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Abstract
Cochlear implant surgery is a procedure performed to treat profound hearing loss. Clinical results
suggest that implanting the electrode in the scala tympani, one of the two principal cavities inside
the cochlea, may result in better hearing restoration. Segmentation of intra-cochlear cavities could
thus aid the surgeon to choose the point of entry and angle of approach that maximize the
likelihood of successful implant insertion, which may lead to more substantial hearing restoration.
However, because the membrane that separates the intra-cochlear cavities is too thin to be seen in
conventional in vivo imaging, traditional segmentation techniques are inadequate. In this work, we
circumvent this problem by creating an active shape model with micro CT (μCT) scans of the
cochlea acquired ex-vivo. We then use this model to segment conventional CT scans. The model
is fitted to the partial information available in the conventional scans and used to estimate the
position of structures not visible in these images. Quantitative evaluation of our method, made
possible by the set of μCTs, results in dice similarity coefficients averaging 0.75. Mean and
maximum surface errors average 0.21 and 0.80 mm.

Index Terms
Intra-cochlear anatomy; scala tympani; cochlear implant; active shape model segmentation

I. INTRODUCTION
Cochlear implant surgery is a procedure performed to treat profound hearing loss. In a
typical surgery, a mastoidectomy is performed, excavating bone posterior to the auditory
canal to gain access to the cochlea while avoiding damage to vital structures. The sensitive
structures along the traditional surgical approach are shown in Figure 1. The physician drills
an approximately 1.0 mm hole through the bone surrounding the cochlea through which the
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electrode is inserted; this process is referred to as the cochleostomy in the remainder of this
article. The electrode stimulates the spiral ganglion cells to induce the sensation of hearing.

The cochlea is partitioned into several cavities: the scala tympani; scala vestibuli; and the
scala media, which, for all practical purposes, can be ignored as it occupies only a small
portion of the cochlear volume. Research has suggested that implanting the electrode into
the scala tympani results in better hearing restoration [1]. But, it has also been reported that
at most about 73% of cochlear implant procedures result in full insertion into the scala
tympani [2]. The remaining 27% of implants are either fully inserted into the scala vestibuli
or are initially inserted into scala tympani and then cross through the thin membranes
(basilar and Reissner’s membranes) separating the scala tympani from the scala vestibuli
(see Figure 2). Recent research has also suggested that the likelihood of scala tympani
insertion is maximized using “soft” technique [3,4]. In this approach, the implant is threaded
at a tangential angle into the scala tympani, attempting to inflict as little stress as possible on
the soft tissue within the cochlea.

The success of the soft technique is largely dependent on the angle of electrode insertion and
the position of the cochleostomy, i.e., the angle should be tangential to the scala tympani and
the cochleostomy should be centered on the scala tympani in the basal turn region (first turn
of the spiral–see Figure 1). Because the scala tympani is not visible in surgery, the surgeon
must use other landmarks as a guide to estimate scala tympani position and orientation, a
process requiring a great deal of expertise. Errors can occur here due to the imprecise nature
of landmark-based, manual navigation as well as to inter-patient variations in the spatial
relationship between the scala tympani and surgical landmarks [5–9].

A method that could localize the scala tympani in clinical images could thus be part of a
system that would help surgeons in determining the proper cochleostomy position and
insertion angle relative to visible surgical landmarks. Using such a system could potentially
result in more effective hearing restoration. For typical cochlear implant procedures, a
conventional CT is acquired so that the surgeon can identify abnormalities along the surgical
approach. But, the basilar membrane is invisible in these images, which makes automatic
identification impossible using only the information available in these scans (see Figure 2).
To address this issue, we propose a method that complements the information available in
these images. This technique permits the fully automatic and accurate segmentation of both
scalae.

