony, including some
that specifically focus on neurodynamic network changes at ictal onset, estimated from
intracerebral recordings, using various measures of correlation, e.g., [3, 4, 41, 23, 17].
However, at frequencies >100 Hz scalp EEG signals may be particularly noisy, and pairwise
interactions between these signals may be non-linear. Therefore, information theoretic
measures, which are probabilistic, may be more appropriate for quantifying these
interactions than other correlation and coherence measures.

2. Methods
2.1. Electrophysiological Data

All scalp EEGs analyzed in this study were recorded in the Clinical Neurophysiology
Laboratory of the Comprehensive Epilepsy Center at Beth Israel Deaconess Medical Center
(BIDMC), Boston MA. This research was approved by the BIDMC institutional review
board, and was thus performed in accordance with ethical standards laid down in the 1964
Declaration of Helsinki. All data were recorded using a standard international 10–20 clinical
EEG system. They were sampled at 500 samples/sec and montaged using a referential
montage with channel Cz as the reference. The signal quality in this channel was examined
prior to re-montaging the raw data, to ensure that it did not spuriously contaminate other
signals from other with noise. The maximum acceptable electrode impedance was 5 kΩ.

2.1.1. Subject selection—Eight adult subjects (1 male, 7 female), in the age range 33–91
years (μ=47, σ=18.8), were chosen from adult patients with available scalp EEG data, who
met the following inclusion criteria: 1) at least 18 years of age, 2) diagnosis of focal,
medically refractory epilepsy, 3) no prior resective brain surgery, 4) availability of at least
one complete seizure recorded on scalp EEG with good technical quality for analysis and
identifiable ictal onset and offset based on visual inspection by the reviewing
electroencephalographer (BSC), 5) availability of corresponding immediate postictal
intervals at least 30 sec long. Preictal EEG data from 7 of 8 patients have been previously
analyzed in [31]. Not all seizures analyzed in that study were included here, as not all
corresponding EEG segments met the additional inclusion criterion of at least 30 sec of
postictal activity. All seizures occurred during wakefulness. Identified etiologies included
hippocampal or mesial temporal atrophy or sclerosis (n=3), prior parenchymal brain
hemorrhage (n=1), gray matter heterotopia (n=1), and unknown cause (n=3). Although it
may not always be possible to clearly localize the seizure onset based on the visual
interpretation of scalp EEG, the probable seizure foci were located in the temporal lobe
(n=5), frontal lobe (n=2) or both (n=1). Table 1 summarizes these data. All patients included
in this study had at least 5 nonictal EEG segments i.e., at least 12–24 hr removed from any
ictal event, covering long periods of time. These segments were at least 30 sec long, and on
average a few min long, and have been analyzed in detail in [31]. Patients were on different
antiepileptic medications, which were not controlled for, given the retrospective nature of
the study. However, the potential sample heterogeneity in terms of medications did not
appear to significantly affect the results of the study, which were consistent across patients.
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2.1.2. Scalp EEG selection—Typically, only relatively short EEG data clips are saved in
clinical databases for long periods of time, including 2–3 min prior to ictal onset, the
complete seizure, and 2–3 min following ictal offset. All data were selected and reviewed by
a board-certified neurologist and clinical neurophysiologist (B.S.C.). Standard clinical
methods of visual EEG interpretation were used to identify the ictal onset and offset times to
the nearest half-second. The ictal onset was taken to be the point at which a focal pattern of
rhythmic waveforms, representing a distinct change in the background activity and
consistent with an ictal evolution (usually with higher-frequency lower-amplitude activity
initially, progressing to lower frequencies and higher amplitudes over time), was first seen
on the recording. Ictal offset was taken to be the point after which rhythmic ictal activity
could no longer be seen; activity after this point was often slow and suppressed either
focally or in a generalized distribution, suggestive of a postictal state. Given the limited
length of postictal EEGs, no return to the interictal baseline was observed, i.e., only the
immediate postictal interval was captured in these recordings. Figures 1–2 show examples of
ictal EEG traces (the first 5 sec of the ictal interval) from one patient with temporal lobe
seizures and one patient with frontal seizures (patients #1 and #8, respectively). Both
unfiltered and high-pass filtered signals are shown.

