Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 29;93(22):12570–12574. doi: 10.1073/pnas.93.22.12570

Light-mediated retinoic acid production.

P McCaffery 1, J Mey 1, U C Dräger 1
PMCID: PMC38033  PMID: 8901623

Abstract

Retinoids serve two main functions in biology: retinaldehyde forms the chromophore bound to opsins, and retinoic acid (RA) is the activating ligand of transcription factors. These two functions are linked in the vertebrate eye: we describe here that illumination of the retina results in an increase in RA synthesis, as detected with a RA bioassay and by HPLC. The synthesis is mediated by retinaldehyde dehydrogenases which convert some of the chromophore all-trans retinaldehyde, released from bleached rhodopsin, into RA. As the eye contains high levels of retinaldehyde dehydrogenases, and as the oxidation of retinaldehyde is an irreversible reaction, RA production has to be considered an unavoidable by-product of light. Through RA synthesis, light can thus directly influence gene transcription in the eye, which provides a plausible mechanism for light effects that cannot be explained by electric activity. Whereas the function of retinaldehyde as chromophore is conserved from bacteria to mammals, RA-mediated transcription is fully evolved only in vertebrates. Invertebrates differ from vertebrates in the mechanism of chromophore regeneration: while in the invertebrate visual cycle the chromophore remains bound, it is released as free all-trans retinaldehyde from illuminated vertebrate rhodopsin. RA synthesis occurring as corollary of dark regeneration in the vertebrate visual cycle may have given rise to the expansion of RA-mediated transcriptional regulation.

Full text

PDF
12570

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bok D. The retinal pigment epithelium: a versatile partner in vision. J Cell Sci Suppl. 1993;17:189–195. doi: 10.1242/jcs.1993.supplement_17.27. [DOI] [PubMed] [Google Scholar]
  2. Bowes C., van Veen T., Farber D. B. Opsin, G-protein and 48-kDa protein in normal and rd mouse retinas: developmental expression of mRNAs and proteins and light/dark cycling of mRNAs. Exp Eye Res. 1988 Sep;47(3):369–390. doi: 10.1016/0014-4835(88)90049-8. [DOI] [PubMed] [Google Scholar]
  3. COHLAN S. Q. Congenital anomalies in the rat produced by excessive intake of vitamin A during pregnancy. Pediatrics. 1954 Jun;13(6):556–567. [PubMed] [Google Scholar]
  4. Craft C. M., Whitmore D. H., Donoso L. A. Differential expression of mRNA and protein encoding retinal and pineal S-antigen during the light/dark cycle. J Neurochem. 1990 Nov;55(5):1461–1473. doi: 10.1111/j.1471-4159.1990.tb04927.x. [DOI] [PubMed] [Google Scholar]
  5. Farber D. B., Danciger J. S., Organisciak D. T. Levels of mRNA encoding proteins of the cGMP cascade as a function of light environment. Exp Eye Res. 1991 Dec;53(6):781–786. doi: 10.1016/0014-4835(91)90114-t. [DOI] [PubMed] [Google Scholar]
  6. Hao W., Fong H. K. Blue and ultraviolet light-absorbing opsin from the retinal pigment epithelium. Biochemistry. 1996 May 21;35(20):6251–6256. doi: 10.1021/bi952420k. [DOI] [PubMed] [Google Scholar]
  7. Kelley M. W., Turner J. K., Reh T. A. Retinoic acid promotes differentiation of photoreceptors in vitro. Development. 1994 Aug;120(8):2091–2102. doi: 10.1242/dev.120.8.2091. [DOI] [PubMed] [Google Scholar]
  8. Korenbrot J. I., Fernald R. D. Circadian rhythm and light regulate opsin mRNA in rod photoreceptors. Nature. 1989 Feb 2;337(6206):454–457. doi: 10.1038/337454a0. [DOI] [PubMed] [Google Scholar]
  9. Lammer E. J., Chen D. T., Hoar R. M., Agnish N. D., Benke P. J., Braun J. T., Curry C. J., Fernhoff P. M., Grix A. W., Jr, Lott I. T. Retinoic acid embryopathy. N Engl J Med. 1985 Oct 3;313(14):837–841. doi: 10.1056/NEJM198510033131401. [DOI] [PubMed] [Google Scholar]
  10. Lindahl R. Aldehyde dehydrogenases and their role in carcinogenesis. Crit Rev Biochem Mol Biol. 1992;27(4-5):283–335. doi: 10.3109/10409239209082565. [DOI] [PubMed] [Google Scholar]
  11. Mangelsdorf D. J., Thummel C., Beato M., Herrlich P., Schütz G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P. The nuclear receptor superfamily: the second decade. Cell. 1995 Dec 15;83(6):835–839. doi: 10.1016/0092-8674(95)90199-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. McCaffery P., Dräger U. C. Hot spots of retinoic acid synthesis in the developing spinal cord. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7194–7197. doi: 10.1073/pnas.91.15.7194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCaffery P., Lee M. O., Wagner M. A., Sladek N. E., Dräger U. C. Asymmetrical retinoic acid synthesis in the dorsoventral axis of the retina. Development. 1992 Jun;115(2):371–382. doi: 10.1242/dev.115.2.371. [DOI] [PubMed] [Google Scholar]
  14. McCaffrery P., Posch K. C., Napoli J. L., Gudas L., Dräger U. C. Changing patterns of the retinoic acid system in the developing retina. Dev Biol. 1993 Aug;158(2):390–399. doi: 10.1006/dbio.1993.1197. [DOI] [PubMed] [Google Scholar]
  15. McGinnis J. F., Austin B. J., Stepanik P. L., Lerious V. Light-dependent regulation of the transcriptional activity of the mammalian gene for arrestin. J Neurosci Res. 1994 Jul 1;38(4):479–482. doi: 10.1002/jnr.490380414. [DOI] [PubMed] [Google Scholar]
  16. Mlodzik M., Hiromi Y., Weber U., Goodman C. S., Rubin G. M. The Drosophila seven-up gene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell. 1990 Jan 26;60(2):211–224. doi: 10.1016/0092-8674(90)90737-y. [DOI] [PubMed] [Google Scholar]
  17. Oro A. E., McKeown M., Evans R. M. The Drosophila retinoid X receptor homolog ultraspiracle functions in both female reproduction and eye morphogenesis. Development. 1992 Jun;115(2):449–462. doi: 10.1242/dev.115.2.449. [DOI] [PubMed] [Google Scholar]
  18. Pierce M. E., Sheshberadaran H., Zhang Z., Fox L. E., Applebury M. L., Takahashi J. S. Circadian regulation of iodopsin gene expression in embryonic photoreceptors in retinal cell culture. Neuron. 1993 Apr;10(4):579–584. doi: 10.1016/0896-6273(93)90161-j. [DOI] [PubMed] [Google Scholar]
  19. Sun D., Chen D. M., Harrelson A., Stark W. S. Increased expression of chloramphenicol acetyltransferase by carotenoid and retinoid replacement in Drosophila opsin promoter fusion stocks. Exp Eye Res. 1993 Aug;57(2):177–187. doi: 10.1006/exer.1993.1113. [DOI] [PubMed] [Google Scholar]
  20. Wagner M., Han B., Jessell T. M. Regional differences in retinoid release from embryonic neural tissue detected by an in vitro reporter assay. Development. 1992 Sep;116(1):55–66. doi: 10.1242/dev.116.1.55. [DOI] [PubMed] [Google Scholar]
  21. Wald G. The molecular basis of visual excitation. Nature. 1968 Aug 24;219(5156):800–807. doi: 10.1038/219800a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES