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Abstract
We report here new computational tools and strategies to efficiently generate three-dimensional
models for oligomeric biomolecular complexes in cases where there is limited experimental
restraint data to guide the docking calculations. Our computational tools are designed to rapidly
and exhaustively enumerate all geometrically possible docking poses for an oligomeric complex,
rather than generate detailed, atomic-resolution models. Experimental data, such as inter-atomic
distance measurements, are then used to select and refine docking poses that are consistent with
the experimental restraints. Our computational toolkit is designed for use with sparse datasets to
generate intermediate-resolution docking models, and utilizes distance difference matrix analysis
to identify further restraint measurements that will provide maximum additional structural
refinement. Thus, these tools can be used to help plan optimal residue positions for probe
incorporation in labor-intensive biophysical experiments such as chemical crosslinking, EPR, or
FRET spectroscopy studies. We present benchmark results for docking the collection of all 176
heterodimer protein complexes from the ZDOCK database, as well as a protein homodimer with
recently collected experimental distance restraints, to illustrate the toolkit’s capabilities and
performance, and to demonstrate how distance difference matrix analysis can automatically
identify and prioritize additional restraint measurements that allow us to rapidly optimize docking
poses.

Introduction
Oligomeric complex formation by proteins and other biomolecules is crucial for many
biological processes, including signal transduction, gene transcription, enzyme activation,
etc., and detailed structural information for these oligomeric assemblies is highly desirable.
X-ray crystallography and multi-dimensional NMR spectroscopy are primary tools used to
obtain high-resolution structures. However, oligomeric complexes may often form only
relatively weak and/or transient interactions, which can make it difficult to obtain
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diffraction-quality crystals. These complexes are also generally quite large, a challenge for
standard multi-dimensional NMR structural methods.

There are a variety of other experimental techniques that can be used to obtain structural
information for large biomolecular complexes that do not suffer from challenges posed by
system size or crystallization difficulties, such as EPR double electron-electron resonance
(DEER) spectroscopy, fluorescence resonance energy transfer (FRET) spectroscopy, many
solid-state NMR techniques, and various chemical crosslinking methods, to name a few.
However, the datasets obtained with these methods are usually quite “sparse”, when
compared to x-ray or solution-phase NMR datasets, i.e., the dataset is normally a relatively
small number of interatomic distances that may provide only one geometric restraint per 5–
10 residues, so that structures are often severely underdetermined. As a result, it can be quite
challenging to use conventional structure refinement methods (1–3) to generate physically
plausible three-dimensional structural models, since these methods typically perform quite
poorly with severely underdetermined datasets (4).

Therefore, we need an alternate computational strategy to generate 3D models for dimeric/
oligomeric complexes based on sparse distance datasets. There are a variety of software
tools available for protein-protein docking applications (5–27), some with the ability to
utilize distance restraints to restrict the solution search. However, these tools generally have
as a primary objective the prediction of an atomic-resolution docking model, and emphasize
chemical and physical details of the docking interface during the model generation. For
reasons discussed below, we have chosen to develop a new docking toolkit that emphasizes
sampling speed (ability to rapidly explore large numbers of diverse docking poses) and
reliance on experimental data at the expense of more sophisticated scoring criteria utilized in
many existing docking programs. We report here the development of a suite of tools and
strategies to use sparse distance datasets, such as those obtained in EPR DEER or FRET
experiments, to rapidly generate plausible 3D structures for oligomeric protein complexes.
One important feature of our toolkit is a data assessment feedback option that can be used to
plan the most effective additional experiments. This assessment is based on the variability of
inter-residue distances observed in the ensemble of models constructed using the current
dataset, and aids identification of one or more additional inter-residue distance
measurements that would reduce solution degeneracy most dramatically, i.e., eliminate the
maximum number of unique 3D model candidates from the previous model generation step.
The toolkit is designed for tight integration with experimental measurements, in an iterative
process of measurement and subsequent 3D model generation, rather than as a “post-
processing” tool to refine atomic-resolution structures after data collection is completed.
Therefore, we have emphasized ease of use and computational efficiency in development of
this toolkit, and optimized the methods for effective performance with sparse datasets. We
present here details of our toolkit, including novel algorithms we have developed, as well as
integration of existing computational techniques into our model generation protocol. We
present results from test calculations for a large dataset of structurally well-characterized
heterodimeric protein complexes to illustrate the toolkit capabilities and performance. We
also present docking results for a protein homodimer complex, using distance restraint data
collected recently with EPR DEER measurements, and compare our toolkit performance for
this homodimer complex with two state-of-the-art protein docking programs, HADDOCK
(20) and RosettaDock (27). Finally, we discuss briefly how TagDock can be used to
generate models for trimers and higher-order oligomeric assemblies.
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Methods
Docking Algorithim Overview

