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Abstract
In the last few years, genome-wide association studies (GWASs) have identified hundreds of
predisposition loci for several types of human cancers. Recent progress has been made in
determining the underlying mechanisms through which different single-nucleotide polymorphisms
(SNPs) affect predisposition to cancer. Although there has been much debate about the clinical
utility of GWASs, less attention has been paid to how GWASs and post-GWASs functional
analysis have contributed to understanding the aetiology of cancer. Most common variants
associated with cancer risk are localized in non-protein-coding regions highlighting transcriptional
regulation as a common theme in the mechanism of cancer predisposition. Here, we outline
strategies to functionally dissect predisposition loci and discuss their limitations as well as
challenges for future studies.

Keywords
cancer predisposition; eQTL; GWAS; SNPs; transcription

INTRODUCTION
One of the central goals of human genetics is to understand the genes and pathways
underlying traits. Gene mapping of disorders with a Mendelian pattern of inheritance using
linkage analysis has been highly successful. Genetic variants underlying these single-gene
Mendelian disorders tend to be highly penetrant – i.e. a high percentage of carriers of the
genotype manifest the phenotype – and rare in the population (Fig. 1). Mapping of non-
Mendelian (or complex) traits, in which variants in multiple genes contribute to the trait, had
to await the sequencing of the human genome and cataloguing of human genetic variants [1–
3]. In contrast to Mendelian disorders, inherited variants underlying complex diseases have
modest penetrance but higher frequency in the population (Fig. 1). Over the past several
years, genome-wide association studies (GWASs) of complex traits, including cancer, have
successfully identified thousands of chromosomal loci associated with hundreds of traits
(National Human Genome Research Institute GWASs catalogue) (Table 1) [4]. Typically, in
GWASs, thousands to millions of individual single-nucleotide polymorphisms (SNPs) are
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genotyped in a large number of individuals with and without the trait [4]. Thus, we now
have the ability to understand the underlying genetic causes of common diseases.

Another important distinction between Mendelian disorders and complex traits is the
location of the variant in the human genome; most Mendelian variants are located in protein-
coding regions whereas most variants underlying complex traits discovered to date are
located outside these regions [5] (Fig. 1). This observation presents a key challenge to
understanding how the variant influences the trait (Fig. 2). When a variant is located in a
protein-coding sequence, its effect on the protein can, in many cases, be readily inferred
from the genetic code. This is the case for frameshift and nonsense mutations. In other cases,
such as missense or splice site changes, robust prediction tools have been developed [6–10].
However, when a variant is in a non-protein-coding region, there is a less developed
framework to decipher whether these changes have functional impact. The lack of a defined
genetic code for the non-protein-coding region of the genome makes causal allele and gene
identification difficult. Despite several technical and conceptual advances in the last few
years, determination of the molecular mechanisms behind the detected associations
continues to be a significant challenge [11]. The aim of this review is to outline strategies to
address the challenges emerging when exploring functional mechanisms linked to trait-
associated SNPs.

The Genetic Associations and Mechanisms in Oncology (GAME-ON) consortium (Table 1)
has examined GWASs data for prostate, ovarian, breast, lung and colorectal cancers to
develop systematic strategies to determine the functional contribution of SNPs and their
target genes [11–20]. The main objective was to apply these strategies to data generated by
genetic association studies such as the recently completed Collaborative Oncological Gene-
environment Study (COGS) (Table 1) which genotyped an unprecedented number of cancer
cases and controls (~200,000) for over 200,000 SNPs, chosen because they represented the
top-ranked SNPs associated with cancer in prior GWASs. Here we describe our findings
from analyses of cancer predisposition loci.

During the past three years the main challenges to revealing the mechanistic basis of risk
became clear. Most of the SNPs implicated in cancer predisposition have so far been shown
to have modest effects (as reflected by small odds ratio values) [21]. While this finding was
consistent with the common disease/common variant model in which common SNPs are
expected to have mild to moderate effects [22], it highlighted the limited sensitivity of
molecular biology methods to investigate the effects of moderate changes in gene expression
or activity in vivo. A further complication is that these effects might be spread over the
lifetime of an organism or may only manifest during specific developmental stages.
Moreover, some of the expected effects may be restricted to specific cell types. The latter
issue is very significant for some cancers, such as ovarian carcinoma, in which the
originating cell and tissue type is an area of intense investigation [23].