2.2. EEG Analysis
2.2.1. Signal Pre-processing—Power-line noise was attenuated with a stopband
filterbank of third-order elliptical filters centered at the 60 Hz harmonics of the noise, in the
range 60–250 Hz, with a 1 Hz bandwidth, at least 20 dB attenuation in the stopband, and 0.5
dB ripple in the passband. Signals were filtered in both forward and reverse directions to
eliminate potential phase distortions due to the non-linear phase of the filter. EEGs were also
high-pass filtered with 100 Hz cutoff, for analysis of high-frequency activity, and low-pass
filtered with the same cutoff for separate signal analysis at frequencies <100 Hz. Eye-blink
and muscle-related artifacts were eliminated using a stopband matched-filterbank [32] as
follows: for each patient, nonictal recordings from quiescent periods we used to identify
multiple waveforms for eye blinking and muscle movement/twitching. Eye-blinking artifacts
are typically low-frequency, narrowband events with stereotypical waveforms. These
waveforms were used as templates for the matched-filter. Muscle artifact waveforms are
broader-band with more heterogeneous signatures. Their respective waveforms, also
estimated from quiescent periods in the EEG, e.g., nonictal intervals during which it is easier
to identify specific signatures independently from seizure-related activity, were used as
templates in the stopband filterbank. Thus, for matched filtering, both eye blinking and
muscle templates were time-reversed and convolved with each EEG signal, to identify
intervals of increased signal-to-noise ratio, which in terms reflects matching between the
template and the signal of interest. To suppress artifact occurrence in these intervals, the
bandwidth of these templates were used as the stopband. This approach is described in more
detail in [34].

When continuous signals that include discontinuities, such as ictal/interictal spikes, are
filtered, e.g., with a low-pass filter, the presence of spikes may result in what is often
referred to as ‘ringing’ artifacts, associated with Gibbs phenomenon [10]. Thus, in filtered
signals, artifactual high-frequency waveforms may appear in the vicinity of spikes. We
carefully examined all filtered ictal signals to ensure that no artifactual high-frequency
waveforms in filtered EEGs were introduced by the filtering process. We also performed
simulations, where we varied filter parameters (order, stopband attenuation, bandpass ripple)
to ensure that the selected filters performed adequately in that respect. Figure 3 shows an
example of an ictal EEG segment (one channel), unfiltered (top), low-pass filtered (middle)
and high-pass filtered. The low-pass filter does not appear to introduce any ringing artifacts.
The low-amplitude, high-passed signal reflects transient bursts of higher-frequency activity
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that are often observed riding on top or lower frequency oscillations and have also been
reported as riding on top spikes, particularly in intracerebral EEG [39]. Figure 4 shows an
segment of simulated data, using a Poisson model for spike generation, corrupted with
additive gaussian noise. The raw and high-pass filtered data (using the same filters applied
to the real data), and their respective spectra are shown. Again, there is no evidence of
significant ringing artifacts.

2.2.2. Estimation of Network Coordination—Mutual information, conditional mutual
information and their difference, or interaction information (II), were used to quantify
pairwise network coordination. These measures have been proposed in several studies for
quantifying neuromodulations encoded in electrophysiological signals [40, 29, 22], and were
used to analyze preictal and ictal scalp EEGs in [31], as well. However, in this latter study,
we focused on the directionality of network coordination, measured by interaction
information and a directionality index, with an emphasis on the preictal interval. Mutual

Information (MI)  between random variables X and Y
measures their mutual dependence or interaction. It is a function of the joint probability
distribution function p(x, y) of X and Y, and the marginal probability distribution functions
p(x) and p(y) [7]. Given the non-stationarity of EEG signals, probability distribution
functions may be estimated from the data non-parametrically, e.g., using kernel methods, by
segmenting each signal into bins in which stationarity may be assumed [8]. Here 1-sec bins
were selected.