TagDock is a toolkit, comprised of a collection of programs and scripts, that produces
structures for macromolecular complexes by generating randomly posed docked pairs
(decoys) starting from rigid structures for each monomer, and scores each decoy with a
penalty function that determines its agreement with a set of experimentally derived inter-
monomer distance restraints. In order to maximize the number of unique docking poses, we
do not utilize the distance restraints directly in the initial pose generation process. Instead,
we perform a completely unrestrained and uniform sampling of pose space, subsequently
examining regions of this space that yield good agreement with the restraints. TagDock is
written in NAB, a C-like “molecular manipulation” programming language, which is
provided in the AmberTools program suite (28). The TagDock algorithm is quite efficient,
and can generate more than 25,000 poses per minute on a single CPU core in a typical Linux
desktop workstation.

The TagDock algorithm has two phases. In phase 1, the second molecule in a dimer pair is
repeatedly, and randomly, rotated and translated onto the surface of a large virtual sphere
that is centered on the first molecule. The molecules are then brought into physical contact
without changing their relative orientation. Between 1×104 and 1×106 such candidate
structures are typically generated, and ~1×102 decoys that best satisfy the experimental
restraints are automatically selected for a second, higher resolution docking phase. During
phase 2, the second molecule in each selected decoy is subjected to progressively smaller
rotations and translation changes, creating a finer resolution search via a Monte Carlo
focusing algorithm that minimizes the restraint penalty. The final docking candidates are
sorted automatically, with the model complex that best satisfies the experimental distance
restraints ranked first.

Phase 1: Low-resolution docking details
In Phase 1, TagDock initially places molecule 1 and molecule 2 in a “reference pose” at the
origin, where molecule 1 (M1) remains fixed. Each decoy is created using a standard
randomized 4×4 rotation/translation matrix; molecule 2 (M2) coordinates are multiplied by
this random matrix to generate new M2 coordinates, distal from M1. The distance from M1
to M2 geometric centers is constant for all the decoys, and creates a virtual sampling sphere
of sufficient radius to ensure that no interatomic overlaps exist between the two monomers
at the outset.

Next, the shortest inter-monomer C-beta distance is calculated, and M2 is translated toward
the origin (where M1 is centered) by this distance so that M1-M2 are now in contact, but
with no regard for physically unreasonable monomer overlaps. A transformation matrix
representing this complex structure is stored, along with its restraint penalty score, and this
process is repeated to generate ~1×106 decoy poses.

Scoring
A penalty score, based on agreement with experimental distance restraints, is computed for
each decoy during each phase of the docking algorithm. Given N experimental restraints, the
score is simply the sum of the individual distance restraint violations:
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with individual restraint violations vi computed as

where riexp is an experimental distance, ridecoy is the corresponding distance for the decoy
being scored, and σi is the experimental error and/or distribution inherent to riexp.

