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Introduction

Lung cancer is the most common and deadly (1) human cancer, 
called “a global scourge” (2) with a dismal prognosis. The relative 
5-year survival for patients with this disease is 14% (3), and has 
remained largely unchanged for years.

Only recently had research interest focused on lung cancer, 

as more effective therapies have become available. Indeed, some 
consider lung cancer to be a “poster boy” (4) for personalized 
medicine. Much of this hope and hype comes from the potential 
for advances in translational genomics to improve understanding 
and management of this cancer. 

Deoxyribonucleic acid (DNA) sequencing technologies 
were introduced in the mid 1970s (5,6). W hen the first 
human, naturally occurring tumorigenic somatic mutation 
was discovered in 1982 (7), it became clear that sequencing 
the cancer genome was a necessary next step (8). Completion 
of the first human reference genome (9,10) then stimulated 
technological advances which enabled the first human cancer 
genome to be sequenced only four years later (11).

Sanger sequencing was first described in 1975 (5) as a “rapid 
method for determining sequences in DNA”, by providing  
accuracy and sequence contiguity that remains unmatched(12). 
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Nowadays, the rapidity and scalability of next generations 
sequencing (NGS) technologies are quickly improving our ability 
to explore the cancer genome and exponentially advancing  our 
understanding of lung cancer pathogenesis, its diagnosis and 
treatment (13-16). 

Next generation technologies for whole genome 
sequencing (WGS)

Past techniques for exploration of the cancer genome, such as 
capillary electrophoresis based “Sanger” sequencing, array-based 
genome-wide analysis of amplifications and deletions (17), gene 
expression arrays (18) and retrovirus mediated expression 
screening techniques, have successfully identified genomic 
drivers of cancer (19-21), and novel therapeutic targets (20,22). 
Commercially available since 2004, next generation sequencing 
(NGS) platforms now provide high throughput, massively 
parallel techniques able to generate sequence data orders of 
magnitude more quickly, and at lower cost, than traditional 
techniques (13,23).

Comprehensive genome sequencing techniques are now 
used to study a range of genetic diseases (15). While many NGS 
platforms require significant investments in infrastructure, they 
share methodological similarities. Massively parallel sequencing 
begins with the generation of a DNA library onto which platform-
specific “adaptors” are bound. This library is then fixed to a solid 
surface and each fragment is amplified so that the sequencing 
reaction produces a detectable signal. The library is sequenced in a 
series of automated, repetitive steps (14).

There are a large number of potential applications for NGS 
technologies (24), such as WGS and whole exome sequencing 
(WES) to find novel mutations (25); paired-end and mate-pair 
sequencing to identify structural variations (26); targeted 
resequencing for mutation discovery and validation (27); 
transcriptome sequencing for quantification of gene expression 
and discovery of transcribed mutations (28); small RNA-
sequencing for microRNA profiling (29); large scale analysis of 
DNA methylation (30) and chromatin immunoprecipitation 
for genomic mapping of DNA-protein interactions (31). It is 
likely that there will be refinements in future that are not even 
envisaged in these early days of genomic research.

NGS WGS of lung cancer

The advances of the past decade of genomics research demonstrate 
the power of massive genomic surveys (15). The passion and 
dedication with which large scale, comprehensive studies of the 
human genome have been undertaken is second only to the fervor 
and fecundity driving advances in requisite research infrastructure, 
such as experimental technology, bioinformatics and ethics (32). 
The spectrum of genomic changes seen in lung cancer is beyond 

the scope of this brief overview, which will outline the methods 
and studies used so far in the application of NGS technologies to 
the study of this cancer. 

Although early tools for genome-wide exploration provided 
putative therapeutic targets, the majority of tumours still lacked 
an identified molecular driver. The subsequent introduction of 
NGS technologies has revolutionized our understanding of cancer 
biology, the processes of carcinogenesis as well as its molecular 
drivers, and the range of techniques with which to explore the 
genome. The application of these platforms to the optimization 
of lung cancer outcomes promises the potential to transform lung 
cancer care.

Lung cancer—early steps towards personalized medicine

Before the development of massively parallel sequencing, much of our 
understanding of the molecular pathology of lung cancer was based 
on techniques such as mismatch repair detection (33), sequencing 
of candidate genes (34), single nucleotide polymorphism (SNP)  
arrays (21) and gene expression analysis (35). High throughput 
sequencing technologies now enable comprehensive examination of 
the lung cancer exome (36) and genome (37,38). 