The method we propose is based on a deformable model of the cochlea and its components.
To create such a model, we have used ex-vivo μCTs of the cochlea. In these scans, which
have a spatial resolution that is much higher than the spatial resolution of clinical scans,
intra-cochlear structures are visible (see Figure 2). Thus, these structures can be segmented
manually in a series of scans. The set of segmented structures can be used subsequently to
create an active shape model, as proposed by Cootes et al. [10]. Once the model is created, it
can be used to segment the structures of interest, which are only partially visible in the
conventional CT images, using the limited information these images provide. In the
following section, we describe the method we have used to create our models and how we
use these models to segment intra-cochlear structures in clinical CTs. In Section III, we
present the results we have obtained. Our conclusions are presented in Section IV.

II. METHODS
A. Data

The data set we have used to build our model consists of image sets of six (one right and
five left) cadaveric cochlea specimens received from the Vanderbilt School of Medicine’s
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Anatomical Gifts Program. For each specimen, we have acquired one μCT image volume
with a Scanco μCT. The voxel dimensions in these images are 36 μm isotropic. For five of
these specimens, we have also acquired one conventional CT image volume with a Xoran
XCAT fpVCT scanner. In these volumes, voxels are 0.3 mm isotropic. In each of the μCT
volumes, the scala vestibuli and scala tympani were manually segmented. Figure 2 shows an
example of a conventional CT image and its corresponding μCT image.

B. Model Creation
The approach we use to model intra-cochlear anatomy is summarized in Figure 3. It requires
(1) establishing a point correspondence between the structures’ surfaces, (2) using these
points to register the surfaces to each other with a 7 degrees of freedom similarity
transformation (rigid plus isotropic scaling), and (3) computing the eigenvectors of the
registered points’ covariance matrix.

B.1. Image Registration Methods—As discussed in the next subsection, image
registration is used in the process to establish correspondence between point sets. The
registration scheme we use is an affine, followed by a non-rigid registration process. Affine
transformations are computed by optimizing 12 parameters (translation, rotation, scaling,
and skew) using Powell’s direction set method and Brent’s line search algorithm [11] to
maximize the mutual information [12] between the two images, where the mutual
information between image A and B is computed as

(1)

where H(.) is the Shannon entropy in one image, and H(. , .) is the joint entropy between the
images. The entropy in the images is estimated as

(2)

in which p(k) is the intensity probability density function, which is estimated using intensity
histograms with 64 bins.

Non-rigid image registration is performed using the adaptive bases algorithm [13]. This
algorithm models the deformation field that registers the two images as a linear combination
of radial basis functions with finite support

(3)

where x⃗ is a coordinate vector in ℝd, with d being the dimensionality of the images. Φ is one
of Wu’s compactly supported positive radial basis functions [14], and the c⃗l’s are the
coefficients of these basis functions. The c⃗l’s that maximize the normalized mutual
information [15] between the images are computed through an optimization process that
combines steepest gradient descent and line minimization. The steepest gradient descent
algorithm determines the direction of the optimization. The line minimization calculates the
optimal step in this direction. The algorithm is applied using a multi-scale and multi-
resolution approach. The resolution is related to the spatial resolution of the images. The
scale is related to the region of support and the number of basis functions. Typically, the
algorithm is started on a low-resolution image with few basis functions with large support.
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The image resolution is then increased and the support of the basis function decreased. This
leads to transformations that become more and more local as the algorithm progresses.

B.2. Establishing Correspondence—To establish correspondence between surfaces,
one μCT volume was arbitrarily chosen as a reference volume, I0, and the remaining training
volumes, {Ij}j=1:N−1, were registered to the reference using the methods discussed in the
previous section, creating the set of non-rigid transformations {Ψj}j=1:N−1 such that Ij ≈
Ψj(I0). The affine registration step required manual initialization since there was no standard
orientation for the samples in the scans. The manually segmented reference surface S0 was
then deformed through each set of registration transformations into each target image space,
creating the set {Ψj(S0)}. Residual registration errors were corrected by manually adjusting
the surfaces using a tool developed for this purpose. These additional transformations were
combined with the transformations computed automatically to produce the set of compound

transformations . Finally, for each ith vertex on each jth deformed reference surface

, the closest point on the respective training surface p⃗ ∈ Sj was found. A
correspondence between this point p⃗ and the reference surface vertex S⃗0,i was established.
Equivalently,

(4)

such that

(5)

This results in one corresponding point on each jth training surface for every ith reference
point. Using image registration to establish a correspondence between point sets was
inspired by the work of Frangi et. al. [16].