Phase 2: High-resolution docking
TagDock ranks the low-resolution decoys from lowest to highest penalty score. In Phase 2
of the algorithm, TagDock selects a user-defined subset (default 200) of the best (lowest)
scoring decoys from Phase 1 and performs more focused high-resolution docking, via a
user-tunable, multi-stage Monte Carlo optimization algorithm (29). For each selected decoy,
the focusing algorithm aggressively samples nearby poses via cycles of random moves
constrained by narrowing intervals of translation and rotation. Each decoy is replaced as
lower scoring poses are encountered. This process is accelerated by early exit of the
sampling cycles, when progress is deemed insufficient. As a default, the initial focusing
cycle samples 100,000 moves, with a random translation from the range [0.0 – 3.0] Å along
each axis and random rotation from the range [0.0 – 15.0] degrees about each axis. This
initial sampling cycle exits early if the score fails to improve by 0.5 in any of 20,000
consecutive steps. A second, higher resolution sampling cycle of 50,000 steps explores
random translations from 0.0 – 1.5Å and random rotations from 0.0 – 5.0 degrees, exiting
early if score improvements of 0.1 are not observed in 10,000 steps. In the final, highest
resolution cycle, 10,000 steps with a 1.0Å maximum random translation and 1.0 degree
maximum random rotation are sampled, exiting early if no score improvements are seen in
2,000 steps. The user can customize the Phase 2 focusing algorithm by specifying the total
number of focusing cycles, the total number of steps and intervals of translation and rotation
sampled in each cycle, and the early termination thresholds. After the top-ranked decoys
have been focused, TagDock re-ranks them, outputs a final score report, and writes
sequentially numbered PDB files for each decoy.

Distance difference matrix analysis
When sparse experimental datasets are used for filtering, TagDock may produce competing
populations of models that all satisfy the distance restraints equally well. While it is clear
that additional experimental restraints will reduce degeneracy in these populations, it is not
immediately clear which additional restraint measurements are likely to be most
discriminating. We use distance difference matrix (DDM) analysis to suggest the additional
distance measurements that will enable maximal model discrimination.

Ensemble-averaged DDM analysis (30) is the inverse of distance geometry (31). Distance
geometry uses a matrix of self-consistent inter-atomic distance bounds to compute the
ensemble of Cartesian coordinate sets that is consistent with the bounds matrix. DDM
analysis works in reverse, converting the Cartesian coordinates of an ensemble of structures
into a set of distance “bounds”. These bounds are obtained by computing the difference of
each inter-atomic distance over all unique pairs of structures in the ensemble. Averaging the
pairwise distance differences reveals quantitatively the intrinsic variability of each distance
over the ensemble. A distance that is essentially invariant over the full ensemble of
structures will yield an ensemble-averaged distance difference of approximately zero.
Distances that exhibit larger variation over the full ensemble of structures correspond to
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regions of increasing structural variability. This analysis thus identifies and quantifies
specific regions that have the most structural variability across the ensemble. It is important
to emphasize that DDM analysis does not rely on structural superposition, which is required
for standard RMSD analysis. Superposition is an inherently biased, global procedure that
has a tendency to hide localized structural differences. In particular, the specific atoms that
are selected to drive the superposition process can significantly influence conclusions if one
attempts to quantify localized structural fluctuations with an RMSD calculation. Performing
the structural comparison in distance space rather than Cartesian space removes this bias
entirely.

For each model in the TagDock-generated ensemble, our distance difference matrix (DDM)
analysis tool first computes a rectangular matrix containing all intermolecular inter-residue
distances. Then, the tool calculates the variability (distance differences) for each matrix
element, across the entire set of matrices. This yields the ensemble-averaged distance
difference for each inter-residue distance, considered across all models. The largest distance
difference elements indicate those inter-residue distances that vary most dramatically
between candidate docking poses; thus, additional experiments to measure these specific
inter-residues distances will provide maximal discrimination between the candidate docking
poses, eliminating many poses from further consideration. As final output, our tool lists all
residue pairs, ordered by decreasing ensemble-averaged distance differences. A complete
ensemble of structures – one that samples all poses compatible with the existing sparse
dataset - is guaranteed to contain the information required to prioritize the most strategic
placements of the next label, at least from a purely geometric standpoint. The exhaustive
Monte Carlo search algorithm employed by TagDock is specifically designed to rapidly
produce such complete ensembles. DDM analysis for this ensemble then automatically,
objectively, and unambiguously identifies the additional measurements that will resolve the
largest sources of ambiguity, i.e., degeneracy, in the current candidate pose ensemble.

