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ABSTRACT The onset of measles vaccination in England
and Wales in 1968 coincided with a marked drop in the
temporal correlation of epidemic patterns between major
cities. We analyze a variety of hypotheses for the mechanisms
driving this change. Straightforward stochastic models sug-
gest that the interaction between a lowered susceptible pop-
ulation (and hence increased demographic noise) and non-
linear dynamics is sufficient to cause the observed drop in
correlation. The decorrelation of epidemics could potentially
lessen the chance of global extinction and so inhibit attempts
at measles eradication.

The combination of practical importance and theoretical
interest has made measles in urban populations one of the most
studied epidemiological systems, but spatial and stochastic
effects remain less well explored (1). Practically, the continu-
ing failure of mass vaccination campaigns to eradicate measles
in developed countries and the importance of measles mor-
tality among children in developing countries has led to
continuing interest. Theoretically, recent work showing that
nonlinear dynamics can reduce the extinction rate of spatially
subdivided populations (2, 3) may be testable with the body of
theory and data gathered to evaluate the persistence of
measles and other childhood infections under mass vaccination
(4-7).
The basic dynamics of measles epidemics have been exten-

sively studied (8-13). Large measles epidemics exhaust a pool
of susceptible children, who gain lifelong immunity after
having the disease; the interepidemic period is determined by
the severity of the epidemic and the length of time taken to
build up the pool of susceptibles again from new births. The
seasonal pattern of aggregation of children in schools is also
important in determining the size and pattern of epidemics
(14-16). Furthermore, seasonality strongly influences the re-
current epidemic behavior of measles, where there is strong
evidence for nonlinear (and possibly chaotic) effects (17-23).

In small isolated communities, large epidemics are often
followed by extinction of disease as the chain of transmission
breaks down (8, 24, 25). The critical community size (8, 24, 26),
the threshold population size above which measles can persist
through interepidemic troughs, may depend on the spatial
structure and connectedness of the regional population. The
persistence behavior of measles is of particular interest in
connection within the eradication of a disease by mass vacci-
nation. Most theoretical estimates focus on the invasibility
threshold, the level of control at which a disease will not only
go extinct but also be unable to reinvade the population (13).
One can also locally eradicate infection simply by driving it
below its persistence threshold, the point at which the disease
is likely to go extinct during the troughs between epidemics
(27). The persistence threshold is greater than the invasibility
threshold and hence easier to reach, but eradication through

local extinction is fragile; reintroduction of the disease sparks
a new epidemic, which cannot occur below the invasibility
threshold.

Persistence is more difficult to analyze than invasibility
because invasibility requires only a linear calculation (around
the disease-free equilibrium), while persistence demands con-
sideration of the full stochastic system. In addition, local
extinctions ("fade-outs") interact with nonlinear dynamics and
seasonality to change the dynamical behavior of measles
epidemics qualitatively.
The detailed interaction of spatial structure with persis-

tence, nonlinear dynamics, and seasonality is just beginning to
receive attention (28-30). Vaccination, and in particular the
mass vaccination programs begun in developed countries in
the late 1960s, serve as a natural experiment for exploring
these topics. At the simplest level, vaccination of young
children reduces the recruitment rate of new susceptibles and
therefore the reproductive rate of the infection (13). A number
of theoretical studies have shown that vaccination should
significantly reduce the amplitude of epidemics (and hence
disease incidence) as well as changing their phase (4, 13).
Various authors have explored the effects of spatial hetero-
geneity on the necessary effort and optimum strategy for
vaccination (31) and the nonlinear interactions of seasonality
and vaccination (32). What has not been done, however, is to
consider simultaneously the important factors of spatial het-
erogeneity, nonlinear dynamics, and vaccination along with
data from the onset of mass vaccination.