There are rapid advances in the field as large consortia such as the 1000 Genomes project
(1KG) [24], The Cancer Genome Atlas (TCGA) [25–27], the Encyclopedia of DNA
Elements (ENCODE) [28–32] and the Catalogue of Somatic Mutations (COSMIC) [33]
(Table 1) have generated much data, thus periodic examination of these databases is
essential. In summary, during the past 3 years, the GAME-ON consortium has made much
progress in developing comprehensive strategies to analyse results from GWASs to
illuminate the mechanism(s) behind the associations. Although in some cases the analytical
approaches and tools might be specific to the particular cancer under study, we believe that
these strategies can be utilized for different cancers (or indeed for different diseases). Below,
we describe the general outline of our systematic approach and highlight information gained
from as well as its current limitations and future challenges.
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OUTLINE OF THE OVERALL APPROACH
The overall approach can be divided in three stages (Fig. 3). In the first stage, the most
significant SNP found in analyses or meta-analyses of GWAS is used as a starting point to
examine other candidate functional SNPs in the region, and potential target genes in the
region are explored in the second stage. Ideally, the first two stages should be conducted in
parallel. The aim of the final stage is to uncover direct evidence for participation of the SNP/
target gene pairs in the mechanism of oncogenesis in the context of an organism.

Stage 1: searching for the causal SNP(s)
The design of most genotyping chips for GWAS is based on the principle of linkage
disequilibrium (LD) in the human genome. LD is essentially the degree of correlation
between a set of variants. For example, if many SNPs are in LD, then only a subset of ‘tags’
needs to be genotyped. These tags represent specific proxy markers for other correlated
SNPs in a defined chromosomal region [34]. Although the use of tagging SNPs results in
reproducible and robust signals and minimizes the number required for testing, it is expected
that these SNPs may not necessarily constitute the causal variant, defined as the nucleotide
change that results in relevant biological activity responsible for cancer predisposition. As
‘causal’ is a term that, in addition to a number of conceptual issues, requires considerable
evidence [35], here we use the term ‘functional’ as the aim at this stage is to record the
sources of evidence for or against the SNP having any functional impact on the activity of
the locus. For example, coding SNPs might have a functional impact on the activity of the
protein product, or alternatively a non-coding SNP might influence the activity of a
regulatory region that controls or modulates expression of a target gene located nearby (cis)
or at a distance (trans) (Fig. 4).

In cases in which the SNP is in a coding region, first the potential impact of the variant is
assessed using robust prediction algorithms based on multiple sequence alignments [36] (for
review and comparisons of prediction algorithms see [37, 38]). The National Genetics
Reference Laboratory in Manchester provides a comprehensive missense prediction tool
catalogue (Table 1). Of note, it seems that the performance of these tools is dependent not
only on the algorithms chosen but also on sequence alignments [39] and therefore the depth
of alignments to be used (e.g. human to frog, or human to yeast) should be selected with
care; in some cases manual editing of the sequence alignments may be necessary. We have
consistently used Polyphen 2 which combines a user-friendly interface to conduct batch
queries for our analyses [40]. Structural information is also important to assess the
functional impact of variants [8, 41]. Thus, if X-ray diffraction or solution (NMR) structural
models are available for the protein or domain in which the variant is located, we
recommend incorporating that information. If a functional change for a common risk variant
is identified in cancers, and more specifically in the cancer type of interest, the SNP is than
considered a good candidate for the causal SNP in the locus.