Test set restraint generation
We used all 176 protein heterodimer complex structures contained in the ZDOCK database
(32) for our benchmarking calculations. To extract a small number of atom pair distances
from each complex to serve as a proxy for a sparse experimental distance restraint set, we
developed an automated, heuristics-based protocol to derive these distance restraints from
the parent crystal structures, in order to avoid potential biases that might arise if we selected
restraint distances manually. The protocol was implemented as a simple C++ program and
scans the PDB file for all HELIX and SHEET records in each monomer, selecting the
penultimate residue in each helix or sheet. From this set of candidate residue positions, the
algorithm selects the set of three residues that define the largest triangle area in the protein
monomer, i.e., the three residues that collectively have the greatest spatial separation from
each other. In a few ZDOCK entries (E.g., 4CPA), one monomer of the complex has little or
no helix or sheet secondary structural elements; in these cases, all but the first and last five
residues in the polypeptide chain were considered. In many ZDOCK database entries,
segments of polypeptide chain are missing for one or both monomer crystal structures
relative to the heterodimer complex structure. We restricted residue position selection to
only those residues resolved in both the isolated monomer structures as well as the complex,
since our docking protocol uses the isolated monomer structures to initiate the docking
search.

This protocol provides three “label” sites in each protein, producing nine possible inter-
monomer distance restraints. Since many practical docking exercises will often begin with
fewer than nine distance restraints, we arbitrarily removed one “label” site from one
monomer of each complex, generating a six-restraint dataset to begin each docking
calculation.
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Results
Heterodimeric test structures

We performed docking calculations for all 176 entries in the ZDOCK protein-protein
docking benchmarking database (32). For each entry in this database, there is an x-ray
crystal structure of the protein complex and separate x-ray or NMR structures of each
individual protein. We can divide the complex structures into two categories: rigid-body
complexes where the monomer structures are essentially unchanged when the complex
forms (the RMSD100 of the free versus docked partners is < 3 Å; RMSD100 is a normalized
RMSD calculation that eliminates the influence of variable sequence length on computed
results (33) and docking examples where one or both proteins undergo significant
conformational changes when the complex forms (the RMSD100 of the free versus docked
partners is > 3 Å). We ran three sequential TagDock calculations for each ZDOCK complex.
For the first TagDock calculation, we used the six-distance restraint sets generated by our
heuristic method described above. Then, we performed DDM analysis for the docking poses
generated in the first TagDock calculation to identify additional distance measurements that
would most effectively reduce solution degeneracy, as discussed in the Methods section.
Based on this DDM analysis, one additional “label” site was selected in the monomer
containing two residue sites, yielding a nine-distance restraint set for each complex.
TagDock calculations were repeated with the nine-distance restraint sets, and DDM analysis
was used once again to process the docking pose solutions and select additional distance
measurements for pose discrimination. A fourth “label” site was added for one monomer in
this final iteration, producing a twelve-distance restraint set for each complex, and the
TagDock calculations were repeated. Each separate TagDock calculation required 15 to 90
minutes and DDM analysis only requires a few seconds, so the entire ZDOCK database can
be processed in ~5 days on a single-processor workstation.

TagDock automatically filters the resulting docking poses using the penalty score described
above in Methods. To retain only models that best fit the experimental data, we performed
one additional statistical filter to select all structures whose penalty score was within one
standard deviation of the lowest penalty score structure. For the ZDOCK database entries,
we have the luxury of a crystal structure for each complex that allows us to document and
quantify “convergence” of our calculations. In real applications for unknown structures, we
need practical metrics to assess solution convergence. The convergence of the structural
ensemble can be quantified by calculating the average RMSD to the mean structure for all
accepted poses. Figure 1 shows these results for the six-, nine-, and twelve-distance restraint
sets for all 176 ZDOCK structures, and the trend is quite clear. The accepted poses converge
to more tightly defined docking pose clusters as the number of distance restraints increases
from six to twelve. In most cases, the pose ensembles cluster closely around a mean
structure, and also have small RMSD100 values relative to the reference x-ray complex
structures, as shown in Figure 2. As can be seen in this figure, only two additional restraint
distances suggested by DDM analysis yield a final TagDock pose <3Å RMSD from the
crystal structure for 86% of the test cases (151/176 ZDOCK entries); in 44% of the test
cases (77/176 ZDOCK entries) the TagDock solution has ~1Å RMSD relative to the
reference crystal structure.