In this paper, we explore the impact of mass measles
vaccination on the spatial dynamics of measles. Specifically, we
show that the onset of measles vaccination in England and
Wales corresponded to a marked reduction in the temporal
correlation of epidemics between cities. Explicitly spatial
models indicate that this reduction is probably a nonlinear
dynamic effect: vaccination eliminated large epidemics, which
had acted to correlate measles dynamics in different cities
before vaccination. Finally, we. demonstrate that this decorre-
lation of epidemics could inhibit attempts at measles control by
lessening the chance of simultaneous extinction of disease in
all subpopulations.

DATA SETS AND MODELS
Data Sets. Spatially disaggregated weekly case reports are

available in published form for England and Wales for the
period 1948-1988, giving 20 years of data before and after the
onset of mass vaccination. The analysis is based on data from
seven large cities (London, Birmingham, Liverpool, Manches-
ter, Sheffield, Bristol, and Newcastle), with a population size
range of -300,000 to 10 million (out of a total population of

Abbreviations: SEIR, susceptible/exposed/infective/recovered;
RAS, realistic age-structured.
*To whom reprint requests should be sent at the present address:
Department of Ecology and Evolution, Princeton University, Prince-
ton, NJ 08544-1003.

12648

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement" in
accordance with 18 U.S.C. §1734 solely to indicate this fact.



Proc. Natl. Acad. Sci. USA 93 (1996) 12649

50 million), to obtain a preliminary idea of the geographic
coherence of measles epidemics in England; since we are
interested in patterns of relative incidence through time,
incompleteness of case reports is not a significant difficulty.
These cities are generally widely separated in space, although
Manchester and London are within 50 miles of each other. For
comparative purposes, we also analyze the change in correla-
tion on a smaller spatial scale, among the boroughs of London.
Data Analysis. We apply a variety of standard classical and

time-series statistics to the data to estimate the geographic
coherence of epidemics.
Measuring overall coherence. The primary estimate of coher-

ence is the mean of the correlation [Pearson's r of log(1 + n);
n = number of cases] for all pairwise combinations of cities in
the data set. Short-term correlations (4-year blocks) identify
rapid changes in the correlation structure but may magnify the
effects of transient differences in epidemic cycles, while long-
term correlations (20-year blocks) give an accurate measure-
ment of correlation but blur rapid changes in correlation. A
good summary statistic for changes in correlation is the size of
the drop in mean pairwise correlation between the periods
immediately before and after the start of mass vaccination;
correlations for 4-, 10-, and 20-year blocks indicate the short-,
medium-, and long-term effects on correlation, respectively.

Estimating significance. Correlation between epidemics in
different cities could be induced by epidemiological coupling
(essentially cross-infection between sites); this is the mecha-
nism we are most interested in. However, there are a number
of external influences (notably the common seasonal forcing
associated with school terms) that could also tend to synchro-
nize epidemics, independent of epidemiological coupling. We
distinguish between these two effects using prewhitening (33,
34), removing all detectable autocorrelation from a multivar-
iate time-series, so that all that remains is a set of series that
are individually indistinguishable from white noise (33). If the
noise that remains after prewhitening (which corresponds to
fluctuations around the baseline epidemic trajectory) is cor-
related between centers, there is indirect evidence for an
epidemic coupling between them; otherwise, the correlation is
more likely to be caused by common driving factors. We used
a combination of a spline fit (to remove low-frequency and
irregular patterns) and an autoregressive model (removing
short-term autocorrelation) to whiten the data, testing the
residuals to check that they were statistically indistinguishable
from white noise (33).

Models. Stochastic simulation models can demonstrate
some of the interactions of noise with the nonlinear dynamics
of epidemics. These formulations, which we have previously
used to explore the dynamics of measles epidemics in England
and Wales in the prevaccination period (12, 29, 35), incorpo-
rate age structure, simple metapopulation structure, and en-
vironmental or demographic stochasticity. The models are
extended versions of the standard susceptible/exposed/
infective/recovered (SEIR) model, which has been exhaus-
tively analyzed in the mathematical epidemiology literature
(10, 11, 13, 36-42). We use a more realistic age-structured
(RAS) measles model (12, 16, 35), which takes the basic
epidemiological structure of the SEIR model and adds age
structure and a more detailed seasonal pattern to it. The RAS
model divides the population by its school status (preschool,
primary school, adolescent, and adult), with different contact
rates between and within groups and during holiday and school
periods. Contact is highest in primary school children during
school, next highest among primary school children during
holidays and preschool children at all times, and progressively
lower among adolescents and adults, matching observed pat-
terns of exposure to disease (43). Contact rate among school
children follows a binary high/low pattern based on the
English school calendar. To incorporate the movement of
children through school in annual cohorts, age is recorded in

