1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

wduosnue Joyiny vd-HIN

NAT/O

A

Rrens®

"% NIH Public Access

@‘ Author Manuscript

Published in final edited form as:
Mov Disord. 2013 September 15; 28(11): 1501-1508. doi:10.1002/mds.25592.

Dynamic Control of Posture Across Locomotor Tasks

Gammon M. Earhart1:2:3
Iwashington University in St. Louis School of Medicine, Program in Physical Therapy

2Washington University in St. Louis School of Medicine, Department of Anatomy & Neurobiology

SWashington University in St. Louis School of Medicine, Department of Neurology

Abstract

Successful locomotion depends on postural control to establish and maintain appropriate postural
orientation of body segments relative to one another and to the environment, and to ensure
dynamic stability of the moving body. This paper provides a framework for considering dynamic
postural control, highlighting the importance of coordination, consistency, and challenges to
postural control posed by various locomator tasks such as turning and backward walking. The
impacts of aging and various movement disorders on postural control are discussed broadly in an
effort to provide a general overview of the field and recommendations for assessment of dynamic
postural control across different populations in both clinical and research settings. Suggestions for
future research on dynamic postural control during locomotion are also provided and include
discussion of opportunities afforded by new and devel oping technologies, the need for long-term
monitoring of locomotor performance in everyday activities, gapsin our knowledge of how
targeted intervention approaches modify dynamic postural control, and the relative paucity of
literature regarding dynamic postural control in movement disorder populations other than
Parkinson disease.
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Upright, bipedal locomotion is a hallmark of human mobility, allowing for independent
movement through a variety of environments for various purposes. Successful locomotion
depends on postural control to establish and maintain appropriate postural orientation of
body segments relative to one another and to the environment and to ensure dynamic
stability of the moving body. This process critically depends on integration of sensory inputs
and must operate within the limits of biomechanical constraints inherent to the individual
and the task (Figure 1). Without adequate postural control, locomotion becomes
dyscoordinated, inefficient, unstable and potentially hazardous given the risk for falls during
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walking. Given the importance of postural control during locomotion, the objectives of this
paper areto: 1) review recent evidence regarding postural control during gait, highlighting
how control changes during challenging locomotor tasks and in the face of aging and
various movement disorders, 2) propose aframework for assessment of postural control
across locomotor tasks in both clinical and research settings, and 3) recognize gapsin our
current knowledge and areas of need for future research regarding postural control during
locomotion.

Coordination and Consistency: The Foundations of Dynamic Postural

Control

During ongoing locomoation, the basic stepping patterns for forward walking have for some
time been well characterized with regard to expected average joint movement profiles and
patterns of muscle activity. These fundamental, spatiotemporal patterns of coordination
within and between limbs (Figure 2) provide the foundation for dynamic postural control
during gait. Locomotion may be controlled by internal models that determine the difference
between actual and desired body locations within the environment, and then transmit this
“error” signal to neurons that subsequently work to diminish this difference by sending
commands that will result in moving the body closer to the desired, or referent, position.! In
this schema, muscle activation is dependent upon the mismatch between the actual and
referent positions, with the referent position being constantly shifted in the desired direction
of locomotion as one continues to progress through the environment. Postural control in the
fore-aft direction during gait may be maintained through a series of controlled falls that are
passively and actively stabilized.2 One example of active stabilization is the braking of the
COM during the transition into double support, with older adults adopting reduced step
lengths and reduced gait speeds that may assist in maintaining effective COM control.3 The
capacity to regulate COM braking is also reduced in those with PD relative to controls and
may be related to non-dopaminergic midbrain lesions.*