For all cases in the true rigid body class, we successfully reproduce the crystal structure
within 3Å RMSD using the crystal or NMR structures of the free partners. In only 14%
(25/176) of cases do we not reproduce the crystal structure of the docked pair starting from
the free monomers. In all of these cases the experimental structure for one or both of the
isolated protein monomers deviates significantly (> 3Å RMSD) from the corresponding
monomer structure in the heterodimer complex. Neither TagDock, nor any other rigid
docking program, can handle cases like these easily, and a docking method that explicitly
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incorporates extensive backbone conformational sampling will be necessary to generate
reasonable docking poses for these complexes.

Docking with Real Experimental Restraints
Our benchmark results with the ZDOCK dataset clearly show that TagDock can rapidly
determine the correct docking pose for the vast majority of examples using only 6–12 inter-
monomer distances for solution set filtering. However, real experimental data may not be so
well-conditioned as our synthetic distance datasets for the ZDOCK database entries. We
therefore used TagDock to generate poses for the CDB3 homodimer (PDB: 1HYN), using a
set of 18 previously published DEER distance restraints shown in Table 1 (34). The CDB3
homodimer is not an ideal test case because there is no CDB3 monomer structure. However,
the CDB3 homodimer is the only system for which we have access to both an atomic-
resolution structure of the complex and a reliable, published set of experimentally
determined, long-range intermolecular distance restraints. While our toolkit is not intended
to compete with protein docking programs that incorporate chemical or knowledge-based
scoring functions to generate atomic-resolution models, we felt it would be instructive
nonetheless to compare TagDock's performance to two of the most widely-distributed and
well-known protein docking packages, HADDOCK 2.1 (20) and RosettaDock (27) as
distributed with Rosetta 3.5.

The individual monomer chains in the CDB3 homodimer crystal structure display similar,
but unique, 3D conformations designated as chains P and Q. Any docking calculation
initiated with the unique P and Q conformations is clearly biased and would not provide a
critical assessment of our toolkit capabilities. Therefore, we performed a 10ns molecular
dynamics simulation for each monomer using a Generalized Born continuum solvation
model in AMBER (28). The P and Q monomer backbone conformations were restrained at
the crystallographic positions, but side chains were unrestrained. The final snapshots from
these two simulations were used as the input monomer structures for all of the docking
results reported below.

The general protocols we used to dock the CDB3 dimer with TagDock, HADDOCK, and
RosettaDock were similar to one another, so that the results can be compared directly.
Individual program defaults or previously recommended/published options were used for all
calculations. The restraints were implemented as Cβ-Cβ distances, with error bars equal to
the experimentally determined distance distributions (Table 1). We generated 10,000 decoys
with each program utilizing the experimental restraints, and selected the 200 docking poses
that best satisfied the restraints for analysis. We discarded all poses with a restraint penalty
greater than one standard deviation above the mean penalty value. This statistical filter is
less restrictive than the one we used in the ZDOCK benchmark results described above. This
less restrictive filter was necessary in order to retain the best (closest to experiment) models
produced by HADDOCK and RosettaDock. This filter cutoff change did not impact
TagDock results, as both filters produced the same selection of TagDock decoys. The
restraint penalty scores from each program were normalized to the range [0–1], and plotted
versus the Cα RMSD to the 1HYN crystal structure. Results for all three docking programs
are shown in Figure 3.