annual blocks rather than continuously. [For more details, see
Schenzle (16) or Bolker and Grenfell (29, 35).]
The spatial models we use mimic a population of 1 million

individuals, subdivided into 10 identical subpopulations ("cit-
ies"). Contact between susceptibles and infectives in different
cities occurs at a rate equal to 1% of the within-city contact
rate, adding to the infections from within-city contacts. Indi-
viduals do not move explicitly, but Sattenspiel and Dietz (44)
have shown that individual movement can be expressed in
terms of between-city contact rates. We use a between-city
contact rate of 1% of within-city contact rate, which is in the
center of the range of previous estimates (45) [estimating the
actual contact rate from data is a difficult and largely unex-
plored problem (44), which we will not tackle here]. [Trial
simulations with different between-city contact rates gave
average correlations before vaccination that were unrealisti-
cally low (with a relative cross-contact rate of 0.01%) or high
(with a cross-contact of 10%); otherwise, the simulations gave
results qualitatively similar to those reported below for a
cross-contact rate of 1%.] All age classes mix equally between
cities, which is unrealistic, but in the absence of data, we aim
for parsimony. As in most stochastic measles models (10, 11),
we also allow for a low level of infective immigration from
outside the population, at a rate of 20 per million per year; this
assumption is again difficult to test against data, but is a
"feature" of all stochastic measles models to date (10-12). For
very small populations or very high vaccination rates, this
assumption could fail badly.

In addition to the heterogeneity in contact structure built
into the models, we account for two types of dynamical noise
affecting the system. Environmental noise (unpredictable
changes in the parameters of the system over time) is simulated
by multiplying the contact rate by a normal deviate with a
mean of 1 and standard deviation equal to the noise amplitude
(usually -5-15%; ref. 39). (High-frequency variation in vac-
cine uptake levels can be incorporated in a similar way.)
Demographic noise describes stochastic fluctuations caused by
the essentially random and discrete nature of individual in-
fection, recovery, etc.; this stochasticity is generated in our
models by a standard Monte Carlo algorithm, picking expo-
nential deviates for the length of time elapsed between epi-
demiologic or demographic events.

RESULTS
Effects of Vaccination. Before vaccination began in 1968,

measles epidemics in cities in England and Wales showed a
regular, geographically coherent, biennial pattern (9). The
overall pattern of incidence indicates a well-documented and
much-analyzed transition from large, regular biennial epidem-
ics before vaccination to much smaller epidemics with a slightly
longer and less regular period'in the vaccine era. The annually
aggregated spatial data (Fig. la) indicate an equally dramatic
differentiation between the pre- and postvaccination series in
seven major English cities (London, Birmingham, Liverpool,
Manchester, Sheffield, Bristol, and Newcastle). The prevacci-
nation epidemic series are highly correlated between major
cities, but the correlation drops markedly after vaccination
(Fig. lb). The drop in correlation is visually striking and
statistically significant: the mean correlations for all 1-year
periods before 1968 are significantly larger than those for all
years after 1968 (P < 0.01, Mann-Whitney rank-sum test). An
equivalent drop in correlation after vaccination is also appar-
ent in the measles data for the United States (46, 47).

