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Abstract
Depth estimates from disparity are most precise when the visual input stimulates corresponding
retinal points or points close to them. Corresponding points have uncrossed disparities in the upper
visual field and crossed disparities in the lower visual field. Due to these disparities, the vertical
part of the horopter—the positions in space that stimulate corresponding points—is pitched top-
back. Many have suggested that this pitch is advantageous for discriminating depth in the natural
environment, particularly relative to the ground. We asked whether the vertical horopter is
adaptive (suited for perception of the ground) and adaptable (changeable by experience).
Experiment 1 measured the disparities between corresponding points in 28 observers. We
confirmed that the horopter is pitched. However, it is also typically convex making it ill-suited for
depth perception relative to the ground. Experiment 2 tracked locations of corresponding points
while observers wore lenses for 7 days that distorted binocular disparities. We observed no change
in the horopter, suggesting that it is not adaptable. We also showed that the horopter is not
adaptive for long viewing distances because at such distances uncrossed disparities between
corresponding points cannot be stimulated. The vertical horopter seems to be adaptive for
perceiving convex, slanted surfaces at short distances.
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Introduction
The ground is a prominent feature of the natural environment. It is usually perpendicular to
the main axis of the head and body because humans tend to keep themselves aligned with
gravity. The pervasiveness of the ground confers a simple relationship between distance and
position in the visual field: Near points stimulate the lower field and far points stimulate the
upper field. This relationship between environmental structure and position in the visual
field yields a systematic pattern of binocular disparities on the retinas: crossed disparity
below fixation and uncrossed disparity above fixation (Hibbard & Bouzit, 2005; Potetz &
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Lee, 2003; Yang & Purves, 2003). It would be useful to take advantage of this regularity
when estimating the structure of the environment.

Depth estimates from disparity are most precise when the visual input strikes the retinas on
empirical corresponding points (Blakemore, 1970). It is useful to describe those points with
respect to geometric points. Geometric corresponding points are pairs of points with the
same coordinates in the two retinas: By definition, they have zero disparity. The two
anatomical vertical meridians of the eyes (great circles with zero azimuth) are an example of
a set of geometric corresponding points. The locations in the world that stimulate geometric
corresponding points define the geometric horopter. When fixation is in the head’s mid-
sagittal plane, the geometric vertical horopter is a vertical line through fixation (1a).
Empirical corresponding points are generally defined by determining positions in the two
retinas that, when stimulated, yield the same perceived-direction. Empirical and geometric
points differ in that empirical points have uncrossed disparities in the upper visual field and
crossed disparities in the lower field (i.e., in the upper field, points are offset leftward in the
left eye relative to their corresponding points in the right eye; in the lower field, they are
offset rightward). This pattern of offsets is often described as a horizontal shear between the
empirical corresponding meridians, and this causes the empirical vertical horopter—the
locus of points in the world that stimulate empirical corresponding points near the vertical
meridians—to be pitched top-back (Figure 1b). The qualitative similarity between the
disparities of empirical corresponding points and the disparities cast on the retinas by natural
scenes has led to the hypothesis that corresponding points are adaptive for precisely
perceiving the 3D structure of the natural environment (Breitmeyer, Battaglia, & Bridge,
1977; Helmholtz 1925; Nakayama, 1977).

The third column of Table 1 (marked θv) shows the measured angle between corresponding
points near the vertical meridians in all published experiments that used the criterion of
equal perceived-direction. The angle is positive in every case, consistent with corresponding
points having crossed disparities in the lower visual field and uncrossed disparities in the
upper field. However, the measured angle could be a consequence of cyclovergence, the
disconjugate rotation of the eyes around the visual axes (Amigo, 1974). Cyclovergence
causes equal rotations between the vertical and horizontal meridians, whereas the
hypothesized shear of corresponding points should affect only the horizontal offsets between
corresponding points near the vertical meridians. Therefore, to quantify the retinal shear
angle, the cyclovergence angle must be subtracted from the measured angle between
corresponding points near the vertical meridians. Specifically,

(1)

where θr is the true retinal horizontal shear angle between corresponding points near the
vertical meridians, θv is the measured angle, and θh is cyclovergence. (Obviously, if
cyclovergence is zero, the true retinal shear and measured shear are equal.) The last column
of Table 1 shows this adjustment for the studies in which both measurements were made.
After adjustment, the shear angles are still all positive.

As illustrated in Figure 2, a positive shear between corresponding points near the vertical
meridians would make the empirical vertical horopter parallel to the ground plane when an
observer’s fixation is earth horizontal at infinity. Indeed, the horopter becomes coincident
with the ground if the shear angle is
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(2)

where I is the observer’s inter-ocular distance and h is the observer’s eye height. We will
call θo the optimal shear angle. With I = 6.5 cm and h = 160 cm, θo = 2.3° (Schreiber, Hillis,
Fillipini, Schor, & Banks, 2008). The experimental measurements of the shear angle are
reasonably consistent with this optimal value (Table 1). The similarity between observed
and optimal shear angles suggests that the vertical horopter may be adaptive for making
depth discriminations in the natural environment. Furthermore, for fixations on the ground
in the head’s sagittal plane, Listing’s Law dictates that the horopter will remain coincident
with the ground for an observer with an optimal shear value (Helmholtz, 1925; Schreiber et
al., 2008). This is also illustrated in Figure 2.

Cats and terrestrial owls are much shorter than humans, so by the above argument their
optimal shear angles should be much larger than 2.3° (optimal shear angles for cats and owls
are ~10.8° and ~10.6°, respectively). Indeed, physiological data indicate that their shear
angles are near these optimal values (Cooper & Pettigrew, 1979), which are consistent with
the hypothesis that the shear is adaptive for terrestrial species.