Once correspondence is established, each training surface is registered to the reference
surface with a similarity transformation (rigid plus isotropic scaling), computed using
standard point registration techniques [17]. Correspondence is established separately for the
scala tympani and scala vestibuli, however, point registration is performed taking both
structures into account simultaneously. This is done to maintain accurate inter-structure
spatial relationships so that the shape model can be constructed with both structures
simultaneously.

B.3. Computing the Shape Model—To build the model, the principal modes of shape
variation are extracted from the registered training shapes. This is computed according to the
procedure described by Cootes et. al. [10]: First, the covariance matrix of the point sets’
deviation from the mean shape is computed as

(6)

where the w⃗j’s are the individual shape vectors and w¯ is the mean shape vector defined by
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(7)

The shape vectors are constructed by stacking the 3D coordinates of all the points
composing each structure into a vector. The modes of variation in the training set are then
computed as the eigenvectors {u⃗j} of the covariance matrix,

(8)

There are at most N−1 non-trivial eigenvalues, {λj}, because the rank of a covariance matrix
of N linearly independent samples is N−1. The range of shapes within the training set can
then be described by adding a linear combination of the eigenvectors, to w¯, the mean shape.
The eigenvalue associated with each eigenvector is equal to the variance explained by the jth
mode of variation in the training set. Typical structures can be closely approximated by
using a linear combination of the eigenvectors within two standard deviations of the mean.
These modes of variation are extracted for the combined shape of both the scalae for all the
samples in the training set.

C. Segmentation Using the Active Shape Model
The procedure we use for segmentation with an active shape model is outlined in Figure 4.
As can be seen in the figure, the overall process follows the traditional active shape model
approach, i.e., (1) the model is placed in the image to initialize the segmentation; (2) better
solutions are found while deforming the shape only in ways that are described by the
precomputed modes of variation; and (3) eventually, after iterative shape adjustments, the
shape converges, and the segmentation is complete. The following sections detail this
approach.

C.1 Initialization—The first step to perform segmentation is to provide an initial position
for the model in the target image. We choose to automate the initialization process by using
an image registration-based initialization approach, in which an “atlas” is registered to the
volume to be segmented, the “target.” This atlas is a conventional CT volume in which the
position of the scalae is known. To create this atlas, a full head clinical CT was selected (in
plane voxel size of 0.218 × 0.218 mm2, and slice thickness of 0.8 mm with 0.4 mm overlap).
Next, a non-rigid transformation between the atlas volume and I0, the μCT of the cochlea
specimen used to create the model, was computed using image registration (see Section II.B.
1). Because the atlas volume and I0 have very different fields of view, it was necessary to
manually initialize this registration. Next, the scalae model points were projected from I0 to
the atlas volume. Finally, visually identifiable errors in the resulting surfaces were manually
corrected. This process results in a full head volume in which the position of the scalae and
of the basilar membrane are known.