RosettaDock produced the closest pose to the target crystal structure, but was also the most
computationally expensive option (159 CPU hours on a standard Linux workstation with an
Intel W3570 CPU). The RosettaDock decoys that best satisfy the experimental restraints
have 1.05–1.58Å Cα RMSD from the crystal structure. TagDock produced decoys between
2.77 and 4.66Å Cα RMSD from the crystal structure (Figure 4) but required only 43 CPU
minutes. The CDB3 homodimer presented a special challenge for HADDOCK, and the best-
scoring poses have 6.12 –10.93Å Cα RMSD from the crystal structure. We suspect this is
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due to the nature of the interlocking dimer “arms” in the CDB3 structure (residues ~316–
348). To find the correct pose, the docking algorithm must be able to interdigitate the
monomer structures by moving them in a specific direction. This requires a significant
amount of sampling during the rigid-body stage of the calculation. Close inspection of the
HADDOCK output from the rigid-body phase (Figure 3 – filled black squares) reveals a
significant amount of degeneracy in the structures, suggesting that although the algorithm
output 10,000 structure files, it did not adequately sample all regions of pose space prior to
switching to high-resolution mode. For example, the HADDOCK rigid-body result
displayed as the black square in Figure 3 with Score=0, RMSD = 7.5 Å is actually 16
degenerate structures that become differentiated from each other only after HADDOCK
refines them further (see the adjacent filled red circles in the refined dataset). The
HADDOCK algorithms required 56 CPU hours, with 36 hours of that attributed to the rigid-
body phase.

Discussion
Previous studies have shown that conventional structure refinement methods cannot be used
routinely to generate sensible three-dimensional models when only limited structural
restraint data is available. Unfortunately, it is often the case that only limited structural
information is available for large, oligomeric biomolecular complexes. To address this
situation, we present here a computational strategy and protocols to rapidly generate
moderate-resolution 3D models for oligomeric protein complexes, using sparse
intermolecular distance datasets to identify the most reasonable solution candidates. We
have developed a rigid-body docking algorithm that can rapidly generate all geometrically
feasible docking orientations for a complex, using an exhaustive Monte Carlo search
strategy. Our method does not utilize the restraint data to explicitly guide the initial docking
process, nor does it consider any chemical features or properties to bias results in favor of
chemically sensible models, i.e., we sacrifice the information that these data might provide
in docking calculations in favor of computational speed and an exhaustive geometric search
that will produce a complete solution ensemble. As a result, many of the preliminary models
generated will be chemically and/or structurally unreasonable. We then use the available
restraint data to filter all docking decoys, excluding all models that do not satisfy available
experimental data. This process can be iterated repeatedly, using solutions from the previous
cycle as starting points in docking calculations that use progressively finer resolution grids,
our “focusing” procedure. As additional focusing iterations are employed, docking solutions
generally converge on a small number of candidate decoys that best satisfy the experimental
restraint data. TagDock generated optimal docking poses within 3Å RMSD of the crystal
structure for 86% of the ZDOCK database entries, and for most of the rigid-body class
entries, the optimal TagDock solution was within 1Å RMSD of the reference crystal
structure. These final candidate structures could be further “refined” with energy
minimization and limited molecular dynamics simulation, or used as high quality starting
structures for atomic-resolution docking programs like HADDOCK or RosettaDock.

Our results indicate that TagDock is able to produce intermediate-resolution docking results
with minimal computational resources when compared to programs designed for atomic-
resolution protein docking applications. RosettaDock did provide an atomic-resolution
solution for CDB3 homodimer, due primarily to the refinement process driven by its
sophisticated scoring function. We should note that the CDB3 homodimer crystal structure
was part of the training set used to derive the RosettaDock scoring function, which may
influence its performance relative to the HADDOCK results. TagDock does not use a
traditional, parameterized scoring function to select the “best” docking poses. It only
considers the experimental distance restraints, and thus produces the full ensemble of
structures that best satisfy the experimental data. This ensemble can then be used as input
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for DDM analysis to objectively and unambiguously prioritize additional experiments. Most
traditional docking algorithms utilize a parameterized scoring function that dutifully
produces clusters of models that minimize the target function. However, this can be a
problem in cases where the best-scoring poses deviate significantly from the correct
structure, perhaps because the scoring function places excessive emphasis on certain terms.
In these cases, the candidate docking poses provide little useful guidance to plan additional
experimental measurements, and could possibly even misdirect the process.