Vaccination, Correlation, and Spatial Scale. Fig. 2c shows
the mean raw correlation for London boroughs for the pre-
vaccine and vaccination eras. In marked contrast to the
between-city results, there is no evidence of a drop in corre-
lation. The raw correlation between boroughs (at least within
London) stays high after the start of vaccination, whereas the
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FIG. 1. (a) Standardized cases per "epidemiologic year" (Septem-
ber-August) for English cities pre- and postvaccination. Cases are

aggregated by epidemiologic year, then standardized by annual mean

and standard deviation by city within period (pre- or post-1968). (b)
Mean pairwise cross-correlation of cities by 4-year blocks.

between-city correlation falls. [Note that this is a preliminary
analysis, with no attempt to correct for boundary changes
between 1959 and 1970; a more detailed analysis may reach
different conclusions (N. Ferguson, personal communica-
tion).] As discussed below, contiguous boroughs in a city are

likely to be much more epidemiologically coupled than cities
separated by countryside (25). This implies that the decorre-
lating effects of vaccination (seen between cities) may be
reduced by strong (within-city) coupling [in simulations run

with proportional cross-contact at 10%, there was little dif-
ference in the (unrealistically high) average pairwise cross-

correlations before and after vaccination].
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FIG. 2. Distributions of pairwise cross-correlations among the
seven English cities and among London boroughs, before and after the
start of vaccination (cities, 1948-1968, 1968-1988; boroughs, 1950-
1959 and 1970-1979), with (b and d) and without (a and c) prewhit-
ening.

Exploring the Drop in Correlation. There are three cate-
gories of explanation for the drop in correlation, which we deal
with in turn using a combination of time series analysis and
epidemiological modeling.

Contingent changes due to intermittency. Both observed and
simulated dynamics of measles in developed countries are
capable of a variety of cyclical behaviors (48, 49); in particular,
dynamics can shift to annual or triennial cycles from the
predominant biennial patterns. In terms of models, this inter-
mittency can arise simply out of the intrinsic strong nonlin-
earity of the system. In patch models, these shifts in dynamics
are also associated with changes in the average level of
between-city correlation (50); during high-correlation periods,
the aggregate population behaves more coherently and has
more violent epidemics, deeper troughs, and hence more
fade-outs (see Fig. 4). In principle, therefore, the observed
drop in correlation could be a result of the intrinsic dynamics
and unrelated to the, impact of vaccination.
However, there are several strong objections to this purely

contingent explanation. First, Cliff et al. (46, 47) have observed
a similar a drop in correlation between measles epidemics in
U.S. cities following mass vaccination. Second, simple proba-
bility argues against a coincidental dynamical change unre-
lated to vaccination. The largest drop in 2-year and 4-year
mean cross-correlations coincided exactly with the start of
vaccination, which in a time series consisting of 20 2-year
blocks, would occur by chance only 5% of the time. Finally, as
discussed below, the maintenance of a high correlation be-
tween London boroughs during the vaccination era suggests a
vaccination-induced decorrelation of the more weakly coupled
cities rather than the effect of chance. We therefore do not
explore this possibility further.

Extrinsic factors. The observed decorrelation could be
caused by coincident changes in population parameters, un-
related to vaccination. The signature of long-term population
changes are certainly apparent in the measles record-for
example, secular changes in birth rates can produce dynamical
effects (3). The most likely parameter to affect correlation
would be the coupling, the amount of epidemiological contact
between individuals in different cities.
We test for differences in coupling by analyzing the pre-

whitened data. The prewhitened cross-correlations (see above)
among cities in England (and between London boroughs) are
smaller than the unwhitened correlations, but still significant
(Fig. 2); more importantly, the prewhitened cross-correlations
do not drop after vaccination, suggesting that the drop in
correlation was not caused by a lessening of contact between
cities.

Extrinsic factors seem to be an unlikely explanation on other
grounds. Infrastructural improvements in the 1960s would be
more likely to increase than to decrease correlation between
cities. Also, the increasing average age of infected individuals
after the onset of vaccination (13) would tend to increase the
mobility of infectives, causing (if anything) greater coupling
between cities. Finally, the strong coincidence between the
timing of vaccination and the timing of decorrelation, both on
the local scale and comparing England and the United States,
speak for some role of vaccination.