Here, we examine two hypotheses about how the shear angle between corresponding points
came to be: the adaptability hypothesis and the hard-coded hypothesis. The adaptability
hypothesis is that an individual’s shear angle is determined by his/her experience with the
natural environment. According to this hypothesis, corresponding points adapt to optimize
precision in depth estimation based on each individual’s experience: If experience changes,
the shear should change. The hard-coded hypothesis claims that the shear is hard-coded into
the visual system because it confers an evolutionary advantage; that is, the shear is adaptive
but not adaptable.

We performed a series of experiments to test these two hypotheses. While both hypotheses
predict that the average shear angle in the population should be close to the average optimal
value, the adaptability hypothesis makes the additional prediction that the shear should
change with individual experience. We tested this prediction by determining whether
observers with different inter-ocular distances and eye heights have different shear angles
(Equation 2) and by determining whether an observer’s shear angle changes when the
experienced patterns of disparities are systematically altered by distorting lenses.

Methods
General methods

In each experiment, we measured the locations of corresponding points using the apparent-
motion paradigm of Nakayama (1977). Our primary interest was to determine their locations
near the eyes’ vertical meridians, but we also measured their locations near the horizontal
meridians so that we could subtract any contribution of cyclovergence.

Apparatus—Observers sat 114 cm from a large back-projection screen (61° wide by 51°
high) and wore red–green anaglyph glasses. Display resolution was 1280 × 1024 pixels;
each pixel subtended 3 arcmin. Observers were positioned and stabilized with a bite bar such
that the midpoint of their inter-ocular axis intersected a surface normal from the center of the
screen. The room was dark except for the illuminated screen.

Stimulus and procedure—Observers were instructed to divergently fuse a pair of
fixation targets that were presented at eye level and separated by the inter-ocular distance.
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Fusing these targets produced earth-horizontal fixation at infinity. To measure
corresponding points accurately, it is essential to keep eye position constant across trials.
The fixation targets were therefore constructed to allow observers to monitor their own
fixation. The targets consisted of a radial pattern of 30-arcmin line segments (Schreiber et
al., 2008). Some of the segments were presented to the left eye and some to the right (Figure
3a). By assessing the apparent vertical and horizontal alignments of the segments, observers
could monitor horizontal and vertical vergences, respectively. We told observers to initiate
trials only when the fixation targets were aligned and focused.

For measurements near the vertical meridians, the experimental stimulus consisted of two
dichoptic vertical line segments flashed in sequence. The presentation order between eyes
was randomized. Each segment subtended 0.75° vertically and 3.4 arcmin horizontally. They
were presented for 50 ms, with an inter-stimulus interval of 70 ms (Figure 3b). The line
pairs had the same elevation but were displaced horizontally by equal and opposite amounts
from the mid-sagittal plane. When the lines fell exactly on corresponding points, observers
perceived no horizontal motion; otherwise, they appeared to move leftward or rightward.
Line pairs appeared randomly at one of 14 vertical eccentricities from fixation (±2°, 3°, 4°,
5°, 6°, 7°, and 8°). By presenting stimuli at random eccentricities, we greatly reduced the
usefulness of anticipatory eye movements. After each trial, observers made a forced-choice
judgment of the direction of perceived motion. A 1-up/1-down adaptive staircase varied the
horizontal separation between the lines at each eccentricity, with five step-size reductions
and 14 reversals. Minimum step size was 1.7 arcmin. Data at each eccentricity were fit with
a cumulative Gaussian using a maximum likelihood criterion (Wichmann & Hill, 2001). The
mean of the best-fitting cumulative Gaussian (psychometric function) at each eccentricity
was defined as the line segment separation that stimulated corresponding points. Figure 4
shows some of these fits for one observer.

The horizontal separations of the points obtained from the Gaussian fits were plotted as a
function of eccentricity (Figure 5a). We fit the resulting data with two lines via weighted
linear regression. We defined the angle between the vertical meridians (θv) as the angle
between the best-fit regression lines for the left and right eyes. Azimuth and elevation are
plotted in Hess coordinates, a spherical coordinate system in which azimuth and elevation
are both measured along major circles (i.e., longitudes). Lines in Cartesian coordinates
project to major circles in spherical coordinates, and major circles are plotted as lines in
Hess coordinates. Therefore, lines in the world map to lines in Hess coordinates. Using this
coordinate system enabled us to readily assess whether the empirical horopter could lie in a
plane.

We measured cyclovergence while observers performed the main experimental task. We did
so by presenting dichoptic horizontal line segments near the horizontal meridians. The lines
were displaced vertically and observers indicated whether apparent-motion was upward or
downward (see Control experiments section for validation of this method). The procedure
was otherwise the same as the one we used to estimate corresponding points near the vertical
meridians. For these measurements of vertical offsets, 14 additional staircases were
randomly interspersed during a session with the other measurements.

Figure 5b plots the separations of line segments near the horizontal meridians that yielded
no apparent-motion. We fit these data with regression lines and the angle between these
lines was our estimate of cyclovergence. We then used these estimates (θh) to correct the
measurements near the vertical meridians (θv) and thereby obtain an estimate of the retinal
shear angle (θr; Equation 2). This is shown in Figure 5c.
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Experiment 1
In Experiment 1, we measured the horizontal shear angle in observers with different inter-
ocular distances and eye heights. The adaptability hypothesis predicts a positive correlation
between observers’ measured retinal shear (θr) and their optimal shear (θo from Equation 2).
The hard-coded hypothesis predicts no correlation.

Methods
Observers—We recruited 39 observers with a range of optimal shear angles. It was
impractical to recruit people based on their inter-ocular distance (most people do not know
it), so we recruited people of various heights. Consequently, the population included
members of the San Francisco Bay Area Chapter of the Little People of America and
members of college basketball and crew teams. Their overall heights ranged from 4.3 to 7.0
ft (129.5 to 213.4 cm).

Eleven observers were excluded because they had reduced stereoacuity, significant
exophoria or esophoria, or because they were unable to perform the task (staircases did not
converge). One observer was an author; the others were unaware of the experimental
hypotheses. All underwent training prior to data collection.