While much insight can be gained about postural control through assessment of fundamental
coordination of movement, there is increasing recognition that consistency of step to step
performance, once thought to reflect noise in the control system, provides an important
additional level of information about locomotor control (Figure 2). In fact, variability has
been identified as an important and unique domain of gait that isimpacted by aging and
disease, related to fall risk and predictive of future mobility decline in older adults®®. For
example, stride time variability isincreased in those with high level gait disorders!? and
movement disorders such as Huntington disease (HD) and PD112, |n fact, pre-manifest
mutations carriers for HD can be distinguished from healthy controls based upon stride to
stride variability.13 In addition, carriers of the LRRK 2-G2019S mutation demonstrate higher
gait variability than non-carriersin fast and dual task walking conditions®. Furthermore,
among those with PD, fallers and freezers exhibit higher stride time variability than non-
fallers and non-freezers.1215 Step length and step timing are also more variable during gait
initiation in PD.16

Both coordination and consistency can be incorporated into single measures of gait
performance. One example of such ameasure is phase coordination index (PCl), which
examines temporal coordination of interlimb phasing and variability of this phasing across
strides.1” PCI reveals poorer or less consistent interlimb phasing is also associated with
aging, PD, and freezing of gait1’~21. Performance of more challenging gait tasks such as
backward walking and turning, as well as forced manipulations of step length and cadence
away from preferred baseline values during forward walking, are associated with reduced
coordination as measured by PCI, with old being more affected than young, those with PD
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being more affected than age-matched controls, and those with PD and history of freezing
being more affected than those with PD but no history of freezing.1822

Recent work suggests that upper extremity coordination during bimanual tasks requiring
anti-phase movements is affected by forced manipulations of amplitude and cadencein a
manner very similar to the effects on actual locomotion as outlined in the preceding
paragraph.23 Other studies also suggest clear links between locomotor control and upper
extremity control in health and disease. For example, studies showing freezing of upper
extremity movements and their correlation with freezing of gait suggest the possibility of
common control mechanisms for coordination of bilateral upper extremity and bilateral
lower extremity tasks.23-2% Moreover, arm swing is clearly coordinated with lower
extremity movement during typical gait, suggesting persistence of the basic quadrupedal
limb coordination pattern during bipedal gait.26 However, this coordination is task-
dependent, as the arms can be uncoupled from the lower limbs for use in voluntary activities
such as carrying objects. Changing movement of the arms impacts locomotor coordination,
with prevention of arm swing resulting in a switch from anti-phase coordination between the
pelvic and scapular girdles to an in-phase pattern.2” Reduced arm swing is common in PD
and correlates with rigidity and bradykinesia?8. Arm swing amplitude and phasing relative
to the lower extremities improve with both levodopa and deep brain stimulation.2? Given the
mounting evidence for the importance of upper extremity control in gait, comprehensive
clinical assessments and future research studies should consider both lower extremity and
upper extremity coordination and consistency to obtain a complete picture of dynamic
postural control during gait.

Beyond Coordination and Consistency: Postural Control in Challenging
Gait Tasks

While coordination and consistency form the foundations of postural control, ability to
regulate posture in the face of challenging gait tasks is equally important to successful
locomotion (Figure 2). The ability to produce a coordinated and consistent forward walking
pattern is not sufficient, and as such it isimportant to consider how postural control changes
in the face of different environments, goals, biomechanical constraints and sensory
conditions (Figure 1). A thorough evaluation of dynamic postural control, whether done for
clinical or research purposes, should assess performance in a variety of conditions.
Suggested conditions include walking at different speeds, in different directions, with eyes
closed and with head turns, with biomechanical constraints such as obstacles and narrow
base of support (i.e. tandem walking), and in dua task paradigms where additional non-
locomotor demands are placed on the system (Table 1). The following paragraphs highlight
some of these areas, while others are covered in more detail elsewhere in this special issue.