The atlas is used at segmentation time to initialize the model using the steps summarized in
Figure 4: (a) First, an automatic non-rigid registration (see Section II.B.1) is computed
between the atlas and the target CTs. (b) Next, the scalae model points, which have known
positions in the atlas, are transferred to the target image using the registration
transformation. (c) Finally, to initialize the search, the shape model is simply fitted (the
fitting procedure is described in the following section) to this set of points. The fitting
procedure constrains the shape of the point-set to be similar to that of typical scalae,
removing any unnatural shape changes that may have occurred due to the non-rigid
registration transformation.
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C.2 Searching Scheme—Once initialized, the optimal solution is found using an
iterative searching procedure. At each search iteration, (a) an adjustment is found for each
model point, and (b) the model is fitted to this set of candidate adjustment points (see Figure
4). To find the candidate points, two approaches are used, one for “external” and another for
“internal” model points. When the model was created, model points corresponding to the
exterior of the cochlea were labeled as external points. All other model points, which are
positioned inside the cochlea were labeled as internal points. For the internal points, it is
impossible to determine the best adjustment using local image features alone, because there
are no contrasting features inside the cochlea in CT. Therefore, the original initialization
positions for these points, which were provided by image registration, are used as the
candidate positions. The registration transformation, as our results will show, is sufficiently
accurate to provide this useful information to the segmentation process. External points lie
in regions with contrasting features in CT. Therefore, candidates for external points are
found using line searches to locate strong edges. At each external point y⃗i, a search is
performed along the vector normal to the surface at that point. The new candidate point is
chosen to be the point with the largest intensity gradient over the range of −1 to 1 mm from
y⃗i along this vector.

The algorithm uses the approach just described to find a new candidate position for each
point in the model. The next step is to fitted the shape model to these candidate points. We
do this in the conventional manner described by Cootes. A standard 7 degree of freedom
point registration is performed, creating similarity transformation T, between the set of
candidate points {y⃗i′}and the mean shape{w¯i}, where w̄i are the 3D coordinates of the ith
point in the mean shape. Then, the residuals

(9)

are computed. The modes of variation that were previously extracted are fitted to the
residuals by taking the inner product between each eigenvector with the full residual vector,

(10)

where d⃗ is composed of {d⃗i} stacked into a single vector. Eq. (9) results in a scalar bj
corresponding to each eigenvector u⃗j that quantifies how much of the deviation of this shape
from the mean shape is explained by u⃗j. The final approximation to the shape is computed
by passing the sum of the scaled eigenvectors plus the mean shape through the inverse
transformation, equivalently,

(11)

where u⃗j,i is the ith 3D coordinate of the jth eigenvector. As suggested by Cootes, the
magnitude of the bj’s are constrained such that

(12)
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which enforces the Mahalanobis distance between the fitted shape and the mean shape to be
no greater than 3. This constrains the shape such that its deviation from the mean is
reasonable relative to the shape variations described by the training set.

At each iteration, new candidate positions are found and the model is re-fitted to those
candidates. The active shape model converges when re-fitting the model results in no change
to the surface.

D. Validation
Segmentation was performed on CT’s of five of these cochlea specimens using a leave-one-
out approach, i.e., the volume being segmented is left out of the model. Thus, only four
modes of variations were available for each segmentation validation. Because these samples
were excised specimens, rather than whole heads, the initial registration with the full head
CT used as the atlas required manual initialization—however, in practice the approach is
fully automatic. To validate the results, we again exploit the set of corresponding μCT
volumes. Each μCT was rigidly registered to the corresponding CT of the same specimen.
The manually delineated scalae segmentations were then projected from the μCT to CT
space. Finally, Dice similarity coefficient (DSC) [18] and surface errors were computed
between automatic segmentations and the registered manual segmentations to validate the
accuracy of our results. DSC measures volumetric overlap between two surfaces S1 and S2
using the equation

(13)

where N(S1 ∩ S2) is the number of overlapping voxels within the surfaces, and N(S1) +
N(S2) is the sum of the number of voxels within each surface. DSC ranges from 0,
corresponding to no volumetric overlap, to 1, which corresponds to perfect volumetric
overlap. A larger DSC between the automatic and manual segmentations indicates higher
accuracy.