Conditional Mutual Information (CMI):

 measures the inter-dependence
between two random variables, conditioned on a third variable Z. This latter variable may
represent a third EEG signal, either in the neighborhood of the other two, or any other
cortical region, e.g., in a distant part of the brain, or even a spatially averaged measure of
network synchrony [31]. Thus, CMI can measure any conditional inter-dependences
between EEG signals, and is thus more flexible than other pairwise coordination measures,
such as cross-correlation and coherence. In this study we only focused on conditional
interactions in the immediate neighborhoods of pairs of EEG signals, i.e., one electrode
apart from each other. For example, in the standard 10–20 scalp EEG system, the immediate
neighborhood of channel Fp1 includes channels F7, F3, Fp2, Fz. CMI was also used to
estimate local and long-range cross-frequency coupling, i.e., information between pairs
EEGs was conditioned on a third signal Z in the same frequency range as the pair, and
outside that range.

Interaction Information, the difference between MI and CMI, quantifies the influence of the
conditioning variable Z on the inter-dependence between the pair of variables (X, Y). It can
be positive or negative, depending on whether Z enhances or inhibits the pairwise
interaction [7]. Note that high-frequency signal amplitudes were at least an order of
magnitude lower than amplitudes at frequencies < 100 Hz [31]. Prior to the estimation of all
information parameters as well as marginal and joint probability distributions, all signals
were normalized by their maximum absolute value.

At each sliding 1-sec data window, an information parameter matrix was constructed,
corresponding to the adjacency matrix of a graph. A threshold for relative connectivity was
estimated as described below. Three additional network parameters were estimated: 1) the

average absolute connectedness of the network, defined as the ratio , with ET the
total number of edges in the network and N the total number of nodes, which here is equal to
the number of EEG channels (N=20 here). The average relative connectedness of the
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network, a normalized version of the first parameter, where the normalization corresponds to

the average connectedness of the nonictal network, i.e., . 3) The centrality of
each node, which quantifies the relative importance of a single node in the network, and is

defined as the ratio , where Ei is the number of edges connecting node i to others in the
network. All parameters were estimated both for ictal and postictal networks.

Thresholds for information parameters: In studies of preictal seizure dynamics, the
comparison between the neurophysiological/network measures of interest and corresponding
baseline (nonictal) parameters is necessary to assess their sensitivity and specificity to
seizure-related precursory changes in neural activity. Thus, relevant thresholds can be
estimated from nonictal parameter values [31]. However, in this study we were interested in
dynamic changes in network coordination at high (>100 Hz) and lower (≤100 Hz)
frequencies within the ictal interval, and the immediate postictal interval. Thus, a patient-
specific range (in case of multiple seizures) or individual threshold was selected. Respective
distributions of information parameters were right-skewed exponential. Consequently, for
each seizure segmented in multiple 1-sec intervals in which information parameters were
estimated, the median of all pairwise mutual or conditional mutual information values
(median over all upper or lower-triangular information matrices, which are symmetric) was
assumed as a global threshold for network coordination. Thus, given the scope of the study,
these thresholds were distinct from those assumed in studies of preictal network synchrony
[31]. Separate thresholds were estimated for the two frequency ranges and for each
parameter. On average, thresholds for high-frequency parameters were an order of
magnitude lower than corresponding thresholds at frequencies <100 Hz. We selected the
median rather than the mean, as a less conservative threshold, given the right skewness of
the data, which implies that the mean is greater than the median. In addition, nonictal
information parameters were estimated for each patient, and their median was used as a
threshold for comparison with immediate postictal parameters.

Model fitting to information parameter data: Throughout the analysis, information
parameters were estimated spatio-temporally. Polynomial models were fitted to the data, to
identify corresponding patterns of variation in time and space. Models were fitted in a least-
squares sense. The selected model (polynomial) order was based on the Akaike information
criterion (AIC) [1]. All signal analysis and information parameter estimation were
performed using the software Matlab (The Mathworks Inc). Statistical analysis was
performed using the software R.