Decorrelating effects of vaccination. There are two possible
dynamical mechanisms for decorrelation: dynamical changes
caused by variation in the timing of onset of vaccination or the
proportion vaccinated (vaccine uptake) and an interaction
between vaccination, demographic stochasticity, and epidemic
dynamics.

(i) Spatial variations in vaccination. The implications of
differences in timing of onset of vaccination have already been
explored, in a nonspatial context, in important papers by Aron
(32) and Schenzle (16). Aron in particular found that differ-
ences of a few months in the timing of onset of vaccination can
push the deterministic SEIR model into different dynamical

Proc. Natl. Acad. Sci. USA 93 (1996)



Proc. Natl. Acad. Sci. USA 93 (1996) 12651

regimes. Regional differences in the timing of the start of the
vaccination program could push initially correlated regions
into different dynamical regimes, decorrelating them. How-
ever, simulations show that even at extremely low levels of
epidemiological coupling the deterministic dynamics in differ-
ent model regions very quickly become synchronized. For zero
coupling, the cross-correlation between two regions with dif-
ferent vaccination timing can decline from - 1.0 to 0.5 after 70
years of vaccination; for a cross-coupling as small as 0.005, the
correlation dips briefly but rapidly returns to nearly 1.0.
Adding environmental or demographic noise to the model
does not alter this qualitative conclusion; essentially, enough
noise to decorrelate the cities after vaccination will also
decorrelate them before. These results echo, in the context of
vaccination, recent work by Lloyd and May (30), which illus-
trates the strong synchronizing effects of epidemiological
coupling in these models.

(ii) Interaction of noise and dynamics. The second possibility
is that vaccination reduces correlation by reducing the suscep-
tible population size. Lloyd and May (30) show that in the
deterministic, spatially explicit SEIR system, vaccination does
not have a strongly decorrelating effect. However (as they
observe), vaccination also has strong implications for the
stochastic dynamics. Reducing the susceptible population size
by vaccination amplifies the effects of demographic noise (4).
We therefore explore the interaction of vaccination and de-
mographic noise using spatially explicit age-structured models;
in particular, we use a RAS model with a population size of 1
million, divided into 10 cross-coupled patches, as described in
Models.
The basic result is presented in Fig. 3. Fig. 3a shows

histograms of the drop in correlation for 4-, 10-, and 20-year
blocks for 50 simulations of the age-structured model with
vaccination. Vaccination is imposed at realistic levels (but
homogeneously in space), based on reconstructions by
Schenzle (16) of the actual vaccination coverage in different
age classes in the early years of mass vaccination; the average
levels start at -60% and rise over time. The figure superim-
poses a point to show the observed drop in correlation in
England and Wales. The simulations indicate a significant drop
in correlation (Table 1). We tested the changes in simulated
mean correlation (AC) of 50 model runs between the periods
immediately before and after vaccination (Fig. 3a) against a
null distribution of the changes in correlation in contiguous
periods in 2000 years of simulation without vaccination (cf. Fig.
4). The distribution of AC from the vaccination simulations for

(a)

Table 1. Changes in correlation immediately following
vaccination: Observed (English cities), maximum decrease,
and median change for 50 simulation runs
(no vaccination heterogeneity)

Correlation length, Maximum
years Observed decrease Median

4 -0.24 -0.33 -0.05
10 -0.29 -0.34 -0.11
20 -0.22 -0.35 -0.07

4-, 10-, and 20-year periods before and after vaccination had
a significantly smaller median than the null distribution for
equivalent periods (Mann-Whitney P < 0.03, 0.005, and 0.02,
respectively). However, the observed drop in correlation falls
within the lower tail of the null distribution (Fig. 3a and Table
1); most simulations produce less of a drop in correlation than
that observed amongEnglish cities.