Figure 6a is a scatter plot of inter-ocular distances and eye heights. The two values were not
significantly correlated (r = 0.25, p = 0.2, df = 26), so our population had a reasonably wide
range of optimal shear angles: 1.5°–2.8° (mean = 2.1°). Figure 6b is a histogram of these
optimal values.

Results
Corresponding points—Figure 7 plots the positions of corresponding points near the
vertical meridians for all observers. Offsets due to fixation disparity were first eliminated
from the data by shifting the data from the two eyes horizontally until they intersected at
zero. Because no measurements were taken at 0° elevation, the amount of shift was
determined by finding the x-intercept of a regression line fit to the data (we used quadratic
regression lines because much of the data was poorly fit by lines). Rotations due to
cyclovergence (θh) were also subtracted as shown in Figure 5 (Equation 1). In agreement
with the previous literature, all but two observers had corresponding points with uncrossed
disparity above fixation and crossed disparity below fixation. (Observer KKD had uncrossed
disparity above but no clear pattern of disparity below fixation; LAT had no clear pattern at
all.) This means that the vertical horopters of nearly all observers are pitched top-back.

Retinal shear angle—Figure 8a is a histogram of the measured retinal shear values (θr).
The mean shear angle was 1.6° and the standard deviation was 0.8°. Figure 8b plots each
observer’s measured shear value against their optimal shear value. The two values were not
significantly correlated (r(26) = 0.07, p = 0.72). The non-significant correlation between
measured and optimal shear suggests that corresponding points are not adjusted to keep the
horopter in the ground plane for individuals. This is counter to a prediction of the
adaptability hypothesis. However, the average measured value was similar to the average
optimal value (2.1°), which is consistent with the hypothesis that the shear is hard-coded to
be adaptive for the population in general.

Curvature—In the Hess coordinates we used, lines in the world map to lines in the
corresponding point plots. Thus, if the vertical horopter lies in a plane, the data should be
well fit by lines. Figure 7 reveals that the data are generally not well fit by lines; this is
particularly evident in the far right column. These data are best fit by curves with centers
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that are bent toward zero azimuth. Such convex patterns generate convex vertical horopters
(i.e., relative to a slanted line, it is farther from the observer above and below fixation). To
illustrate this, Figure 9 shows a side view of the horopter for two observers who are fixating
on the ground plane at 0.5 and 1.5 m ahead. Eye position for declined gaze was determined
using Listing’s Law, so the horopter should be coincident with the ground if the shear is
optimal (Equation 2). Observer JAI had a reasonably linear pattern of corresponding points,
and the horopter is therefore approximately linear (left panel). Because the shear angle is
close to the optimal value, the horopter is also approximately coincident with the ground
plane. Observer SEC had a convex pattern of corresponding points, and the horopter is
therefore convex and not coincident with the ground (right panel). The prevalence of convex
correspondence patterns in our data is thus inconsistent with the original hypothesis that the
pattern of corresponding points is an adaptation to the ground plane (Helmholtz, 1925;
Schreiber et al., 2008).

To check that the observation of curved correspondence patterns was not caused by a
procedural or computational error, we also measured the curvature of corresponding points
near the horizontal meridians. Along these meridians, the correspondence pattern should not
be curved because non-zero vertical disparities in the apparent-motion task would
presumably manifest non-zero cyclovergence. To test this prediction, we compared
quadratic regressions of the measurements near the vertical and horizontal meridians for all
observers. A two-tailed t-test also revealed that the coefficients on the quadratic terms for
the fits near the horizontal meridians were not significantly different from zero (mean =
0.001, df = 26, p = 0.496), which means, as we expected, that there is no curvature in the
pattern of correspondence near the horizontal meridians. In contrast, the coefficients for the
fits near the vertical meridians were significantly less than zero (mean = −0.009, df = 26, p =
0.004), consistent with convex horopters.

Experiment 2
In Experiment 1, we observed that the horizontal shears for individual observers were not
well correlated with the optimal shears (Equation 2). This result is inconsistent with the
adaptability hypothesis. However, our calculation of the optimal shear assumes that the
retinal shear is specifically adaptive for the pattern of disparities cast by the ground plane at
standing height for fixations in the mid-sagittal plane. Perhaps this specific shear value does
not reflect the majority of an observer’s experience with disparities in the natural
environment. Thus, to further test the adaptability hypothesis, we systematically sheared the
disparities delivered to the eyes for seven consecutive days using distorting lenses. If the
horopter is adaptable, the shear angle between corresponding points should change in the
direction of the shear added by the lenses. If it is hard-coded, no change in shear should
occur.

Methods
Observers—Five observers participated. All had corrected-to-normal vision and normal
stereoacuity, and all underwent training prior to data collection. Two were authors; the
others were unaware of the experimental hypotheses.

Stimulus and procedure—For all waking hours of seven consecutive days, observers
wore lenses over the two eyes that systematically altered the pattern of incident disparities.
The lenses were afocal unilateral magnifiers (Ogle & Ellerbrock, 1946); they magnify the
image along one axis, and not the orthogonal axis, without introducing an astigmatic
difference in focal power. The lenses were situated in a frame with their principal axes
rotated by ±1.5°. They created equal and opposite shears of the images of a vertical line
(±3°), and those shears were opposite to the ones for a horizontal line (±3°). Our goal was to
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create only a horizontal shearing of vertical lines, but the additional vertical shearing of
horizontal lines was a necessary byproduct of creating lenses that did not cause defocus. The
overall effect is illustrated in Figure 10.

Three observers wore lenses that created a horizontal shear of +3° (extorsion) and two wore
lenses creating a shear of −3° (intorsion). When the lenses were initially put on,
frontoparallel surfaces appeared to be pitched top-back (extorting lenses) or top-forward
(intorting lenses), as expected from the geometry of the viewing situation (Ogle &
Ellerbrock, 1946).