We should emphasize that with real (i.e., imperfect) distance restraint data, the TagDock
structure with the lowest penalty score may not be the structure closest to the correct
structure. This is clearly seen in Figure 3, where the TagDock structures with the lowest
RMSD to the crystal structure are actually in the middle of the observed penalty score range.
This is due to a combination of imperfect restraint data and the simple nature of TagDock’s
target function. As a result, one must consider all poses in the lowest-scoring cluster
generated by TagDock. More sophisticated, atomic-resolution modeling methods could be
used to distinguish candidates in the lowest-scoring cluster, if necessary.

Since we typically work with severely under-determined restraint data sets, we normally
obtain degenerate solutions, i.e., multiple, distinct models that all satisfy the experimental
constraints equally well. We then use distance difference matrix (DDM) analysis to rapidly
identify, in a completely automated and unbiased way, additional distance measurements
that will enable us to most effectively differentiate competing models. This data can be used
to plan subsequent experiments, suggesting which new measurements are likely to provide
the greatest “information content”. The test calculations presented above provide strong
evidence that our protocols and strategy are effective. The docking calculations are
optimized so that large numbers of unique docking decoys are generated rapidly, and the
DDM analysis has allowed us to identify additional “measurements” that enable us to
quickly and efficiently converge to an optimal solution.

While much effort has been invested to ensure ease of use and effective default parameters,
our algorithm design and protocol workflow also allow for considerable user control and
great flexibility in choice of restraint data used. We have focused primarily on
intermolecular distance restraints in the examples presented here but the user is not restricted
to literal experimental distance measurements. For example, it would be straightforward to
extend the restraint input to include surface contact areas (which can be viewed as a set of
distributed, short-range distances). Almost any sort of restraint data could be used in our
filtering procedure, provided it can be represented as some type of quantitative geometrical
information. We are currently developing extensions to our program that will allow us to
utilize the rich information contained in EPR spectroscopic measurements for protein
complexes, and many other specialized capabilities can be implemented in the future.

We emphasize that our toolkit is not intended to perform atomic-resolution molecular
docking calculations. As discussed above, there are many software packages available to
perform this task, and any of those programs would be more appropriate if the goal is
generation of a specific, atomic-resolution model. As reported above, our toolkit can yield
high-quality structures for true rigid-body docking complexes when there are sufficient
distance restraints, so it can be used effectively as a “stand-alone” molecular docking
program in these situations.

All the examples presented here focused on hetero- or homodimeric protein complexes,
simply because these are the only practical benchmark examples we have presently, i.e,
these are the only systems for which we have reference crystal structures for the complex,
and independent experimental distance measurements (in the case of the CDB3 homodimer).
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However, the current version of TagDock can also be used to generate models for trimers or
higher oligomeric assemblies via a simple iterative procedure: TagDock is first used to
generate dimer poses for two monomers in the oligomer assembly, an additional monomer is
then docked with the dimer candidate poses to generate a collection of trimer poses, etc.
Future versions of TagDock will permit direct oligomer assembly with no need for this
iterative process.

Our toolkit is designed to perform an efficient, exhaustive search of docking pose space for
an oligomeric complex, with the primary goal being to help plan “optimal” experiments.
Since we focus on systems that have limited available experimental data at the outset, it is
clear that additional measurements will be needed to more completely and accurately
characterize the complex. Given that many of these experiments will likely involve
additional site-directed mutagenesis, chemical labeling, or other labor-intensive molecular
modifications, it would be advantageous to have some idea which new experiments are most
likely to yield additional, useful information. The primary purpose of our toolkit is to help
maximize the “return on investment” for experimental studies, and we believe the test
calculations presented here suggest that the toolkit will make this goal possible.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
Funding Sources

This work was supported by National Institutes of Health grant P01 GM080513 (T.P.L.).