Postural control isinfluenced by the integration of visual, vestibular, and somatosensory
inputs. With increasing age, a more conscious strategy for locomotor and postural control
may be utilized as evidenced by increasesin cortical BOLD signalsin vestibular,
somatosensory and visual areas of the cerebral cortex in older compared to younger adults
during imagined walking.2 Simple means of exploring the role of sensory inputsinclude
walking with eyes closed and with head turns (Table 1). Walking at different speeds also
probes sensory inputs, as vestibular influences on gait are reduced during faster walking and
running relative to slower walking®132, More complex experimental methods use
perturbations presented during gait initiation and walking to probe the role of sensory inputs.
For example, Rogers et al.33 introduced a sudden drop or elevation of the support surface to
assess the contribution of somatosensory information during gait initiation, demonstrating
that controls and people with PD can rapidly adapt to this type of perturbation. This suggests
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afeedforward neural control of gait initiation in which sensory information regarding limb
load and/or foot pressure can modulate temporal and spatial components of step initiation.

Other perturbation paradigms introduce unexpected movements of the support surface
during ongoing walking. Perturbation studies support the concept of modular or synergistic
control of gait, hypothesizing that changesin the basic gait pattern in response to
perturbations or even to increased |oads can be accomplished through variations in temporal
recruitment from alibrary of locomotor muscle synergies, with this recruitment being
accomplished through different parallel pathways at the spinal, brainstem, and cortical
levels.3435 The specific strategies employed depend upon the particular demands of the
perturbation. For example, mediolateral translations of the support surface during gait result
in shorter steps with wider step width to allow for stability and adaptability.3637 Other tasks,
such as tandem walking and obstacle negotiation, introduce specific biomechanical
constraints (Table 1). Tandem, or heel-to-toe walking along aline, requires tighter
mediolateral control of the COM given the narrow base of support. Obstacles require
individualsto adjust step length or step height in order to avoid contact with the object.
People with PD have particular difficulty increasing step length as compared to step
height,38 and adopt a conservative strategy with reduced anterior-posterior and increased
mediolateral center of mass motion, aswell as areduced distance between the center of
mass and center of pressure compared to controls.3?

Obstacle negotiation tasks also highlight the importance of the upper extremities to balance
recovery. Upper extremity muscle activity is higher during obstacle crossing; the upper
extremities are coupled with the lower extremities and play arole in equilibrium control 40
The coupling between the upper and lower extremities during obstacle crossing is preserved
in PD.*! In conditions which mimic unsuccessful obstacle negotiation, such as sudden
arrests of the forward movement of one leg or recovery from atrip, upper extremity
movements are asymmetric and may assist in balance recovery by impacting orientation of
other body segments in order to facilitate braking of the impending fall.#2 Aswalking
continues after the perturbation, stability is recovered and interlimb phasing between the
upper and lower limbsis restored, with older adults requiring more cycles to recover
stability and appropriate interlimb phasing.3

Older adults ability to successfully negotiate obstacles may also be influenced by vision,
which provides critical information about body position relative to the environment.*4
Severa changesin visua processing and sampling in older individuals have been related to
changes in locomotor performance. Ability to reweight visual information declines with
aging, resulting in larger gait deviationsin response to visual perturbations in older
compared to younger individuals.#® Older adults also have reduced ability to maintain gaze
fixation and this ahility is correlated with gait initiation performance, with those less able to
maintain fixation requiring more time to initiate a step.46 Gaze behaviors during ongoing
locomotion are also related to falls*”48. During performance of walking tasks where oneiis
required to step on particular targets along the walking path, elderly fallers demonstrate
premature transfer of gaze to the upcoming target*” and longer latencies between making a
saccade to atarget and initiating a step to that target.*8 Effective gaze control is critical not
just for tasks requiring specific foot placements, but also for turning, where transfer of gaze
initiates change in locomotor trajectory.