Surface errors are computed by measuring mean and maximum distances between automatic
and manually segmented surfaces. The distance from a vertex p⃗ on surface S1 to surface S2
can be computed using the equation

(14)

Then, the mean and maximum distances between the two surfaces can be computed as

(15)

In general, d(·)(S1, S2) ≠ d(·)(S2, S1), i.e., the distance measures are not symmetric. Thus, to
accurately characterize the surface error, we compute surface distances in the forward
(automatic-to-manual) direction as well as the reverse (manual-to-automatic) direction and
include both measurements in the results. A smaller distance between the automatic and
manually segmented surfaces indicates higher accuracy.
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III. RESULTS
The model was constructed with a total of approximately 15000 unique sets of
corresponding surface points. The eigenvalues of the 5 independent modes of variation for
the model are given in Table 1. At a range of two standard deviations, the maximum
displacement of any point on the scala tympani or scala vestibuli surfaces are approximately
1.0 mm, and mean displacements are approximately 0.15 mm. Points on the basal turn (the
first turn of the spiral) vary by approximately 0.35 mm. In the basal turn, the basilar
membrane varies by approximately 0.15 mm. The first two modes of variation can be
visually appreciated in Figure 5. It appears that the first mode of variation is capturing
changes in the length of the basal turn, the second mode of variation is capturing changes in
the width of the basal turn, and both are capturing changes in the width and angle of the
second and third turns of the cochlea.

Quantitative comparisons between the manual segmentations of the scalae, transformed
from μCT to the respective conventional CT, and the automatic segmentations are shown in
Figure 6. DSC for measuring volumetric overlap and bidirectional mean/max surface
distances are computed between each pair of automatic and manual segmentations. Figure 6
shows the overall distributions of these recorded values. The green bars, red bars, blue
rectangles, black dots, and black I-bars denote the median, mean, one standard deviation
from the mean, individual data points, and the overall range of the data set, respectively.
Results for segmentation with the active shape model are shown side by side with results
achieved using non-rigid registration alone. Arrows indicate the results from the experiment
shown in Figure 7. The active shape model achieves mean DSC of approximately 0.77 for
the scala tympani and 0.72 for the scala vestibuli. For most structures, a DSC of 0.8 is
typically considered good [19]. However, this measure can be unforgiving for very thin,
complicated structures, such as the scalae, which range from about 1 to 4 voxels thick along
their length. In general, for structures with a relatively large surface area-to-volume ratio,
0.7 is typically considered a high DSC. The active shape model effectively improves the
volumetric overlap from the results achieved by registration alone in every experiment. A
consistent decrease in mean surface errors from an average 0.28 mm with registration to
0.20 mm (< 1 voxel) with the active shape model approach can also be seen. Maximum
surface errors are on average decreased from 1.3 mm using registration to 0.8 mm by using
the active shape model approach. In fact, with the active shape model, all surface errors for
scala tympani segmentation are sub-millimetric. The improvements when using the active
shape model are all statistically significant for each metric.

Our results can be visually confirmed in Figures 7 and 8. Shown in Figure 7 are contours of
a representative automatic segmentation overlaid with the CT (the volume on which
segmentation was performed) and the corresponding registered μCT. In the figure, the
contours achieved by automatic segmentation of the CT can be compared to the contours
manually delineated in the high resolution μCT. Local surface error maxima that are
apparent in the μCT are less than 2 voxels width in the CT. Shown in Figure 8 are the
automatic segmentations for all 5 experiments, where the surfaces are color encoded with
the distance to the manually segmented surface. It can be seen that the active shape model
results in mean surface errors under 0.3 mm (< 1 voxel) for the majority of the structure with
typical average maximum errors of about 0.8 mm (<3 voxels). The active shape model
converges to a surface that looks anatomically correct, whereas registration-based
segmentation alone converges to unnatural, irregular surfaces.
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IV. DISCUSSION AND CONCLUSIONS
In this work, we have presented an active shape model-based approach for identifying
structures that are partially visible in conventional imaging. In this approach, we rely on
high resolution images of cadaveric specimens to serve two functions. First, they provide
information necessary to construct a shape model of the structure, permitting segmentation
of the structure in conventional imaging by coupling information from the image and non-
rigid image registration to drive an active shape model to an accurate solution. Second, the
high resolution images are used to validate the results. This is performed by projecting
manually segmented structures from high resolution to conventional images using image
registration, and comparing those structures to automatic segmentations. We have applied
this approach to identify intra-cochlear anatomy in CT and validate the results; however, the
approach is generic, and could theoretically be applied to other structures that are fully
visible only in high resolution imaging.