We measured the patterns of corresponding points before, during, and after wearing the
lenses. The equipment, stimulus, and procedure were identical to Experiment 1. After an
initial training session, subjects came in 24 h prior to putting on the lenses and performed
one measurement. There were eight measurements taken during lens wear because one
measurement was taken immediately after putting the lenses on, and then measurements
were taken at approximately 24-h intervals for the next 7 days. The first post-lens
measurement was taken immediately after the lenses were removed on the seventh day and
the next measurement was taken 24 h later. As before, we used measurements of vertical
disparities near the horizontal meridians to measure cyclovergence and used those
measurements to estimate the retinal shear near the vertical meridians.

Results
To determine how much the retinal shear angle (θr) changed in response to the distorting
lenses, we had to take into account the effects of the optical shear caused by the lenses
(because observers wore them during the experimental measurements) and of
cyclovergence. To take the optical shear into account, we subtracted the horizontal shear due
to the lenses (i.e., +3° or −3°) from the empirical measurements. To take the cyclovergence
into account, we subtracted the measured cyclovergence values as in Experiment 1. We
found that cyclovergence changed slightly during lens wear: The average increase was 0.5°
for observers wearing lenses with ω = +3° and −0.1° for those wearing lenses with ω = −3°.
Vertical shear disparity along the horizontal meridians induces cyclovergence (Crone &
Everhard-Halm, 1975), so the change in cyclovergence we observed was surely due to the
vertical disparities of the lenses near the horizontal meridians.

Figure 11 shows the corrected retinal shear angle before, during, and after wearing the
lenses. There was no systematic change in the retinal shear angle between the vertical
meridians for any of the observers. We conclude that corresponding points near the vertical
meridians do not adapt in response to a 7-day change in the disparities delivered to the eyes.
Consequently, the vertical horopter does not adapt to visual input, at least over the course of
a week. This finding, coupled with the observation of no correlation between observer traits
(eye height and eye separation) and retinal shear (Figure 8), implies that the vertical horopter
is not adaptable.

Despite no change in retinal corresponding points, all five observers experienced perceptual
adaptation. They reported that the world appeared distorted when they first wore the lenses
(e.g., depending on the sign of ω, frontoparallel surfaces appeared slanted top-back or top-
forward, and perceived height was increased or decreased, respectively). However, after 5
days of lens wear, everyone reported that the world appeared undistorted. Four of them also
reported perceptual distortions in the opposite direction when the lenses were removed.
Closing an eye eliminated the perceptual aftereffect, which suggests that the perceptual
effects were due to changes in the interpretation of binocular information and not due to
changes in monocular shape representation. However, additional tests would be necessary to
confirm this.
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Control experiments
Measuring cyclovergence

We assessed the validity of our method for measuring cyclovergence. This subjective
method has been frequently used (Banks, Hooge, & Backus, 2001; Ledgeway & Rogers,
1999; Nakayama, 1977) but rarely compared to an objective measurement (but see Crone &
Everhard-Halm, 1975; Howard, Ohmi, & Sun, 1993). To assess validity, we measured
cyclovergence in the same observers at the same time using the subjective method and an
objective measurement of eye position.

Methods—Four observers participated; all were unaware of the experimental hypotheses.
They performed the subjective task (described earlier) while the torsional position of both
eyes was measured using an eye tracker. Stimuli were projected on 70° × 70° screen 100 cm
from the midpoint of the inter-ocular axis. Pixels subtended 3.5 arcmin. The eye tracker was
an infrared video-oculography system (SensoMotoric Instruments, Teltow, Germany). It
captures 60-Hz video of the pupils and irises and determines cyclovergence by measuring
the relative rotation of the irises.

At the beginning of each session, observers fixated a dichoptic target that created stable
earth-horizontal fixation at infinity. The center of the target was identical to the fixation
target used in the previous experiments. A larger stabilizing stimulus was added to aid
alignment of the horizontal meridians of the eyes. This stimulus was a pattern of six 40°-
long bioptic (identical in both eyes) radial line segments. After fusing this stimulus for 1
min, eye position was recorded and used as the reference position for the eye tracker. Next,
the observer’s eyes were induced to change cyclovergence. To induce such changes, we
presented a pattern of 40°-long horizontal lines that were rotated in opposite directions for
the two eyes by ±3°, ±2°, ±1°, and 0° (Crone & Everhard-Halm, 1975). This new stimulus
was also viewed for 1 min. We then began the eye tracking and subjective task. To maintain
cyclovergence, the inducing stimulus was presented for 3 s between each apparent-motion
trial.

We used the data from the eye tracker as the objective measure of cyclovergence and the
data from the apparent-motion task as the subjective measure. The time series data from the
eye tracker were thresholded by dropping measurements with reliabilities less than 75%.
These reliabilities are calculated automatically by the eye tracker for each time point and
reflect the agreement between the current image of the iris and the initial calibration image
(Pansell, Schworm, & Ygge, 2003). Time stamps from the eye tracker and the apparent-
motion stimulus were used to select the eye-tracking data obtained within ±100 ms of the
middle of each apparent-motion trial. Only eye-tracking data obtained within these time
windows were included for analysis. The apparent-motion data were analyzed as before to
obtain the subjective measure of cyclovergence.

Results—Figure 12 plots the objective and subjective estimates of cyclovergence as a
function of the rotation of the cyclovergence stimulus. Each panel shows an individual
observer’s data. The agreement between the two measures was excellent, which validates
the subjective method for measuring cyclovergence.