3. Results
A total of 25 seizures were analyzed. Results are shown at the individual seizure and patient
levels, as well as at the cohort level. We first estimated pairwise network interactions
measured by mutual information (MI), and consequently mean network connectivity and
node centrality, and their respective dynamics in the ictal and postictal intervals. Figures 5–7
show the spatio-temporal ictal dynamics of network connectivity in the two frequency
ranges of interest, for one patient with left mesial sclerosis and left temporal seizures (Pt #1
with a total of 6 seizures). Figure 5 corresponds to one seizure, Figures 6 and 7 include
several ictal intervals. Results from two shorter seizures and no clear patterns of spatio-
temporal MI variability at either frequency range, are not shown. EEG recordings from those
two seizures were also noisier. For all other seizures, distinct spatio-temporal patterns of
dynamic network interactions were estimated. Specifically, MI, and consequently mean
network connectivity followed a non-linear, and in some cases quasi-oscillatory temporal
pattern in both frequency ranges, at least during 3 seizures. However, during one seizure,
both mean absolute and relative connectedness were maximum at the beginning of the ictal
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interval (within the first 10 sec), at frequencies <100 Hz, when corresponding high-
frequency MI was minimum. For the same seizure, maximum high-frequency MI occurred
at the end of the seizure, where the lower-frequency parameter was minimum (Figure 7, blue
curves). In general, the polynomial order, and consequently the non-linearity of the temporal
pattern of network coordination in the brain during seizures, was higher for MI at
frequencies <100 Hz. In turn, this suggests that more rapid fluctuations in network
synchrony occur at these frequencies than at higher frequencies, possibly associated with
some mechanism of dynamic resetting in the brain. In 3 of 4 displayed ictal events at high
frequencies, MI reached a minimum approximately in the middle of the seizure. In a
previous study of a subset of these data, we have also reported a change in both the
directionality of information of flow and interaction information approximately at the same
time. In that study we have shown that directionality of network synchrony decreases
significantly in the latter half of seizures [31]. Here, minima in mutual information were
consistently estimated across multiple ictal intervals. In turn, this suggests the potential
occurrence of some type of dynamic resetting that may play a role in facilitating seizure
termination. Furthermore, relative network connectedness, which measures change in
neuronal synchrony relative to its nonictal values, was higher at higher frequencies than at
frequencies <100 Hz. Finally, distinct spatio-temporal dynamics of node centrality were also
estimated. Although, as expected, there was an overall increase in node centrality in periods
of high network connectedness, there was also differential spatial variability in this
parameter, at least in 3 of 4 seizures. For example, higher node centrality was estimated
ipsilaterally to the hemisphere of seizure onset, at the beginning of the seizure at lower
frequencies, and at the end of the seizure at higher frequencies (see left panels in Figure 7).
Similarly, higher node centrality in the left hemisphere (and bilaterally in temporal regions)
was estimated during a second seizure (see right panels in Figure 7). Although these results
highlight the intra-patient heterogeneity of seizure dynamics and consequently neuronal
network interactions, they also reveal a specific interplay between neural coordinations at
different frequency ranges, and a potential interference role of high-frequency interactions
during aberrant ictal network synchrony.

Figures 9 and 10 show corresponding results for a second patient with mesial sclerosis and
multiple right temporal seizures (Pt #6) and one patient with multiple right frontal seizures
(Pt #7). In both patients network connectedness and node centrality appeared to follow
opposite trajectories, with high-frequency parameters increasing during the ictal interval,
linearly or non-linearly and lower frequency parameters decreasing, at least in the latter 10–
20 sec of the seizure. These results were particularly consistent across ictal events in the
patient with frontal seizures. For this patient, low-order polynomial models (order 2 or 3)
consistently best fitted the data, suggesting a long time scale of high-frequency network
interactions during the ictal interval, possibly leading to rapid decrease in aberrant network
synchrony at frequencies ≤100 Hz. This was consistent in all patients (see previous
examples).