Next, whether the gene in which the variant was found has been described as a somatic
change in cancer tissues can be evaluated. A search in the COSMIC database should reveal
somatic mutations that might provide information, i.e. whether they may contribute to
cancer [15]. We would consider the evidence to be strengthened if the mutation in the gene
targets a similar functional domain as the SNP (e.g. variants in the kinase domain or in the
ATP binding pocket). However, it is important to note that COSMIC records variants found
in somatic tissues but in many experiments the sequence of matched normal tissue from the
same individual is not determined. Thus, the presence of a variant in somatic cancer tissues
might be the result of incomplete filtering of germline variation with no predicted functional
impact. In addition, a validated somatic change may not contribute (‘driver’ mutation) but
rather may be irrelevant (‘passenger’ mutation) to cancer development. Somatic catalogues
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such as COSMIC are becoming increasingly comprehensive and frequency (or recurrence in
multiple tumour types) of a certain variant will also constitute important information to
evaluate a candidate variant.

However, when a comprehensive analysis of GWAS hits was conducted it was shown that
there is enrichment for trait-associated SNPs in non-coding regions [5]. More specifically,
these SNPs tend to be found at DNase I hypersensitive sites, which indicates open chromatin
and is usually correlated with regulatory regions [5]. Although such an analysis was
conducted with SNPs for all traits, our findings suggest that it is also valid for cancer-related
GWAS hits [11]. In fact, analysis of 1KG data showed that the upper boundary for coding
variants in GWAS signals is 1/3 indicating that the majority of GWAS hits will involve non-
coding variants [24, 42].

Initially, a list of all SNPs in the region with an r2 value (a measure of LD) >0.2 is
generated. However, this threshold is arbitrary. We developed an automated bioinformatics
tool (unpublished data) that annotates SNPs according to their location in relation to genes
or previously annotated regions in the locus and their possible functional impact. Next, we
determine whether these SNPs are predicted to be located in coding regions or in candidate
DNA regulatory regions according to a number of DNA sequence elements, chromatin
marks or other protein-binding sites (called ‘biofeatures’). It is important to note that while
some regulatory regions are found in many cell and tissue types, many are cell-type specific
[30]. Thus, when the SNP is located in a regulatory region found in a cell line relevant for
the cancer under study we consider strong evidence. This is done by visually inspecting
information generated by the ENCODE project [28–32] and currently available through its
portal at the University of California, Santa Cruz Human Genome Browser (Table 1). Of
importance, several tools have been developed to automate this process and integrate SNP
annotation with additional data [43–45]. Because annotation databases are being constantly
updated, it is advisable to schedule periodic searches during the project. At the end of this
stage, a list of candidate SNPs should be available, ranked by the degree of evidence to
support a functional impact.

Stage 2: indentifying candidate target genes
In parallel to the SNP annotation process, we use an arbitrary-sized window (typically 1– 2
megabases) centered on the most significant SNP, and determine the number of all
transcripts (both protein coding and non-coding) within this interval. Because interactions
between SNPs in regulatory regions and target genes can occur across long distances, this
region does not depend on LD structure.

Analysis of expression quantitative trait loci (eQTLs) has emerged as an important method
to determine the priority of candidate target gene(s) for a given non-protein-coding risk
locus (Fig. 4). eQTLs are polymorphisms that are associated with transcript levels. In other
words, eQTLs are variants within regulatory elements that control the abundance of
transcript(s). The initial work in this field was performed in the HapMap lymphoblastoid
cell lines as this provided a source of both genotypes and transcript levels [46–49]. These
studies unambiguously demonstrated that RNA levels are under genetic control. Soon after
these studies were reported, other research groups began applying this method to link
specific risk-associated loci with transcript levels. The hypothesis is that a risk-associated
SNP is a regulatory element that is correlated with mRNA levels. Transcripts that are
associated with genotypic status become strong candidates for further functional testing.

eQTL analyses are typically stratified by whether the transcripts being tested are near the
risk SNP (local) or at a large distance from the risk SNP (distant) (Fig. 4); analyses for local
transcripts are often referred to as cis-eQTLs and for distant transcripts are referred to as
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trans-eQTLs. However, cis and trans have mechanistic connotations, so we prefer to use the
terms local and distant, respectively. As stated above, for local eQTL analyses a window
size of 1–2 megabases is usually selected and is centered on the SNP under investigation.
All of the transcripts in this interval are tested for correlation with the genotypic status of the
risk allele. For distant eQTL studies, all transcripts outside the window defined in the local
analysis are tested. When performing distant (essentially genome-wide) studies, the statistics
must be appropriately adjusted to reflect the much larger testing burden.