Cyclovergence in natural viewing
We were concerned about how to properly correct for cyclovergence when estimating the
shear angle between corresponding points. Previous studies subtracted cyclovergence from
the measured shear in order to estimate the retinal shear angle (Equation 1 and Table 1).
However, what if cyclovergence under natural viewing conditions—such as gazing at the
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horizon while standing upright—is not zero? In that case, subtracting cyclovergence would
not yield an estimate of the surface that stimulates corresponding points in natural viewing.
To do this, we need to know the cyclovergence of the eyes in natural viewing and then
subtract that value from the measured shear. To this end, we next measured cyclovergence
for upright observers when a binocular stimulus simulating a floor and hallway was present.
We then compared that value to the cyclovergence when only a dichoptic fixation target was
present (as in Experiments 1 and 2).

Methods—Five of the original 28 observers participated. We measured cyclovergence
using the apparent-motion task. As before, fixation was earth horizontal at infinity. In one
condition, the only visible stimuli were the dichoptic fixation target and the flashed lines
used in the apparent-motion task (Figure 3); the room was otherwise completely dark. In a
second condition, we added a random-dot stereogram that simulated the walls and floor of a
hallway. The slant of the simulated floor was adjusted for each individual observer to be the
same as the slant of a ground plane viewed while standing upright. The conditions were
presented in random order.

Results—The average cyclovergence angles in the first (the one with only the fixation
target) and second (the one with the floor and walls added) conditions were 0.50°(standard
error = 0.14°) and 0.03° (standard error = 0.10°), respectively. These estimates were
significantly different (pairwise t-test; df = 8, p = 0.01). They were significantly greater than
0° in the first condition (blank) but not in the second condition (hallway). Assuming that the
second condition is more representative of natural viewing than the first condition, these
results illustrate the need to measure and correct cyclovergence to zero in Experiments 1 and
2. Thus, our correction procedure was justified.

Discussion
Summary

We found no evidence that the horopter is adaptable: There was no correlation between an
observer’s eye height/separation and their retinal shear angle and no effect on corresponding
point locations after wearing distorting lenses for a week. While null effects can be difficult
to interpret, we can conclude that there is no strong effect of experience on the vertical
horopter, at least in adults.

We did find that the shear was positive in all but one observer, and that the average shear
angle of our observers was similar to the predicted optimal shear angle based on eye height/
separation. This is consistent with the hypothesis that the location of the horopter is hard-
coded because it is adaptive. However, we also found that many observers had patterns of
retinal correspondence that yielded convex horopters. Curved horopters are inconsistent with
the hypothesis that the horopter is especially adaptive for making depth discriminations
relative to the ground plane. Perhaps the shear is an adaptation to some other common
situation in natural viewing.

Convexity
With the exception of Amigo (1974), all previous papers on the vertical horopter have
described the deviation of empirical corresponding points from geometric points as a
horizontal shear, i.e., horizontal offsets proportional to elevation. We will refer to this
correspondence pattern as linear because the offsets can be fit with lines. As noted earlier,
we observed systematic deviations from linearity in most observers (Figure 7).
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It turns out that this deviation has been observed before. Figure 13 plots the data from the
three previous studies of the vertical horopter that used the criterion of perceived-direction
and that reported data for individual observers. Non-linear correspondence patterns are quite
evident in some observers (PG, PRM, KMS) and perhaps present in others (CWT, AC, NU).
Importantly, whenever a deviation from linearity occurs (in our data and theirs), it is always
convex (i.e., centers bent toward zero azimuth). Convex patterns of correspondence are
evidently common.

In the Hess coordinates we used, convex patterns of corresponding points yield convex
vertical horopters. Such horopters cannot be coincident with the ground plane. The observed
convexity is thus inconsistent with the theory that the vertical horopter manifests an
adaptation for depth perception relative to the ground. Perhaps the horopter is adaptive for a
different property of the natural environment.

There is good evidence that the visual system has an expectation, or Bayesian prior, for
convex shapes (Langer & Bülthoff, 2001; Liu & Todd, 2004; O’Shea, Agrawala, & Banks,
2010; Sun & Perona, 1998). Such an expectation makes sense because most objects are
mostly convex. Perhaps the convexity of the vertical horopter is an adaptation for the most
likely shape of surfaces in the natural environment. To evaluate this idea, we need to also
examine the shape of the horizontal horopter. The geometric horizontal horopter is the
Vieth–Müller Circle: the circle containing the fixation point and the nodal points of the eyes.
Figure 14a shows a plan view of the geometric horizontal horopter. As shown in Figure 14b,
the empirical horizontal horopter is less concave than the geometric horopter, and the
Hering–Hillebrand deviation (H) quantifies the difference:

(3)

where αL and αR are the angular locations of corresponding points along the horizontal
meridians in the left and right eyes, respectively. Note that the empirical and geometric
horizontal horopters are the same when H = 0. Table 2 shows the H values reported from
several previous studies that used the perceived-direction criterion. H is always greater than
zero except for observer HRF in Schreiber et al. (2008) and she has intermittent strabismus.

We next compared the shapes of the vertical and horizontal horopters and determined how
those shapes changed with viewing distance. For this analysis, we used our measurements of
corresponding points near the vertical meridians and data from the literature for
corresponding point data near the horizontal meridians (Table 2). First, we calculated
average horopters from the vertical and horizontal data. To do this, we found the average
offset between corresponding points at each retinal eccentricity (between −8 and 8°) and
determined the locations in space that would stimulate those points. Figure 15a shows top
and side views of the average horizontal and vertical horopters, respectively, for three
fixation distances (0.5, 1, and 2 m). Fixation is earth horizontal in the mid-sagittal plane.
Note that the horizontal horopter is approximately planar at the near distance and becomes
increasingly convex at greater distances. The vertical horopter is pitched top-back and is
convex at all distances, but the pitch and convexity increase with distance. Next, we
quantified the changes in horopter curvature as a function of fixation distance. We plotted
each observer’s horopter as a function of eccentricity (azimuth for the horizontal horopter
and elevation for the vertical). Then, we fit a second-order polynomial to those data and
calculated the second derivative (∂2Z/∂E2). Figure 15b plots the second derivative as a
function of fixation distance for the vertical and horizontal horopters. Positive and negative
values indicate convex and concave shapes, respectively. Greater magnitudes indicate
greater curvature. As expected, the vertical horopter is convex at all distances and becomes
increasingly so with increasing distance. The horizontal horopter is concave at near distance
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(see inset where the second derivative is less than zero), becomes planar at approximately
0.46 m (the abathic distance), and becomes increasingly convex at greater distances. For
comparison, we also plot the results of the same analysis for a basketball (men’s size 7,
radius = 11.8 cm). We used a cross-section of the basketball to determine the osculating
circle for a parabola and calculated the second derivative. The basketball is more convex
than the horizontal horopter at all plotted distances (at sufficiently great distance, the
horopter becomes more convex than the ball). The basketball is more convex than the
vertical horopter for distances less than 2 m and less convex than the horopter at greater
distances.