To assess the influence of high-frequency activity on lower-frequency network interactions,
we examined the cross-frequency conditional mutual information (CMI), with high-
frequency activity as the conditioning variable, i.e., for a pair of EEG signals at frequencies
≤100 Hz, the effect of conditioning their interactions on a third, but high-frequency EEG
signal was assessed. Interaction information (II) was used to assess the influence of the
conditioning variable pairwise interactions, within or outside the neighborhood of the
channel associated with that variable. No significant lower-frequency network modulations
by high-frequency activity was observed, with the exception of midline channels Fz and Pz.
High-frequency EEGs recorded from these channels inhibited lower-frequency interactions
within the respective neighborhoods of Pz and Fz, i.e., II was consistently negative for these
channels, irrespective of individual ictal dynamics and seizure types (temporal versus
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frontal). However, II values were low, ≥−0.2 for a range of [−1,1], suggesting that this
inhibition may be insignificant. Scalp EEGs are sparse and the conditioning variable may
correspond to a channel at a distance several cm from the pair of EEGs for which mutual
information is assessed, and thus the effect of relatively distant high-frequency neural
activity may be negligible. When a different conditioning parameter is used, e.g., the global
mean cross-correlation of the entire brain in [31], the variation of interaction information
may be very different. Furthermore, the effects of all other high-frequency EEGs on lower-
frequency interactions within or outside their respective neighborhoods appeared temporally
random (based on the runs test to assess randomness), and were also low (positive or
negative). In contrast, CMI and II with in-frequency conditioning, i.e., measuring the
influence of an EEG signal at frequencies ≤100 Hz, on pairs of EEGs within its
neighborhood and also in the same frequency range, were higher and temporally non-
random. This suggests that at these frequencies, pairwise interactions are influenced by
neural activity beyond the EEG pair of interest, but in its immediate neighborhood.
Examples of II variability for six ictal events, from two patients with right and left temporal
seizures, respectively, are shown in Figure 11. In all patients with temporal lobe seizures,
pairwise interactions appeared to be influenced by the activity of other channels in their
neighborhood, some irrespective of ictal evolution, e.g., channels Fp1 and Fp2 in upper
panels. However, there were also temporally specific patterns, particularly for channels
covering regions of seizure onset. For example, in latter parts of the seizure, activity in
channels in the neighborhood of right or left temporal onset, respectively, inhibition of
activity in those regions, as suggested by negative interaction information, was observed.
This was estimated in many of temporal lobe seizures, but not consistently in seizures of
frontal origin.

Finally, we also examined network interactions during postictal intervals. These were
typically short, 30 sec – ~3 min, and thus only covered the immediate postictal period.
Figure 12 shows mean network connectedness, estimated from mutual information, for 4
patients and multiple postictal intervals, 3 with temporal lobe seizures (Pt #1, 2, 6) and one
with frontal lobe seizures (Pt#7). Only postictal intervals at least 60 sec long are shown. In
general, mean network connectedness at high frequencies increased from ictal offset to the
end of available postictal intervals, quasi-linearly (a polynomial of order 1 was consistently
selected as the best fitted model, using the AIC criterion). This was observed across seizures
and patients, though connectedness patterns had distinct slopes, some slowly increasing
through the postictal intervals, e.g., patients Pt#6, Pt#1 and others increasing more rapidly,
e.g. Pt #2, Pt#7. Note that in several ictal intervals, network connectedness also increased
from seizure onset to offset, though typically non-linearly. Therefore, these postictal
dynamics are consistent with a continuation of increased high-frequency coordination that
started during the seizure, but have a lower complexity (linear). In contrast, at frequencies
<100 Hz postictal network coordination showed no consistent dynamics across seizures and
patients. These data were typically scattered in time, with no apparent correlation with the
dynamics of ictal network coordination at these frequencies.