Due to power considerations, most of the cancer risk eQTL studies performed to date have
been local. Our group has primarily evaluated prostate cancer risk loci in both normal and
prostate cancer tissues. To date, we have tested 12 prostate cancer risk loci and have
identified four SNPs that are strongly associated with candidate genes [50].

Recently, we made use of the multilayer data in the TCGA and ENCODE databases to
perform genome-wide eQTL analyses. The breast cancer dataset was selected because it
contained the greatest number of samples. Because tumours somatically acquire alterations,
such as copy number and methylation changes, that are known to affect RNA expression, we
first developed a method to adjust for these factors. Gene expression was modelled as
having inputs from germline variants, somatic copy number changes, and promoter
methylation. Next we tested 15 previously described risk variants that were strongly
associated with breast cancer risk. Three risk loci and candidate target genes were
implicated in a local-based analysis. A novel distant (trans) analysis was then performed,
which revealed an additional three candidate genes [51].

It is important to consider the possible meanings of a negative result. A negative result may
be a true negative; that is, the transcript under consideration is not influenced by the
polymorphism. For most expression experiments, RNA levels are measured at one point;
however, expression varies across space and time. Indeed, a key issue is which tissue to use
for eQTL analyses. Although most investigators use the target tissue to perform eQTL
studies, it is entirely possible that the eQTL–target gene association acts in a non-cell
autonomous manner. For example, inflammatory cells, stroma and/or the microenvironment
may act upon the target tissue. In addition, in cancer, tumour tissue and normal tissue can be
studied. Information gained from databases with both genotype and expression data, such as
TCGA and Genotype-Tissue Expression (Table 1), will contribute to understanding these
issues. In addition, an eQTL–target gene relationship may only be operative during a
particular developmental time point. If this is the case, animal models will be required.
Lastly, eQTLs may regulate other types of transcripts, such as non-protein-coding transcripts
and/or be involved in splicing.

Alternatively, a negative result may be falsely negative whereby the transcript is associated
with genotypic status, but the assay results are negative. Reasons for false-negative results
include power and assay sensitivity. As transcript levels are quantitative traits, platform
precision and accuracy are crucial. Furthermore, similar to disease GWASs, more
associations are being discovered as sample sizes are increasing.

Additional information
Positive eQTL results are considered strong evidence for further analysis because the logical
link between the risk locus and the candidate gene is maintained. However, a null result does
not exclude a possible association, due to the reasons discussed above. Additional
information can also support the analysis and help determine the priority when two or more
candidate genes are implicated by eQTL analysis. For example, using TCGA data we can
extract expression information for tumours and control normal tissues and determine the
genes in which expression levels are significantly changed when these two tissue types are
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compared. Another approach that involves more ‘hands-on’ processing is to extract similar
data (tumour versus normal comparisons of expression levels) from the Gene Expression
Omnibus (GEO) data repository (Table 1) [52], which provides independent datasets. Of
note, GEO profiles might provide several probe sets for each gene which may not be
consistent. These results should be interpreted with caution because the number of control
samples available for analysis is generally very small. This analysis may identify genes that
display significant changes in expression in tumour tissues. However, these results should
also be interpreted carefully because the observed changes may not necessarily be linked to
the risk locus and may instead be due to other confounding somatic changes occurring
during the development of the tumour.