This analysis shows that corresponding points are best suited for surfaces that are generally
convex and pitched top-back. It would be quite interesting to see if such surfaces are
commonplace in natural scenes, particularly surfaces at relative close range where stereopsis
is precise.

Subjective measurement of cyclovergence
We estimated cyclovergence in our experiments by measuring the perceived offsets between
dichoptic horizontal line segments (i.e., a nonius task). Two previous studies compared
subjective (nonius) and objective (eye tracking) estimates of cyclovergence. Howard et al.
(1993) compared subjective estimates from vertical nonius lines presented above and below
the foveae to objective estimates obtained with scleral search coils. The two estimates did
not yield the same values, so they concluded that subjective measurements do not provide an
accurate measure of cyclovergence. Crone and Everhard-Halm (1975) compared estimates
from horizontal nonius lines slightly above and below the foveae to the locations of ocular
blood vessels. They observed close agreement between the two estimates and concluded that
subjective methods do allow one to estimate cyclovergence. Unfortunately, Crone and
Everhard-Halm made few measurements, so their data were not very convincing.

We propose that the disparity between these two reports stems from the difference in the
orientation and location of the nonius lines. The perceived alignment of vertical lines above
and below fixation will be affected by both cyclovergence and the shear of retinal
corresponding points above and below the foveae. This is not true for horizontal lines near
the horizontal meridians because corresponding points in those retinal regions have the same
anatomical elevations in the two eyes; as a consequence, perceived misalignment of
horizontal lines is caused by cyclovergence alone. The results of our control experiment
confirm that horizontal nonius lines presented near the horizontal meridians provide an
accurate estimate of cyclovergence across a wide range of eye positions. Thus, horizontal
lines to the left and right of fixation should be used when estimating cyclovergence
subjectively.

Natural situations in which corresponding points cannot be stimulated
The top-back pitch and curvature of the vertical horopter may be adaptive for short viewing
distances, but they are not beneficial for long ones. Here, we show that the pitch and
curvature of the horopter preclude the stimulation of corresponding points in the upper
visual field at long viewing distances.

In natural viewing, there can never be greater uncrossed disparities than the disparities
created by light rays that are parallel to one another (i.e., coming from infinite distance).
Because the corresponding points above fixation have uncrossed disparity, there is a fixation
distance beyond which those points could never be stimulated by the natural environment.
We calculated these critical fixation distances for each retinal eccentricity. In the left panel
of Figure 16, a binocular observer fixates a point in the head’s mid-sagittal plane at distance
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Z0 while a point at distance Z1 stimulates the retina at locations αL and αR relative to the
foveae. The horizontal disparity due to Z1 is the difference in those locations. The horizontal
disparity in radians is given by

(4)

where I is the inter-ocular separation (Held, Cooper, O’Brien, & Banks, 2010). Rearranging,
we obtain

(5)

This is the object distance that is associated with a given disparity and fixation distance.
Those distances are plotted in the right panel of Figure 16. Blue and red curves correspond
to combinations of fixation distances (Z0) and object distances (Z1) for positive (uncrossed)
disparities and negative (crossed) disparities, respectively; the disparities have been
converted to degrees. For each positive disparity, there is a greatest fixation distance Z0 at
which it is possible for that disparity to arise from the natural environment. That greatest
distance is I/δ (Equation 5 for Z1 = ∞). For disparities of +0.1° and +1.0°, the greatest
fixation distances are 34.4 and 3.44 m, respectively (indicated by arrows in the figure).
Greater distances could not possibly give rise to the observed disparity.

Corresponding points nearly always have uncrossed disparity above fixation. The analysis in
Figure 16 shows that for each retinal eccentricity, there is a fixation distance beyond which
real stimuli cannot stimulate corresponding points. Figure 17 shows those distances as a
function of eccentricity in the upper visual field. We conclude there are many natural
viewing situations in which corresponding points in the upper visual field cannot possibly be
stimulated. (This situation does not generally occur in the lower visual field because
corresponding points there almost always have crossed disparity.) Because disparity-based
depth discrimination is most precise when corresponding points are stimulated, the precision
of depth perception is compromised in such viewing situations.