Heterogeneity in vaccine uptake. One explanation for this
discrepancy between observed and simulated decorrelations is
that the level of vaccination is spatially variable. The timing of
onset of vaccination (as described above) and/or spatial
differences in vaccine uptake could combine with the intrinsic
effects of vaccination to decrease correlation further. Heter-
ogeneity in vaccine uptake between cities could take two
forms. At one extreme (pure spatial heterogeneity), different
cities could have intrinsically different levels of vaccine uptake
that are constant through time. At the other extreme (spatio-
temporal heterogeneity), independent temporal variation in
vaccination uptake could swamp spatial differences. Fig. 3 b
and c show the results of simulations incorporating these two
extreme assumptions. We also explored simulations where
vaccination was started out of phase in different cities. None
of the various extra heterogeneities in vaccination caused
qualitative differences in the results.

Analysis of the observed levels of vaccine uptake for En-
gland and Wales indicates significant heterogeneities among
regions, superimposed on a general (approximately linear)
increasing trend in uptake from the early 1970s onwards.
Incorporating these extra complexities, as well as variations in
the starting time of vaccination, does not alter the conclusions
of Fig. 3. We return to discuss the relatively large drop in
correlation for the English cities associated with vaccination
after exploring the implications of decorrelation for the suc-
cess of vaccination programs.

(b) (c)

0 c

0 14 0 6 0

# of simulation runs

FIG. 3. Histograms of changes in mean pairwise cross-correlation in stochastic simulations of 10 identical cities (total population, 1 million),
before and after vaccination for short (4-year), medium (10-year), and long (20-year) correlation blocks. Circles indicate observed drops in
correlation among English cities. (a) Vaccination applied homogeneously in space and time; (b) random spatial heterogeneity in vaccination at the
level of different cities; and (c) random spatiotemporal heterogeneity in vaccination at the level of one week.
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FIG. 4. Correlations and occurrence of fade-out in a metapopu-
lation model. Solid line shows the 4-year mean pairwise cross-

correlation for an 800-year simulation run (n = 10 X 105, coupling =

0.01). Dots show global fade-outs.

Consequences for the Success ofVaccination. A vaccination-
induced drop in correlation may have significant consequences
for the spatial dynamics of disease eradication. Decorrelation
of population dynamics in different subpopulations favors the
survival of a metapopulation (2), and measles metapopula-
tions work the same way (50). Fig. 4 shows that fade-out of
disease is associated with periods of high correlation in a

stochastic simulation without vaccination.
To illustrate how decorrelation could enhance persistence,

we performed a manipulative experiment on the simulation
model, artificially shifting the phase of one city in a two-city
model and showing that it can prevent fade-out of disease in
one particular case (Fig. 5). This is essentially a "rescue effect"
(51)-for example, city 2 in Fig. 5 does not fade out at time 4.0

City 1
§ a Clty2

Persistence

o J
E 1
0 §1b
0

0

--I

0 2 4

Time (years)
6

FIG. 5. Simulation of a two-population (n = 2 x 400,000) model,
baseline (a) and with subpopulation 2 phase-shifted by a year (b). (b)
The same simulation, but with initial conditions changed so that the
dynamics of population 1 are initially phase-shifted by 1 year. Heavy
lines show periods of global persistence.

because of cross-coupling with a relatively large, uncorrelated
epidemic in city 1.

This experiment is a preliminary illustration, and much more
work is needed to explore the significance of the rescue effect.
Nevertheless, it could have significant implications for vacci-
nation strategies. The phenomenon is likely to be most im-
portant at intermediate levels of vaccinations since for very
high levels of vaccination eradication will be achieved regard-
less of local epidemic dynamics (13). However, if some or all
cities are below the persistence threshold but above the
invasibility threshold, we might expect the combination of
coupling and decorrelation to have a significant effect; the
emergent spatial dynamics mean that the performance of
intermediate levels of vaccination could be worse than we
would predict from simple theory.