An important and key global, collaborative approach using 
these technologies is led by The International Cancer Genome 
Consortium (ICGC) and The Cancer Genome Atlas (TCGA) (39),  
which bring the promise of a truly personalized approach to 
cancer care, including the two major subtypes of lung cancer, 
adenocarcinoma (AC) and squamous cell carcinoma (SCC), in 
the first instance. 

WGS of lung cancer

The first applications of massively parallel sequencing to the 
study of lung cancer were understandably carefully designed and 
focused studies (Table 1). In 2008, Campbell and colleagues 
published the genomes of 2 lung cancer cell lines, 1 derived from 
a neuroendocrine tumour and another from a small cell lung 
cancer (SCLC) (26). The second sequence of a SCLC cell line 
was published in 2010 (40). The first application of WGS to 
DNA extracted from lung tumour paired with normal lung was 
the same year by Lee et al. (38) Then, a second paired non-small 
cell lung cancer (NSCLC)/normal lung sequence was published 
in 2011, from a never-smoking patient with AC (37).

These initial WGS studies were performed using a range of 
sequencing technologies (Table 2), including combinatorial 
probe anchor ligation (cPAL) as well as the platforms of Illumina 
and Life Technologies.

Illumina’s massively parallel sequencing technology is based on 
sequencing by synthesis (47). After library preparation, sequencing 
begins with the addition of a mixture of four nucleotides, each 
labeled with a reversible terminator and base-specific fluorescent 
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tag, and DNA polymerase. Fragments are extended one nucleotide 
at a time, and after nucleotide incorporation, laser excitation and 
image acquisition allow identification of the newly incorporated 
nucleotide. The fluorescent tag and terminator are then removed, 
and the next cycle of sequencing proceeds (47). Illumina’s range 
of sequencing platforms available for WGS include the HiSeq and 
Genome Analyzer IIx. The HiSeq offers both high output and 
rapid run modes with paired end reads up to 150 bp generating up 
to 600 Gb data in 11 days. By contrast, the Genome Analyzer IIx 
can generate up to 95 Gb data by sequencing paired end reads of 
150 bp in 14 days from as little as 50 ng DNA (45).

This platform is vulnerable to imperfections in DNA 
polymerase activity which can result in nucleotide incorporation 
errors (13), increasing the need for bioinformatic interpretation 
of sequence results (48). Ongoing developments promise to 
improve coverage of difficult genomic regions such those rich in 
repeats, or in guanine (G) and cytosine (C). The TruSeq DNA 
PCR-Free Kit removes the need for PCR amplification during 
library preparation, reducing the risk of DNA polymerase-related 
nucleotide incorporation errors and mis-representation of C-G 

rich regions (49). In addition, Illumina acquired from Moleculo 
in 2012 an innovative technology capable of reconstructing short 
read data into long reads (50).

By contrast, Sequencing by Oligonucleotide Ligation and 
Detection (SOLiD; Life Technologies) is driven by DNA ligase, 
not DNA polymerase (51). The DNA library is amplified onto 
paramagnetic beads immobilized on a solid substrate, a universal 
primer is hybridized and sequencing commences. Nucleotide 
octamers, fluorescently tagged at a specific base, are incorporated. 
After ligation, image acquisition occurs in 4 channels to document 
the nucleotide present at the identified base. The octamer is 
then cleaved between bases 5 and 6, and the tag is removed in 
preparation for the next round of sequencing. Consecutive cycles 
sequence every 5th base (i.e., 5, 10, 15, 20 etc.); when complete, 
the DNA is denatured and the process is repeated to sequence a 
different set of nucleotide positions (i.e., 4, 9, 14, 19 etc.) (13, 24).  
This system offers the potential for 2-base encoding. This is 
achieved by incorporating fluorescent tags for adjacent bases 
in the nucleotide octamer thus sequencing 2 adjacent bases. 
Each base can then be interrogated twice, allowing detection of 

Table 2. Commercial next generation sequencing platforms for human whole genome sequencing.