There are many reasons that stereopsis is not well suited for long viewing distance (Howard
& Rogers, 2002). The fact that real scenes cannot stimulate corresponding points in a large
portion of the visual field when the viewer fixates more than a few meters away is yet
another.
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Figure 1.
Geometric and empirical vertical horopters. Green and red spheres represent the left and
right eyes, respectively. (a) The anatomical vertical meridians of the eyes are geometric
corresponding points. When these points are projected into the world, they intersect at a
vertical line in the head’s mid-sagittal plane (here through fixation): this is the geometric
vertical horopter. (b) The empirical vertical horopter has crossed disparity below fixation
and uncrossed disparity above fixation, causing a top-back pitch.
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Figure 2.
Vertical horopter and the ground. Green and red spheres represent the left and right eyes,
respectively. The green and red circles represent the sheared empirical meridians associated
with empirical corresponding points. When the eyes are fixated parallel to the ground at
infinity, the vertical horopter is a horizontal line extending to meet fixation at infinity. For a
given eye height and inter-ocular distance, the optimal shear angle places the horopter in the
ground plane. Due to Listing’s Law, the horopter remains in the ground when the eyes fixate
the ground in the sagittal plane.
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Figure 3.
Stimulus and procedure. Observers wore red–green anaglyph glasses. Green, red, and yellow
lines represent stimuli seen by the left, right, and both eyes, respectively. (a) The appearance
of the fixation target when fused: perceived alignment of dichoptic vertical and horizontal
segments indicated accurate horizontal and vertical vergences. Radial bioptic lines aided
with maintenance of alignment. (b) Temporal sequence of screens for a trial and the
resulting percept integrated over time.
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Figure 4.
Psychometric functions for observer XMP. Each panel shows the responses for one vertical
eccentricity (+8°, +5°, +2°, −2°, −5°, and −8°). The abscissas are the horizontal separation
between the lines shown to the left and right eyes. Negative separations indicate uncrossed
disparities, and positive separations indicate crossed disparities. The ordinates are the
proportion of observer responses indicating that the line presented to the left eye was
perceived to the right of the line presented to the right eye (i.e., indicating the lines had
crossed disparity). The data were fit with cumulative Gaussians. The means of the Gaussians
(indicated by the red vertical lines) were defined as the disparities between corresponding
points at each eccentricity.
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Figure 5.
Data from one observer. The data in each panel are plotted in Hess coordinates. (a)
Measurements near the vertical meridians before correction for cyclovergence. The abscissa
is the horizontal line segment separation for which no motion was perceived. The ordinate is
vertical eccentricity. The scale of the abscissa is expanded relative to the scale of the
ordinate. At each eccentricity, the green and red dots indicate the measured locations in the
left and right eyes, respectively. Error bars represent 95% confidence intervals. The angle
between the regression lines is the angle between the measured positions (θv). (b) Measured
positions of corresponding points near the horizontal meridians. The abscissa is the vertical
line separation for which no motion was seen. The ordinate is horizontal eccentricity. The
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angle (θh) is presumed to be due to cyclovergence. (c) Retinal positions of corresponding
points near the vertical meridians once corrected for cyclovergence (θr; Equation 2).
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Figure 6.
Eye height, inter-ocular distance, and optimal shear (θo) angles for the observer population.
(a) Scatter plot of eye heights and inter-ocular distances. (b) Histogram showing the
distribution of optimal shear angles for the sample population. The mean and standard
deviation are shown in the upper left.
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Figure 7.
Locations of corresponding points for all observers. The abscissa is the azimuth and the
ordinate is the vertical eccentricity. The scale of the abscissa is expanded relative to the
scale of the ordinate. The data are plotted in Hess coordinates, a system in which lines in the
world map to lines in azimuth–elevation plots. At each eccentricity, the green and red dots
indicate the locations of corresponding points in the left and right eyes, respectively. Error
bars are 95% confidence intervals for azimuth measurements. Rotations due to
cyclovergence (θh) and offsets due to fixation disparity were first subtracted from the data.
We corrected for fixation disparity by finding the abscissa value at which the regression
lines intersected, and then shifting the data horizontally such that the intersection had an
ordinate value of zero.
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Figure 8.
Retinal shear angle in individual observers. (a) Histogram showing distribution of measured
retinal shear angles after correction for cyclovergence. The mean and standard deviation are
shown in the upper left. (b) Scatter plot of optimal and measured retinal shear angles. The
abscissa and ordinate are the optimal and measured angles (again after correction),
respectively. Error bars are standard errors, determined by bootstrapping.
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Figure 9.
Vertical horopters for two observers. The abscissa is the distance along the ground from the
observer’s feet. The ordinate is elevation relative to the ground. Two gaze positions are
shown with fixation on the ground at 0.5 and 1.5 m in the mid-sagittal plane. In calculating
the horopters, eye position was consistent with Listing’s Law. (Left) The vertical horopter
for observer JAI with linear corresponding point data. This horopter coincides roughly with
the ground. (Right) The vertical horopter for SEC with curved corresponding point data. The
horopter is convex and therefore not coincident with the ground plane.
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Figure 10.
Distorting lenses worn by observers in Experiment 2. Each lens was an afocal unilateral
magnifier. The lenses were rotated in opposite directions in the two eyes by ±ω/2°, creating
a horizontal shear disparity of ω° in the projection of vertical lines. The lenses also created a
vertical shear disparity of −ω° in the projection of horizontal lines.
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Figure 11.
Retinal shear angle before, during, and after wearing the distorting lenses. Corrected retinal
shear angle is plotted for each day. The angle has been corrected for cyclovergence and for
the shearing effects of the lenses. Thus, the plotted values reflect changes in the retinal
positions of corresponding points. One measurement was made before putting the lenses on
(gray squares), eight were made while the lenses were on (black squares), and two were
made after the lenses were taken off (gray squares). The arrows indicate the days the lenses
were first put on and first taken off. Error bars are 95% confidence intervals obtained by
bootstrap.
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Figure 12.
Subjective and objective estimates of cyclovergence. Each panel shows the data from an
individual observer. The abscissa is the angular rotation of the inducing lines and the
ordinate is the cyclovergence measured with the apparent-motion task (red) and the eye
tracker (blue). Error bars are 95% confidence intervals.
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Figure 13.
Patterns of corresponding points from previous studies. The data in each panel are plotted in
Hess coordinates. The abscissa is the azimuth of the line segments for which no motion is
perceived. The ordinate is vertical eccentricity. The scale of the abscissa is expanded relative
to that of the ordinate. The green and red dots indicate the measured locations of
corresponding points in the left and right eyes, respectively.
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Figure 14.
Geometric and empirical horizontal horopters. Circles represent the left and right eyes that
are fixating a point in the mid-sagittal plane. (a) Geometric corresponding points along the
horizontal meridians have equal horizontal offsets in the eyes: αL = αR. When these points
are projected into the world, they intersect at a circle containing the fixation point and the
nodal points of the eyes. This is the geometric horizontal horopter, or Vieth–Müller Circle.
(b) Empirical corresponding points along the horizontal meridians have unequal offsets: αL
> αR. This is quantified by the Hering–Hillenbrand deviation (H). The deviation is such that
the empirical horizontal horopter is less concave than the geometric horopter.
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Figure 15.
The shapes of the vertical and horizontal horopters as a function of viewing distance. (a) The
upper panel is a top view of the empirical horizontal horopter at three fixation distances (0.5,
1, and 2 m). Fixation is earth horizontal in the mid-sagittal plane (gaze direction is indicated
by the dashed horizontal lines). In each case, the observer is fixated (that is, converged)
where the surface has an ordinate value (distance parallel to inter-ocular axis) of 0. The H
value (Hering–Hillebrand deviations) used to generate these horopters is 0.13, the average of
the values in Table 2. Standard error is indicated by the dotted lines. The lower panel is a
side view of the empirical vertical horopter at the same three fixation distances. Again, the
observer is fixated where the surface has an ordinate value (distance perpendicular to inter-
ocular axis) of 0. The positions of corresponding points used to generate these horopters are
the average values across our observers. Standard error is indicated by the dotted lines. (b)
Curvature of the vertical and horizontal horopters as a function of fixation distance. The
average vertical and horizontal horopters were fit with second-order polynomials. The
second derivative of distance as a function of eccentricity (∂2Z/∂E2), where Z is distance and
E is elevation for the vertical horopter and azimuth for the horizontal horopter, of those
fitted functions is plotted as a function of fixation distance. The inset is a magnified view of
the values for short fixation distances; the ordinate values have been magnified more than
the abscissa values. In the main plot and the inset, the values for the horizontal and vertical
horopters are indicated by the red and blue curves, respectively. We also used a basketball as
an osculating circle to determine a parabola and then computed the second derivative as a
function of viewing distance. Those values are indicated by the black curves.
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Figure 16.
The set of distances that can yield disparities of different values. (Left) The viewing
geometry. A binocular observer with inter-ocular distance I fixates a point at distance Z0.
Another object at distance Z1 stimulates the left and right retinas at locations αL and αR,
respectively, creating horizontal disparity δ. (Right) Given disparity δ, different
combinations of fixation and object distance are possible. Object distance Z1 is plotted as a
function of fixation distance Z0, both in meters. The blue curves are the fixation–object
combinations that can occur with positive (uncrossed) disparities and the red curves are the
combinations that can occur with negative (crossed) disparities. Each curve is labeled with
the specific disparity value, expressed in degrees. We assumed an inter-ocular distance I of
0.06 m.
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Figure 17.
The set of distances and retinal eccentricities for which corresponding points in the upper
visual field cannot be stimulated by real stimuli. The critical fixation distance is plotted as a
function of eccentricity in the upper visual field. We used the average correspondence
pattern across our observers to determine the disparity of corresponding points at each
retinal eccentricity. The greatest fixation distance at which such disparity could occur is I/δ,
where I is inter-ocular distance (assumed to be 0.06 m) and δ is disparity in radians. The
dashed lines represent standard errors at each eccentricity calculated from the curves that fit
each observer’s data. The average correspondence pattern was used to generate this figure.
Therefore, the impossible viewing distances apply to the average observer, not necessarily to
an individual observer.
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Table 1