Abbreviations

DDM Distance Difference Matrix
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Figure 1. TagDock convergence facilitated by distance difference matrix analysis
The histogram depicts the average RMSD100 relative to the mean structure for all 176
ZDOCK benchmark protein-protein complexes, demonstrating how often TagDock
produced ensembles that converged to a cluster of closely-related models. For each
complex, the mean structure was computed from all TagDock poses that scored within one
standard deviation of the best-scoring pose. The average RMSD100 between this mean
structure and each TagDock pose was then computed for each of the 176 TagDock
ensembles and sorted into 1Å bins. The number of structures in each 1Å bin is displayed as
a percentage of the total solution set.
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Figure 2. Benchmark of TagDock accuracy guided by distance difference matrix analysis
The histogram depicts the average RMSD100 relative to the complex crystal structure for all
176 ZDOCK benchmark protein-protein complexes, demonstrating how often TagDock
produced ensembles that converged to the experimentally-determined structure. The average
RMSD100 between the complex crystal structure and each TagDock pose was computed for
each of the 176 test case ensembles and sorted into 1Å bins. The number of structures in
each 1Å bin is displayed as a percentage of the total solution set.
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Figure 3. CDB3 Homodimer Docking from 18 experimentally measured (DEER) distance
restraints using HADDOCK 2.1, RosettaDock 3.5, and TagDock
10,000 decoys were computed with each program, and the 200 models that best satisfy the
experimental restraints were selected for analysis. RosettaDock (green circles) produces
atomic-resolution structures with this restraint set, with the best model just 1.1Å Cα RMSD
from chains P and Q of the 1HYN crystal structure. TagDock (blue triangles) produces
intermediate-resolution structures with Cα RMSD as small as 2.8Å from the crystal
structure. HADDOCK (red and black squares) had trouble assembling the interdigitating
dimer arms of CDB3 (best Cα RMSD of 6.1Å). We suspect this is due to a more limited
search of pose space during its rigid-body phase (black squares), which we observed to
produce a large number of degenerate structures. For example, the best-scoring rigid-body
HADDOCK pose depicted at the far left of the graph was replicated 16 times in the 10,000
output poses. These degenerate structures resolved into unique structures only after the high-
resolution refinement stage (red squares).
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Figure 4. Top-scoring cluster of CDB3 structures produced by TagDock using the published set
of 18 EPR DEER distance restraints (33) superimposed onto the P and Q chains of the 1HYN
PDB entry for CDB3
The 153 TagDock decoys are rendered as gray wireframe Ca traces, while the 1HYN PDB
structure is rendered as a green ribbon. The Ca RMSDs of these 153 structures to the crystal
structure range between 2.77Å and 4.66Å.
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Table 1

Eighteen DEER-measured inter-molecular distances for the CDB3 homodimer (34) stated in TagDock input
restraint format. Each atom is listed as a chain identifier, residue number, and atom name. Experimentally
derived distance distributions are listed in the final column. These restraint distances were also used for
HADDOCK and Rosetta-Dock calculations.

Atom 1 Atom 2 Distance (Å) Distribution (Å)

P:84:CB Q:84:CB 27.20 2.50

P:96:CB Q:96:CB 32.60 5.00

P:105:CB Q:105:CB 15.40 3.70

P:108:CB Q:108:CB 6.20 4.40

P:112:CB Q:112:CB 18.00 6.90

P:116:CB Q:116:CB 17.40 3.10

P:142:CB Q:142:CB 32.10 3.10

P:199:CB Q:199:CB 36.20 5.00

P:208:CB Q:208:CB 47.70 13.20

P:277:CB Q:277:CB 29.80 3.40

P:290:CB Q:290:CB 38.40 0.50

P:339:CB Q:339:CB 14.70 0.40

P:340:CB Q:340:CB 34.60 0.80

P:341:CB Q:341:CB 31.90 3.60

P:342:CB Q:342:CB 24.90 1.10

P:343:CB Q:343:CB 34.00 2.30

P:344:CB Q:344:CB 37.00 4.20

P:345:CB Q:345:CB 35.50 6.60
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