A list of genes in the locus should be available at the end of this stage, ranked by the
strength of evidence obtained from different data sources. This information is then
integrated with information derived from stage 1 to generate testable hypotheses for stage 3
(Fig. 3). For example, it can now be directly tested whether SNPs that have been found to
coincide with chromatin contexts (suggesting the presence of a regulatory region), and are
associated by eQTL analysis with a target gene that is a target of mutation in somatic tissues,
indeed regulate the target gene in human cells. It is not unusual to find evidence for multiple
genes in a locus being implicated in cancer. In this case, all candidates should be considered
for further analyses.

Annotation-poor cancer loci
It is possible that information may not be available for the tissue relevant to the cancer in
question about biofeatures that can be used to identify regulatory regions. In this case, data
need to be generated to annotate the region and identify potential regulatory sites. The
formaldehyde-assisted isolation of regulatory sequences (FAIRE-Seq) [53] or DNAse I
hypersensitive site sequencing, DNase-Seq [54] techniques, which identify open chromatin
regions, can be performed. Chromatin immunoprecipitation using several post-translational
histone modification markers (e.g. histone acetylation or mono-, di-, and trimethylation) is
also informative, but more costly.

A parallel functional analysis can also help in the identification of cell type-specific
regulatory regions. We have developed a method to generate tiling clones (spanning 2kb per
clone), by polymerase chain reaction using a bacterial artificial chromosome (BAC)
containing the locus, which then undergo recombinational cloning in a vector containing a
luciferase gene driven by a minimal promoter (Pharaoh et al. 2013; Nat Genet in press).
These clones are then transfected into the cells of interest, and regions that show enhancer
activity for the luciferase gene can be studied further. In particular, if an associated SNP is
located in the tiling clone that shows activity, site-directed mutagenesis can be performed to
introduce the minor allele of the SNP in question (usually the BAC contains the major
allele).

Stage 3: linking functional SNP to candidate target gene
Once we have a series of candidate SNPs that are hypothesized to work by modifying the
activity of a regulatory region that acts on certain genes, we can attempt to demonstrate that
the region and the target gene are in physical association, which indicates the formation of
an active enhancer complex. Chromosome conformation capture (3C) is used to demonstrate
this link [55, 56]. Whether two linearly distant regions are in physical proximity in the
nucleus can be specifically determined using the 3C technique. Ideally, the two regions
being tested should be farther than 10 kb apart. At short distances, it is difficult to
distinguish a true interaction from the background noise. Again, for all of these studies,
choice of cell type is an important consideration.
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Once the physical proximity has been determined, the next step is to identify the
transcription factor that is predicted to bind to the enhancer region. This can be done by the
use of algorithms that predict the binding of transcription factors given the underlying DNA
sequence. However, the sequence may belong to a binding site to an unidentified
transcription factor. In this case, an electrophoretic mobility assay (EMSA) may be
conducted, in which the DNA sequence is used as a probe and is incubated with a nuclear
extract of the cell line in question. If the cell expresses the transcription factor that binds the
DNA sequence present in the extract, it is expected that migration of the the probe will be
retarded. The shifted (retarded) band indicates the presence of the factor but gives no
indication of its identity. If the use of a prediction algorithm generates a hypothesis of which
factor is binding, the antibody that recognizes the hypothesized factor can be added to the
EMSA. Finally, if the factor corresponds to the hypothesis, then the shifted band is expected
to be further retarded in its migration (supershift).

LIMITATIONS
Although the strategies presented here have been successful in providing information on
several predisposition loci [13–15], they have several limitations that need to be addressed
in order to examine efficiently all predisposition loci identified so far.

Cell autonomous mechanisms
Most of the simplistic experimental models used to validate a target gene are based on
detecting exclusively cell autonomous activities. Non-cell autonomous activities are not
evaluated in most model systems used. For example if changes in the expression of a gene
induce the stroma to be more permissive to the growth of a tumour from a pre-cancerous
lesion, the effect of modulation by the gene in the cell of origin of the cancer will not be
seen. It is important to develop and refine 3D co-culture models [57], but also to start
exploring in vivo models that can highlight non-cell autonomous processes. These
approaches are relatively expensive and labour intensive, therefore the ability to perform
systematic analyses of a large number of candidate genes or SNPs in the near future is
unlikely. However, once candidate genes have been prioritized it might be important to take
the observations to an animal model.