4. Discussion
We have investigated ictal and immediate postictal network dynamics in 8 patients with
focal epilepsy and multiple seizures originating in temporal and/or frontal brain regions,
with the goal to understand macroscale processes that may facilitate self-limited seizure
termination. In particular, we have examined potential neuromodulatory effects of high-
frequency (>100 Hz) network coordination on ictal evolution. For this purpose, we have
used an information theoretic framework, and have estimated parameters of network
coordination, including mutual and conditional mutual information, as well as mean network
connectedness and node centrality, a measure of network topology. Distinct network
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dynamics were estimated at frequencies >100 Hz and ≤100 Hz, respectively, across patients
and seizures, irrespective of the origin of seizure onset. In general, synchrony at high-
frequencies was on average an order of magnitude lower than at frequencies ≤100 Hz.
However, its relative increase compared to estimated thresholds was on average
significantly higher than the corresponding increase at frequencies ≤100 Hz (p<0.0001).
Nevertheless, in both ranges networks were dynamically modulated during both ictal and
postictal periods. Specifically, ictal and postictal network coordination at high frequencies
increased during ictal and postical intervals, typically non-linearly in the former and linearly
in the latter. In contrast, network coordination at lower frequencies decreased or followed
complex quasi-periodic patterns during ictal periods, but varied almost randomly in postictal
intervals. Furthermore, at least in a subset of seizures, opposite patterns of temporal network
coordination were observed in the two frequency ranges, e.g., a minimum in mutual
information, node centrality or network connectedness at frequencies ≤100 Hz, occurred at
approximately the same time as a maximum of these parameters at frequencies >100 Hz.
Despite inter-seizure and inter-patient variability of these parameters, which reflects intra-
and inter-patient heterogeneity and/or the quality of scalp EEG signals, these results were
consistent in several patients with multiple seizures. In cases of clear non-linear patterns,
extrema in network synchrony may reflect some type of dynamic network resetting that
facilitates seizure termination. Our results further suggest that this resetting occurs
approximately halfway through the seizure, and thus at least 20–30 sec prior to ictal offset,
and may be modulated by high-frequency coordination. Our previous work has shown that
this network coordination may be non-directional [31], and thus reflect a disruptive role of
ictal high-frequency activity in the ictal interval to interrupt aberrant synchrony, which is
distinct from a facilitatory role of preictal high-frequency activity. Immediate postictal high-
frequency network coordination increased monotonically. Evidently, we only had relatively
short postictal EEG segments, and thus were not able to measure the entire postictal phase,
which may span much longer periods.

To assess the effect of larger parts of the network on pairwise EEG interactions, and thus on
local synchrony, we estimated conditional mutual information, where information between
pairs of EEGs was conditioned on a third signal within the neighborhood of the pair. Both
in-frequency and cross-frequency conditioning were examined, to assess whether high-
frequency activity associated with an individual network node affected local lower-
frequency interactions and vice versa. The effects of high-frequency activity on lower-
frequency networks appeared temporally random. This may be due to the fact that
broadband signals in the range 100–250 Hz and 0.5–100 Hz, were used for conditioning and
for computing mutual information, respectively (and vice versa). Thus, multi-scale analysis,
where narrower band signals are used for conditioning, may be necessary to assess potential
cross-frequency effects [33]. Second, scalp EEGs are spatially sparse recordings and inter-
channel distances are of the order of several cm. Therefore, if high-frequency effects are
localized, neural activity in a region covered by even a signal scalp electrode may only
weakly interact with pairwise interactions between two other EEGs even in their common
spatial neighborhood. Third, a different conditioning variable may be more meaningful. For
example, in [31] conditioning pairwise interactions on the global correlation of the entire
brain, rather than the activity of individual channels, revealed differential and non-random
spatio-temporal changes in interaction information [31] during seizures. Nevertheless,
measurable and temporally-specific in-frequency effects of distant parts of the network on
pairwise EEG coordinations were estimated at frequencies ≤100 Hz. In particular, inhibition
of these pairwise interactions by their neighborhood, measured by negative interaction
information, was estimated specifically in latter parts of seizures, and in regions of ictal
onset. This suggests another potential mechanism that may facilitate seizure termination,
namely, mutual neural inhibition within the region of ictal onset, to prevent further aberrant
synchrony. Although ictal network coordinations at high frequencies estimated from scalp
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and intracranial EEG, respectively, are not truly comparable, as the origin of high-frequency
activity in the two signals is different, desynchrony in the seizure onset zone at ictal onset
has been reported in previous studies of ictal intracerebral recordings[42]. As seizures
spread to larger areas of the brain during ictal evolution, scalp EEG measures aggregate
high-frequency activity beyond the epileptogenic region. Thus, the estimated high-frequency
synchrony originates from a larger brain area. Negative interaction information was also
estimated in regions beyond the seizure onset region. Thus, several mechanisms may
simultaneously contribute to seizure termination, across the EEG spectrum. Our results raise
the possibility that high-frequency network interactions may indeed play a role in this
process. A more detailed cross-frequency analysis that investigates the effects of
narrowband signals in this frequency range on lower frequency networks, may provide more
specific insights into their potential disruptive effects on aberrant ictal synchrony.