Read length/read time Data processing Advantages Disadvantages

Illumina: optical detection of fluorescently labeled nucleotides

Illumina: HiSeq  
2500/2000 (44)2

2× 150 bp read  
length; 11 days

600 Gb;  
6 billion reads1 

Widely used; target difficult 
genomic regions3

Limited scalability; DNA 
polymerase errors, slow

Illumina: Genome  
Analyzer IIx (45)2

2× 150 bp 85-95 Gb;  
640 million reads1

Widely used; target difficult 
genomic regions3

Lower data processing 
capacity than HiSeq

Life Technologies: optical detection of fluorescently labeled nucleotides using sequencing by oligonucleotide ligation and detection

Life Technologies:  
SOLiD 5,500xl (46)

Mate paired: 2× 60 bp;  
Paired-end: 75 bp and 35 bp;  
fragment: 75 bp; 7 days

10-15 Gb/day; 2-base encoding reduces errors Short read lengths

1, paired end reads; 2, with TruSeq v3 kit; 3, TruSeq DNA PCR-Free Kit; bp, base pairs; Mb, megabase; Gb, gigabase; PCR, polymerase chain reaction.

Table 1. Next generation sequencing studies of lung cancer to date.

First author Year Project design Platform

Campbell (26) 2008 2 lung cancer cell lines WGS Illumina Genome Analyzer

Pleasance (40) 2010 1 SCLC cell line WGS SOLiD

Lee (38) 2010 1 NSCLC/normal lung pair WGS Combinatorial probe anchor ligation 

Ju (37) 2011 1 NSCLC/normal lung pair WGS Illumina HiSeq and Genome Analyzer IIx

Imielinski (41) 2012 183 ACs and matched normal tissue;  
159 WES, 23 WES + WGS, 1 WGS 

Illumina HiSeq

The Caner Genome Atlas 
Research Network (42)

2012 Integrated analysis of 178 SCCs and matched 
germline; 19 WGS, 178 WES

Illumina HiSeq

Govindan (43) 2012 17 WGS; 16 adenocarcinoma and 1 large cell 
carcinoma

Illumina Genome Analyzer II

WGS, whole genome sequencing; WES, whole exome sequencing; CNV, copy number variation; SNP, single nucleotide polymorphism; AC, 
adenocarcinoma; SCC, squamous cell carcinoma; SCLC, small cell lung cancer; cPAL, combinatorial probe anchor ligation. 
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sequencing errors (24).
cPAL is a unique sequencing strategy that is commercially 

available as a complete sequencing solution. Rolling circle 
amplification is used to generate nanoballs of genomic DNA 
that are adsorbed to a solid substrate in a nanoarray. Anchor 
molecules bind to nucleotide adaptor sequences introduced 
during library preparation. A fluorescently labeled probe 
hybridizes to the template DNA and is ligated to the anchor. 
Sequence is then read by detecting the fluorescence generated at 
each ligation with great accuracy (52).

In a 2012 landmark paper, Imielinski et al., reported the 
results of WGS of 36 pulmonary ACs/normal lung pairs coupled 
with WES of an additional 92 pairs (41). WGS and WES were 
performed with mean coverage of 69x and 91x, respectively. 
A number of different techniques were used to identif y 
potential driver mutations. It was found that a combination of  
4 bioinformatics strategies optimally identified their ultimate  
25 significantly mutated genes. Structural variation was also 
explored in the 24 matched pairs for which WGS data was 
available. This was the first publication of WGS data for multiple 
lung tumours, and postulated a number of novel molecular drivers.

It was closely followed by the TCGA’s publication of the first 
WGS analysis of SCC (42). This study investigated 178 WES 
and 19 WGS performed on paired SCC/germline DNA. Whole 
transcriptome profiling was also performed using integrated 
RNA-sequencing and microarray data. Cases were distributed 
among gene expression subtype signatures (53) that classified 
tumours according to functional themes described in terms of 
gene overexpression relative to the other subtypes. 

WGS has also been used, in association w ith whole 
transcriptome sequencing, to study the genomic differences 
between NSCLC in smokers and never smokers (43). Govindan 
et al., performed paired end WGS sequencing on 17 tumour/
normal lung pairs, including 16 ACs and a single large cell 
carcinoma, with mean haploid coverage of 30x.

These studies suggest that application of NGS technologies 
to the study of lung cancer genomes will assist us to unlock the 
mysteries of this disease, and lead to improvements in outcomes 
for patients. In addition to the identification of a number of 
new putative therapeutic targets, WGS technology is fuelling 
advances in metabolomics, epigenomics and transcriptomics. On 
the other hand, in addition to the high cost currently, a number 
of technical challenges are yet to be overcome.

Challenges facing lung cancer genomics

NGS technologies offer significant advantages over traditional 
sequencing techniques for the field of WGS. However, a number 
of the current platforms’ limitations have been identified and are 
driving technological advances.