Indirect mechanisms
An extension of the non-cell autonomous model is one in which an SNP may modify
behaviour. It is conceivable that a certain SNP might regulate a gene that does not have a
direct effect on cancer predisposition as a regulator of apoptosis or an oncogene. Rather this
gene might influence behaviour, for example predispose to addiction or to inhale more
deeply when smoking in the case of lung cancer. SNPs that contribute to different
behavioural traits may increase or decrease the exposure to environmental risk factors.

Single target
The recent studies using ENCODE have revealed among other things that enhancers may
regulate the expression of more than one target gene [30, 31]. The mechanism of association
might be related to changes in expression in a cassette of genes. Conversely, a target gene
might be influenced by more than one enhancer. This is supported by the high degree of
connectivity in networks generated by co-expression [58]. Thus, models should be
developed to test hypotheses in which the contribution to a certain association might be
multifactorial (for example, a change in an SNP might change the activity or expression in
more than one gene in the locus, or in some cases of other genes outside the locus).
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CONCLUSION
A change in approach for the analysis of common variants linked to cancer predisposition
was required, from family-based linkage studies to population-based association studies. A
concerted effort of collaborative consortia, such as GAME-ON, has accelerated the
discovery of loci implicated in cancer. Due to its smaller effects (as judged by smaller OR
values), the analysis of these variants also required a change in the analytical framework
used to characterize these regions [11]. Here, we presented strategies for the systematic
analysis of these loci and discussed their limitations. These analyses have already revealed a
common mechanistic theme; many of these variants associated with disease act through
modification of transcriptional regulation. This highlights the importance of analysis of
GWASs in understanding the biology of cancer. Future work is needed to concentrate on
critically evaluating the strategies and data sources presented here and on refining in vitro
and in vivo models to avoid the experimental problems discussed. The large number of
already identified loci will be the source of investigations for many years.
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Fig. 1.
Different strategies to identify predisposition loci. Overall strategies to identify loci in
Mendelian and in complex (non-Mendelian) diseases. In Mendelian diseases, individuals
carrying high penetrance variants that confer risk (red circles) tend to express the disease
phenotype (red filled circles) but are rare in the population. In complex diseases, individuals
carrying common risk variants (red circles) tend to have low penetrance and many carriers
will not manifest the disease phenotype (open red circles). Mendelian diseases can be
investigated with family-based linkage studies and risk loci (red arrow) are positionally
identified [typically a logarithm of odds (LOD) score >3; dashed red line]. Complex
diseases can be investigated with (genome-wide) association studies and risk loci (red
arrow) are positionally identified (typically P ≤ 5 × 10−8).
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Fig. 2.
Potential mechanisms through which SNP variation can influence a target gene. Examples of
how single-nucleotide variation can influence target genes. A. In protein-coding regions,
SNPs can lead to changes in protein sequence leading to truncated or modified proteins with
defective function or stability. Silent variation (i.e. nucleotide variation codes for the same
amino acid residue) may disrupt exonic splicing enhancers (ESEs) leading to illegitimate or
inefficient splicing. B. SNPs in intragenic (but non-protein-coding) regions can modify the
activity of promoters, disrupt or create splicing acceptor and donor sites, and modify
transcript instability in untranslated regions (UTRs), for example by influencing
polyadenylation. C. Most GWAS hits are found in intergenic regions. SNPs in these regions
may affect target genes by modifying regulatory sequences such as enhancers or insulator
elements. SNPs may also modify other transcripts such as microRNAs (miRNAs) or long
non-coding RNAs (lncRNAs) that may regulate other target genes.
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Fig. 3.
Outline of strategies for functional dissection of a predisposition locus. Stages 1 and 2 are
normally conducted in parallel.
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Fig. 4.
Coding and non-coding SNPs. A. Single-nucleotide polymorphisms (SNPs) may have
different actions. Coding SNPs (cSNPs) which are located in the protein-coding region of a
gene (genes are indicated by a red arrow and boxes representing different exons) can change
the sequence of a protein and therefore its structure and function. Non-coding SNPs
(ncSNPs) may be located in a transcriptional regulatory region and act on a target gene that
is local (cis) or distant (trans). They may result in changes in protein expression levels. The
distant (trans) interaction is shown simply by a single dashed line, to represent an indirect
mode of interaction for which the molecular details are largely unknown. B. Expression of
quantitative trait locus (eQTL) analysis is a test for association between genotype and
transcript abundance. Nucleotide changes corresponding to the different SNP alleles can
modify the transcriptional activity of a regulatory region (top panel). If this hypothesis is
correct, one should find an association between the genotype and changes in expression
levels. The alternative hypothesis, i.e. that the SNP is in LD with the true causal SNP lying
in a coding region, can be tested by careful SNP annotation and detailed fine mapping of the
region.
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Table 1