While the number of samples used to build the model is relatively small, the leave-one-out
study presented here suggests that there are enough samples for the active shape model to
approximate the range of typical, non-malformed cochleae. This technology has, in fact,
already been integrated into a system to assess post-operative electrode position [20,21],
which has successfully been used to identify scalae and electrode position in 16 patients
[22]. The methods presented in this paper are able to automatically capture the non-rigid
variations of the scalae for accurately assessing electrode position, which differs from the
conventional approach where a rigid model of the anatomy is manually align with the image
to identify electrode position [1,23]. The scalae segmentation method has also been used for
pre-operative planning of minimally invasive methods in 18 ears [24]. These studies and the
results presented in this paper suggest that the model is powerful enough to capture the
typical variations of the cochlea.

This work has shown that it is possible to accurately identify the location of the scala
tympani and scala vestibuli using conventional CT. This is possible because the position of
the intra-cochlear membrane separating the scalae varies predictably with respect to the rest
of the cochlea. The approach we present accurately locates the basilar membrane in
conventional CT by attracting the exterior walls of the models of intra-cochlear anatomy
towards the edges of the cochlea. This approach achieves DSC of approximately 0.75, sub-
millimetric maximum error distance for the scala tympani, and produces solutions that
appear qualitatively reasonable. These results suggest that our approach can provide the
surgeon with explicit knowledge of the location of surgical targets.

For these segmentations of the scalae to be useful, their position must be assessed relative to
adjacent, visible surgical landmarks. We have previously presented approaches to identify
such anatomy in CT, e.g., the ossicles [25] and the promontory [5]. Thus, a system that
integrates visualization of all of the relevant visible and hidden anatomy could prove to be
useful as a surgical aid. In future work, we will perform experiments to confirm that
providing this information to the surgeon improves implantation results.
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Figure 1.
Superior-to-inferior view (left) and lateral-to-medial view (right) of ear anatomy. Shown are
the cochlear labyrinth (yellow), facial nerve (purple), chorda tympani (green), auditory canal
(blue-green), scala tympani (red), scala vestibuli (blue), and the traditional surgical approach
(orange tube).

Noble et al. Page 13

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
CT (top) and μCT (bottom) of a cochlea specimen. Delineated in the right panels are the
scala tympani (red) and scala vestibuli (blue).
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Figure 3.
Constructing a point distribution model from a set of surfaces.
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Figure 4.
Performing segmentation with the active shape model.

Noble et al. Page 16

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 October 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
First (top row) and second (bottom row) modes of variation of the scala tympani (red) and
vestibuli (blue) in the point distribution model. On the left are (from left to right) −2, 0, and
+2 standard deviations from the mean in Posterior-to-Anterior view. The same modes are
shown on the right in Medial-to-Lateral view.
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Figure 6.
Quantitative segmentation results. Shown are the distributions of the DSC (left), mean
surface distance in mm (middle), and max surface distance in mm (right) for the results of
the active shape model (A.S.) and registration alone (Reg.). Arrows indicate the results for
the experiment shown in Figure 7.
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Figure 7.
Contours of representative segmentation results. Automatic segmentation results for the
scala tympani (red) and scala vestibuli (blue) are shown overlaid with the conventional CT
(top row), and registered μCT (middle and bottom rows), and are compared to manually
delineated contours of the scala tympani (light blue) and scala vestibuli (green).
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Figure 8.
Segmentations color encoded with error in mm for the experiments 1–5 (Up to Down). (Left
to Right) Active shape model segmentation of the scala tympani, scala vestibuli, atlas-based
segmentation of the scala tympani, scala vestibuli.
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