Traditional Sanger sequencing is a widely available, but 

meticulous and time-consuming process, and generally delivers 
reads of around 1,000 bp with raw accuracy of 99.999% (24). 
Newer NGS techniques generate large numbers of relatively 
short reads using techniques which often require amplification by 
PCR; these techniques are particularly vulnerable to systematic 
error when applied to comprehensive genomic analysis (12). 
Long sequences of repeated bases, degraded or damaged DNA 
and C-G rich regions are particularly problematic (12). Indeed, 
each sequencing platform has a unique profile of strengths and 
weaknesses (54).

Short sequence read lengths are characteristic of the early NGS 
technologies. Unfortunately, these can be troublesome to assemble 
in a complete genome, and can create a biased aligned read that is 
insensitive to repeat content and hinders systematic exploration 
of the genetic basis of disease. Even the “complete reference” is 
reported to contain up to 350 gaps (12). Regions of the genome 
rich in repeats, such as those in proximity to centromeres and 
telomeres, are particularly challenging to map with small reads 
lengths. Sanger sequencing remains the method of choice for 
characterising regions where NGS is suboptimal (55).

Genome regions that are rich in C and G can be prone to 
erroneous replication by NGS technologies that are based on 
PCR amplification because DNA polymerase ineffectively 
amplifies these regions. Consequently, these can result in errors 
in the DNA template delivered to the sequencer, and cause 
systematic error in the generated reads. Assembly programs are 
essential for sequence alignment and mapping, and share the 
potential of sequencing platforms to confound results (56).

Without a doubt, these challenges are driving researchers to 
achieve exponential advances in experimental and computational 
technology. A variety of sample preparation technologies are now 
available to help eliminate the need for template amplification 
and generate reads of sufficient length to bridge repeat regions. 
Another technological issue facing WGS bioinformaticians is 
the intricate complexity of the mutational profile of lung cancer. 
The computational bottleneck has progressed from generating 
and aligning sequencing to bioinformatic analytics including 
discrimination between driver and passenger mutations or 
background ‘noise’.

The extremely large datasets generated by WGS projects have 
meant that many investigators around the world are working on 
strategies to optimally store, analyze and handle the “big data”. 
A tiered approach to mutation classification appears of be quite 
a useful way to classify the large number of mutations found in 
these genomic interrogations (57). Tier 1 mutations include 
changes in the coding regions of annotated exons, consensus 
splice-site regions and RNA genes (including miRNA). Tier 2 
features changes in conserved regions of the genome or those 
with regulatory potential. Tier 3 is characterized by mutations in 
nonrepetitive part of the genome that are not included in Tier 2. 
The remainder of the genome is allocated to Tier 4. Common 
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strategies for the differentiation of driver from passenger 
mutations vary, but often include the selection of biologically 
relevant, recurrent mutations. However, the definition of 
“recurrent” remains inconsistent (41,58).

W hile these approaches assist in the interpretation of 
mutation significance, they do not differentiate mutations from 
background genome variation. The high mutation rate observed 
in lung cancers disqualifies the bioinformatic assumption of a 
uniform background mutation rate. However, computational 
approaches adopted by TCGA in their WGS studies were able to 
map the structure of variation in the background mutation rate 
and account for this during data analysis (42).

Hanahan and Weinberg (59,60) proposed a framework of 
“cancer hallmarks” which is increasingly extended and validated 
by genomic discoveries. Systematically optimising methods for 
genome sequencing, alignment, mapping and variant calling will 
allow us to fully realise benefits of these advances for the study of 
lung cancer biology. 

Future directions 

Continuing advances in experimental and bioinformatics 
technologies are increasing our armamentarium for genomic 
exploration. Today’s platforms, which are essentially limited to 
replication of DNA’s nucleotide sequence, may be replaced by 
systems able to capture DNA with epigenetic modifications (12).  
Better analytical tools are needed to facilitate sensitive 
detection of driver mutations and comprehensive catalogues 
of genomic data will facilitate dissemination of this knowledge 
to the scientific, medical and lay communities (61). Other 
technological advances, such as single cell sequencing, are likely 
to help us understand the complexity and heterogeneity of the 
tumour genome (62). 

Furthermore, a comprehensive understanding of the intricate 
relationships among cellular pathways and mutations therein, 
along with the processes underlying mutagenesis, will guide 
the development of molecularly targeted therapy. As genome 
sequencing becomes widely available and interpretable with high 
accuracy at reduced cost, this information will be increasingly 
useful for clinicians, and more importantly, their patients. 
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