Web resources and databases used in post-GWAS analysis

Web resources Descriptiona URL

National Human
Genome Research
Institute (NHGRI)
GWAS catalogue

Includes studies assaying ≥100,000
SNPs in the
initial stage (excludes candidate gene
studies).
SNP–trait associations are limited to
those with P-
values <1.0 × 10−5

http://www.genome.gov/gwastudies/

Genetic Associations
and Mechanisms in
Oncology (GAME-
ON) consortium

The overall goal of GAME-ON is to
foster an
interdisciplinary and collaborative
approach to the
translation of promising research
leads deriving from
the initial wave of cancer GWAS. It
is limited to
breast, ovarian, prostate, lung and
colorectal cancers

http://epi.grants.cancer.gov/gameon/

Collaborative
Oncological Gene-
environment Study
(COGS)

The central focus of the project is to
define individual
risk of breast, ovarian and prostate
cancer; i.e. to
identify individuals at an increased
risk of these three
cancers. It also aims to identify
genetic and lifestyle
factors that are associated with
certain tumour
subtypes and affect clinical outcome

http://www.cogseu.org/

1000 Genomes

The goal of the 1000 Genomes
project is to find most
genetic variants that have frequencies
of at least 1%
in the populations studied

http://www.1000genomes.org/

The Cancer Genome
Atlas (TCGA)

The goal is to identify the changes in
the genome in
each cancer and to understanding
how such
changes interact to drive the disease

http://cancergenome.nih.gov/

Encyclopedia of DNA
Elements (ENCODE)

The overall aim is to identify all
functional elements
in the human genome sequence

http://www.genome.gov/10005107
http://genome.ucsc.edu/ENCODE/
http://www.nature.com/encode/#/threads

Catalogue of Somatic
Mutations in Cancer
(COSMIC)

COSMIC is designed to store and
display somatic
mutation information and related
details, and
contains information relating to
human cancers

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/

Missense Prediction
Tool Catalogue –
National Genetics
Reference
Laboratory (NGRL)

The aim is to review and catalogue
available tools for
the evaluation and classification of
missense variants

http://www.ngrl.org.uk/Manchester/page/missense-prediction-tool-catalogue

University of
California Santa Cruz
(UCSC) Human
Genome Browser

Contains the reference sequence and
working draft
assemblies for a large collection of
genomes. It also
provides portals to the ENCODE
project

http://genome.ucsc.edu/

Genotype-Tissue
Expression (GTex)

The aim is to study human gene
expression and http://commonfund.nih.gov/GTEx/
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Web resources Descriptiona URL

regulation in multiple tissues,
providing insights into
the mechanisms of gene regulation

Gene Expression
Omnibus (GEO)

GEO is a public functional genomics
data repository
supporting MIAME (Minimum
Information About a
Microarray Experiment)-
compliant data submissions

http://www.ncbi.nlm.nih.gov/geo/

a
Adapted from the original descriptions provided on the websites.

J Intern Med. Author manuscript; available in PMC 2014 November 01.

http://www.ncbi.nlm.nih.gov/geo/