Evidently, this analysis, and in general any estimation of the strength of network
interactions, is clearly threshold-dependent. Therefore, as information parameter thresholds
are varied, different sub-networks are revealed. For example, a more conservative threshold
may lead to only parts of the global network to appear connected, in which coordination
exceeds that particular threshold. A less conservative threshold will lead to a network with a
higher number of connections. Although simulation studies were not performed to optimize
thresholds in this study, selected thresholds were data-derived, patient-specific, and were
based on the distribution of estimated information parameters. For each patient, we also
empirically varied relevant thresholds by ± ≤20% and did not observe significant changes in
the spatio-temporal patterns of network connectedness or node centrality.

There are several limitations to this study, due to its retrospective nature. First the sample
size is small, and thus the results are clearly preliminary. A larger patient cohort is necessary
to validate and generalize our findings. However, despite the etiology, and other potential
heterogeneities of the cohort, including antiepileptic medications, some consistent patterns
in high-and lower-frequency network dynamics were estimated across patients, and seizures.
Given the small patient sample, these may also be thought of as trends. Nevertheless, they
appear to be independent of etiology and region of seizure onset. Furthermore, in the
absence of continuous recordings, analyzed postictal intervals were limited to the first few
minutes following ictal offset. Thus, longer postictal dynamics could not be estimated. An
analysis of continuous EEG recordings that include long-postictal intervals may reveal
additional network dynamics that explain the eventual return of the brain to its interictal
baseline. Finally, there remains the possibility that network interactions at high-frequencies
could be artifactual. However, following pre-processing to suppress artifacts, signals were
carefully examined to ensure that they did not contain muscle-related or other artifacts.
Furthermore, (anti)correlated patterns between high- and lower-frequency network
synchrony were estimated, at least for some seizures. This also suggests that they may not be
random and/or artifactual.