Previous studies of the shear between corresponding points.

Citation Subject θv (deg) θh (deg) θr (θv − θh) (deg)

Helmholtz (1925) HHa 2.66 0.3 2.36

WVb 2.13 – –

WVa 2.15 – –

FSb 1.32 – –

FSa 1.44 – –

Nakayama (1977) AC 3.4 0.0 3.4

CWT 4.8 0.0 4.8

Ledgeway and Rogers (1999) TL 3.9 0.6 3.3

BJR 5.8 1.3 4.5

MLG 2.9 0.5 2.4

Siderov, Harwerth, and Bedell (1999) AK1 0.56 – –

AK2 0.48 – –

HB1 0.49 – –

HB2 0.40 – –

LB1 0.62 – –

LB2 0.41 – –

MG1 0.32 – –

MG2 0.41 – –

Grove, Kaneko, and Ono (2001) PG 1.9 – –

HK 1.7 – –

NU 1.6 – –

Schreiber et al. (2008) PRM 2.8 0.0 2.8

KMS 6.1 0.0 6.1

HRF 3.6 0.0 3.6

Note: θv is the angle between the vertical meridians. θh is the angle between the horizontal meridians (cyclovergence). θr is the difference between

the two, indicating the amount of retinal shear between corresponding points. All of these studies used apparent-motion except:

a
binocular apparent vertical and horizontal;

b
monocular apparent vertical. For Siderov et al. (1999):

1
viewing distance = 200 cm;

2
viewing distance = 50 cm.

J Vis. Author manuscript; available in PMC 2013 October 21.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Cooper et al. Page 34

Table 2

H values (Hering–Hillebrand deviation) from previous studies.

Paper Observer Distance (cm) H

von Liebermann (1910)* 97 0.04

Lau (1921)* 150 0.10

Helmholtz (1925)* 71 0.07

Ogle (1950) KNO 76 0.08

AA 76 0.05

FDC 76 0.05

WH 60 0.04

Amigo (1967) PDL 67 0.13

GA 67 0.07

Hillis and Banks (2001) MSB 172 0.24

JMH 172 0.22

ND 172 0.43

Schreiber et al. (2008) PRM 40 0.25

KMS 40 0.36

HRF 40 −0.11

Note:

*
Values obtained from Ogle (1950). When values were given for various fixation distances, the farthest distance was used.

J Vis. Author manuscript; available in PMC 2013 October 21.