Changesin locomotor trajectory are critical for daily locomotor activities; in fact, turning
steps compose up to 50% of everyday tasks.? Relative to straight walking, local dynamic
stability is reduced during turning®, which is accomplished by atop down temporal
seguence of body segment rotations. The top down rotation sequence begins with a saccade
in the new heading direction, and this anticipatory redirection of gaze is thought to be
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critical for initiating changes in locomotor trajectory.5! Without vision, axial segments
rotate more slowly and more synchronously during turning.52 However, the top down
rotation sequence is not affected by walking velocity®2 or sharpness of the turn. Tighter
curvatures are associated with greater spatial anticipation of the upcoming turn, but are still
executed with atop down sequence.33 The anticipation of turning is characterized by an
upweighting of vestibular inputs just before a turn®*, along with anticipatory postural
adjustments evidenced by a posteriolateral lean.>®

Control of locomotor direction is thought to be governed at the level of whole body
trajectory, with implementation occurring through specific motor strategies.® In older
adults, strategies for changes of body orientation are characterized by alonger latency
between gaze reorientation and body segment reorientation.>’ In addition, older adults with
lower balance confidence are more likely to use multiple steps in order to accomplish
changes in direction more gradually than do those with higher balance confidence.>®
Changes in turning performance are even more pronounced in movement disorders.
Individuals with cerebellar ataxia use more steps and require alonger time to turn, taking
shorter steps with awider step width and adopting a more extended knee position compared
to controls. 599 These changesin turning performance in cerebellar ataxia may relate to
deficitsin intralimb coordination and/or compensatory strategies to reduce instability during
turns.

Turning is also impaired in PD, in keeping with evidence that striatal activation is associated
with turns.81 Even those with mild PD and normal straight walking performance often have
turning difficulty.52 These early changes in turning performance can be captured using
wearable sensors to monitor turning performance®34, and changes in turn duration may be a
useful measure of progression in early PD.5® In those with more advanced PD, turning is
often obviously impaired as observed by increased turn duration, greater number of stepsto
turnB667 and difficultly switching motor patterns from straight walking to turning.68
Performance of turns, and functional mobility more generally, are related to increased
postural tone, particularly in the neck.89 Difficulty turning in PD may aso be related to the
inherently asymmetric nature of turning, which requires asymmetric step lengths and leg
velocities.”0 Sharper, and therefore more asymmetric, turns are associated with increased
step time variability and more freezing in individuals with PD and a history of freezing of
gait.”! However, the interaction between the asymmetric nature of turning and the
asymmetric nature of PD requires further study, as current evidence suggests that turning
toward the disease-dominant side is associated with higher cadence but not with increased
frequency of freezing’2.

Recent work on turning in PD highlights the importance of altered oculomotor control,
noting that relative to controls individual s with PD make fewer preparatory saccades
approaching aturn’3 and initiate turns with saccades that are slower and smaller.”* Those
with PD also demonstrate slowness of head and trunk reorientation movements which may
be compensated by greater contribution of eye movements than of head/trunk movements to
achieve gaze shifts associated with turning.” In fact, the characteristics of the saccade
initiating a turn are predictive of ensuing turn performance; turnsinitiated with larger, faster
saccades are executed more quickly than turns initiated with smaller, slower saccades.”
Initia turning saccade amplitude and velocity, and overall turn performance, improve with
subthalamic nucleus deep brain stimulation.”® Cueing also can improve speed of turning in
PD’7 and may reduce freezing of gait associated with turning as long as the cues are present,
with minimal carryover to uncued conditions.”?

Like turning, backward walking represents another challenging locomotor task that
continues to yield key insights into locomotor control. Backward walking is associated with

Mov Disord. Author manuscript; available in PMC 2014 September 15.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Earhart

Page 6

greater stride time variability than forward walking’8 and is more impaired in elderly
individuals, in fallers, and in individuals with PD.7980 Among those with PD, both forward
and backward walking respond similarly to levodopa and to deep brain stimulation.8182

The movement patterns during backward walking are remarkably similar to time-reversed
profiles of forward walking.83 Similar muscles can be utilized to control the COM during
forward as during backward walking, with additional supraspina elements for propulsion
helping to partially reconfigure lower level networks that may be common to both backward
and forward walking.8 This is debatable, however, as other studies examining locomotor
adaptations suggest the presence of separate spinal networks for forward and backward
walking, as the two walking directions can be adapted independently of one another during
split-belt treadmill training.8° Split-belt treadmill paradigms, as well as other approaches
utilizing moving surfaces such as amoving sled or rotating treadmill, have yielded many
important insights about locomotor adaptation that are beyond the scope of this paper (for
split-belt review see Torres-Ovideo et al.86).