5. Conclusions
In summary, using an information theoretic computational framework, we have estimated
network coordination parameters in ictal and immediate postictal intervals from scalp EEGs
at frequencies >100 Hz. Our results provide novel insights into the potential role of high-
frequency neural activity for disruption of ictal dynamics and seizure termination.
Neuromodulations of both high (>100 Hz) and lower frequency ictal activity, possibly
associated with neurodynamic resetting in the brain, to enable seizure termination, begin
tens of seconds prior to seizure offset. They often coincide with an increase in high-
frequency network coordination and a decrease in corresponding lower frequency
synchrony. In turn this suggest a potential role of high-frequency as an interference
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mechanism, to disrupt aberrant coordination of neuronal networks and seizure cessation.
Though preliminary, these findings are clinically important, as they suggest that it may be
possible to design therapeutic interventions, e.g., neurostimulation protocols, for seizure
prevention that induce high-frequency network coordination, as a mechanisms of destructive
interference. For example, increased stochastic activity in neuronal networks may induce
such coordination, and in turn disrupt aberrant synchrony at lower frequencies.
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Figure 1.
Ictal EEG segment from one patient with temporal lobe seizures (patient #1 in Table 1). The
first 5 sec of the seizure are shown (t=0 corresponds to the seizure onset). Both the unfiltered
signals (left panel) and high-pass filtered signals (right panel) are shown. In addition, high-
frequency waveforms are shown in more detail in a 1-sec segment from a subset of
channels.
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Figure 2.
Ictal EEG segment from one patient with frontal seizures (patient #8 in Table 1). The first 5
sec of the seizure are shown (t=0 corresponds to the seizure onset). Both the unfiltered
signals (left panel) and high-pass filtered signals (right panel) are shown. In addition, high-
frequency waveforms from frontal channels (Fp1, F7, Fp2, F8) are shown in more detail in a
1-sec segment (shaded segment).
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Figure 3.
Example of raw ictal EEG segment (channel T7), from patient #4 (top plot), low-pass
filtered (middle plot) and high-pass filtered (bottom plot).
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Figure 4.
Simulated spike/noise signal (top left panel) and high-pass filtered signal (bottom left panel).
Corresponding spectra are superimposed (black: unfiltered, red: filtered).
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Figure 5.
Temporal variability of ictal mutual information (MI) for a patient with left temporal
seizures (Pt #1), at frequencies >100 Hz (top plots), and ≤100 Hz (bottom plots),
respectively. In each panel, the entire brain network is shown, with nodes corresponding to
EEG channels. Only connections (edges) exceeding corresponding thresholds are shown.
Each panel corresponds to a 15 sec ictal window, from ictal onset to offset, for a 75 sec long
seizure.
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Figure 6.
Temporal variation of mean absolute (top plots) and relative (bottom plots) network
connectivity, for 4 ictal events, from the same patient as in Figure 5. Left panels correspond
to frequencies > 100 Hz and right panels to frequencies ≤100 Hz. Individual ictal events,
with different durations, are shown in different colors. The best fit model (in a least-squares
sense), for each ictal pattern, is superimposed to the data.
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Figure 7.
Node centrality, and superimposed mean network connectivity for 3 ictal events from the
same patients as in Figures 5 and 6 (Pt #1). Top plots show high-frequency node centrality
as a function of time, and superimposed mean absolute network connectivity for the entire
brain, for each seizure. Bottom plots show corresponding parameters at frequencies ≤100
Hz. Note that the mean network connectivity trajectory was normalized for plotting
purposes, to superimpose to the node centrality heat maps, and does not correspond to a
specific channel.
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Figure 8.
Temporal variability of ictal mutual information (MI) for a patient with right temporal
seizures (Pt #6), at frequencies >100 Hz (top plots), and ≤100 Hz (bottom plots),
respectively. In each panel, the entire brain network is shown, with nodes corresponding to
EEG channels. Only connections (edges) exceeding corresponding thresholds are shown.
Each panel corresponds to a 18 sec ictal window, from ictal onset to offset, for a 90 sec long
seizure.
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Figure 9.
Mean absolute network connectedness (left panels), at frequencies ≤100 Hz (bottom), and
>100 Hz (top), respectively, for the same patient as in Figure 8 (Pt #6). Results from all 3
ictal events are superimposed, and are shown with different color. The right side panels
show the corresponding node centrality, and superimposed mean network connectivity.
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Figure 10.
Mean absolute network connectedness (left panels), at frequencies ≤100 Hz (bottom), and
>100 Hz (top), respectively, for a patient with right frontal seizures (Pt #7). Results from 4
ictal events are superimposed, and are shown with different color. The right side panels
show the corresponding node centrality for two representative seizures (#1 (black curves in
right panels) and #2 (green curves)), and superimposed mean network connectivity.

Stamoulis et al. Page 24

Epilepsy Res. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 11.
Interaction information (II), measuring the influence of an individual EEG signal on
pairwise interactions between EEGs in its immediate channel neighborhood, which includes
only channels at single-electrode distance from the conditioning EEG, at frequencies ≤100
Hz. Each plot shows mean II between in each EEG (y-axis) and its neighborhood (averaged
over channels within the neighborhood), as a function of time (x-axis). Top plots show 3
ictal intervals from patient Pt#6 with right temporal seizures, and bottom plots show 3 ictal
events from patient Pt#1 with left temporal seizures.
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Figure 12.
Mean network connectedness during postictal intervals in 4 patients (Pt #1,2,6,7), at
frequencies ≤100 Hz (top panels) nd >100 Hz (lower panels). Only data for postictal
intervals at least 60 sec long are shown.
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