CONCLUSIONS
We have shown that the start of mass vaccination in England
and Wales in 1968 coincided with a significant drop in intercity
epidemic correlations. This result parallels previous work on
vaccination in the United States; however, we also use epide-
miological models to seek dynamical explanations for the
effect and its implications. Time series analysis and stochastic
simulations suggest that this drop is a straightforward dynam-
ical effect of lowered incidence. We further propose that a
decrease in correlation may correspond to a decrease in
fade-out of disease, making it more difficult to eradicate the
disease. However, given the complex nonlinear spatial dynam-
ics of measles, this analysis has also raised a number of issues.

First, why is the observed drop in correlation in England and
Wales larger than most of our model predictions? The essential
statistical point here is that we currently have only one
observed data point, based on our records from seven English
cities. Of the 50 replicate simulations of vaccination in a
spatially structured population (Fig. 3), 6 (or 13%) showed
more decorrelation than the English data; statistically, there-
fore, we cannot say that the observed point was drawn from a
different distribution of drops in correlation. However, this is
a weak argument and we are currently amassing other data sets
(from the United Kingdom and other countries) to test this
effect more carefully.
Another explanation for the discrepancy between observa-

tion and models is that the latter omit significant epidemio-
logical detail. In particular, though the RAS model does give
an accurate description of pre- and postvaccination measles
dynamics for England and Wales as a whole, it omits much
spatial and demographic detail. For example, we could include
more spatial structure, and in particular hierarchical structure
using individual-based models and allowing for the explicit
diffusion of infection between cities (25, 52). This more
intricate web of spatial relationships might then produce the
observed drop in correlation-however, preliminary work
along these lines suggests not. We nevertheless hope to pursue
this topic further, although the already large parameter space
of current models will become even more huge (and difficult
to relate to data) as we include more hierarchical spatial
structure, family dynamics, etc.

Second, what is the proximate dynamical explanation for the
decorrelation observed in models and data? At least part of the
explanation for England and Wales as a whole appears to be
the elimination by vaccination of large epidemics, which acted
to synchronize the depletion of susceptibles and therefore
subsequent peaks in infection. The direction of causality is not
clear, however, since correlation also produces larger epidem-
ics. Though again we could make more detailed models to
understand this process, the key to understanding it probably
lies in the analysis of more detailed data sets. Specifically, we
need to solve the difficult problem of quantifying levels of
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epidemiological coupling between different centers at differ-
ent spatial scales.
The maintenance of a high correlation between epidemics in

the London boroughs after vaccination illustrates the impor-
tance of examining the system at several levels (53). Examining
correlations at a range of spatial scales, before and after
vaccination, could provide a powerful tool for analyzing levels
of epidemiological coupling.
The degree of coupling is also central to understanding the

possible applied implications of decorrelation. We have shown
here for the first time that decorrelation of epidemics probably
caused by vaccination could inhibit disease control at inter-
mediate levels of vaccine uptake. Most previous theoretical
studies have concentrated-very successfully-on questions of
eradication (13, 31); however, the present analysis indicates
that we may also need to think about the emergent spatial
dynamics consequent upon intervention.

Again, the priority is to examine what the data tell us about
the importance of these effects. For example, Fine and Clark-
son (5) made the important observation that vaccination in
England and Wales did not significantly alter the critical
community size of --250,000 below which infection disappears
in the troughs between epidemics (8, 24). This observation
confounds simple theoretical predictions (4) that the critical
community size should increase significantly with vaccination.
However, the stability of the critical community size after
vaccination is consistent with a rescue effect caused by the
decorrelation of city epidemics after vaccination. Further work
(B.T.G., unpublished data) indicates that the critical commu-
nity size did not increase even in the late 1980s, when measles
incidence was very low, possibly a consequence of decorrela-
tion. Quantifying this effect will (again) require hierarchical
spatial data from within cities above and below the critical
threshold, to establish on what spatial scale it occurs.

Overall, these results indicate considerable scope for further
work on the mass of hierarchical spatial incidence data avail-
able for childhood infections (54). Apart from its specific
epidemiological application, this work should shed light on the
persistence of metapopulations in general.
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