Current Knowledge Gaps and Future Directions

While our understanding of postural control during locomotion has grown substantially over
recent years, there remain many gaps in our knowledge. One factor that has limited our
understanding of dynamic postural control is the difficulty inherent in neurcimaging studies
of locomotor tasks. For example, techniques such as functional magnetic resonance imaging
(fMRI) are only possibleif there isminima head movement, obviating the use of fMRI and
other movement-limited techniques in the imaging of actual locomotion. Recent work using
imagined locomotor tasks has begun to partially tackle this issue, while emerging techniques
such as near infrared spectroscopy '8 and high-density electroencephal ography recorded
during actual ongoing locomotion8” hold additional promise for studies of brain activity
during ongoing locomotor activities. These methods could also be used for tasks that pose
particular challenges to postura control such as obstacle avoidance or walking on a narrow
beam. It should be noted, however, that these methods also have inherent limitations such as
inability to assess activity in subcortical areas.

Another major limitation of most published work is the focus on short-term measures of
locomotion in laboratory settings. Given the growing appreciation for the importance of gait
variability along with the emergence of long-term monitoring technologies such as inertial
sensors3365, the field is ripe for studies of everyday locomotor function across days®889,
These studies could provide important insights into gait stability over time in health, aging
and disease. Studies of disease should consider not just PD, the most common movement
disorder, but also other conditions such as progressive supranuclear palsy, essential tremor,
HD, and other diseases that have been little studied compared to PD. These studies would
benefit from the use of the comprehensive battery of gait tasks outlined in Table 1.
Assessment of performance in different populations across different gait tasks would
provide key information to enable determination of whether or not particular profiles exist
for different conditions and whether difficultiesin postural control on a select set of tasks
might be useful for discrimination among conditions. Finally, beyond comprehensive
determination of how aging and different diseases impact coordination and consistency of
postural control acrosstasks, thereis also a clear need for studies that examine the effects of
targeted interventions on dynamic postural control. Given the growing appreciation for the
role of eye movementsin dynamic control of gait, future studies could examine the effects
of eye movement training and teaching of specific visual sampling strategiesin order to
address deficitsin dynamic locomotor performance across different populations.
Intervention studies should also consider incorporating neuroimaging to examine the neural
underpinnings of changes in postural control through rehabilitative, pharmacologic, surgical
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or combinatorial approaches. Finally, studies are needed to guide optimization of training
paradigms to enhance postural control and maximize transfer of benefit across locomotor
tasks and different environmental contexts.

Conclusion

Dynamic postural control during locomotion involves acritical interplay of environment,
goals, biomechanical constraints, and sensory integration. At the foundation of postural
control is production of afundamental, coordinated locomotor pattern where appropriate
relationships of body segments to one another and to the environment are produced in order
to provide progression and stability during walking. The consistency of this coordinated
pattern from step to step and across longer periods of time is also akey consideration, as
variability of gait isaunique domain that provides additional predictive insight regarding
fall risk and future mobility decline. Higher level postural control requires adaptability in the
face of challenges introduced through different gait tasks. Assessment of coordination and
consistency in the face of challengesis key to the comprehensive assessment and study of
dynamic postural control. With the emergence of new models, new tools, and new
intervention strategies the field is poised for substantial growth in our understanding and
treatment of dynamic postural control across |locomotor tasks.
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Figure 1.
Model depicting factors that impact dynamic postural control during locomotion.
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[lustration of key aspects of postural control, the foundation being coordination of a
fundamental gait pattern, the next level being consistency of pattern production, and the top
level being ability to modify control in the face of challenges.
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