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Abstract
Heart failure (HF) frequently is the unfavorable outcome of pathological heart hypertrophy. In
contrast to physiological cardiac hypertrophy, which occurs in response to exercise and leads to
full adaptation of contractility to the increased wall stress, pathological hypertrophy occurs in
response to volume or pressure overload, ultimately leading to contractile dysfunction and HF.
Because cardiac hypertrophy impairs the relationship between ATP demand and production,
mitochondrial bioenergetics must keep up with the cardiac hypertrophic phenotype. We review
data regarding the mitochondrial proteomic and energetic remodeling in cardiac hypertrophy, as
well as the temporal and causal relationship between mitochondrial failure to match the increased
energy demand and progression to cardiac decompensation. We suggest that the maladaptive
effect of sustained neuroendocrine signals on mitochondria leads to bioenergetic fading which
contributes to the progression from cardiac hypertrophy to failure.
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Introduction
Heart Failure (HF) is a major and growing public health concern, and a leading cause of
morbidity and mortality in industrialized countries worldwide. In this country at least 2% of
the population suffers from this affliction with an annual mortality rate that range from 10%
to 20% depending on the severity [1, 2]. Because of its high prevalence, $28 billion are
expended annually in the US for treatment [3]. The major causes of HF include myocardial
infarction, arterial hypertension, cardiomyopathy, and valvular heart diseases.

Heart failure frequently is the unfavorable outcome of pathological heart hypertrophy.
Cardiac hypertrophy is the growth response of the heart to an increase in mechanical stress
induced by either extrinsic factors such as increased pressure or volume overload in
hypertension and valvular diseases, or intrinsic factors such as ischemia-induced cardiac
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remodeling or hypertrophic cardiomyopathy. By means of hypertrophy, the heart normalizes
the increase in wall tension and sustains cardiac output in the face of stress. During the
compensated phase of pathological hypertrophy the hypertrophic response matches the
increased workload, so there is no negative impact on the heart contractile performance. In
contrast, the decompensated stage of pathological hypertrophy follows this initial phase of
compensation and leads to contractile dysfunction and HF. In comparison with pathological
hypertrophy, physiological hypertrophy develops in response to either isometric, i.e.,
weightlifting, or isotonic, i.e., cycling, physical exercise, which leads to intermittent
pressure and volume overload, respectively, and does not lead to HF. Our topic will deal
exclusively with pathological hypertrophy and its decompensation to HF.

Energy supply in the form of ATP is mandatory to sustain cardiac contractile and relaxation
functions. The heart is the greatest oxygen-consuming organ in the body, with no excess
capacity for ATP production versus utilization. Ninety percent of this requirement is met by
mitochondrial oxidative phosphorylation that is finely adjusted to energy need. In addition to
providing energy for cardiac contraction and relaxation, mitochondria generate reactive
oxygen species (ROS) that mediate the inotropic and hypertrophic effects of sympathetic
and renin-angiotensin-aldoesteron systems [4, 5]. Cardiac hypertrophic adaptation is
accomplished by the induction of a fetal genetic program followed by changes in cellular
phenotype, leading to enhanced protein synthesis and increased cardiomyocyte size.
Mitochondrial oxidative capacity is reported to be either preserved or even enhanced in
cardiac hypertrophy [6, 7]. In contrast, in both human subjects and experimental models of
HF mitochondrial function is decreased [8–10].

This review focuses on the interaction between the neuroendocrine response and signaling
pathways that contribute to changes in mitochondrial biogenesis and function in the
compensated versus decompensated phases of pathological hypertrophy. We evaluate the
decrease in mitochondrial bioenergetics as a potential factor responsible for the transition
from the compensated stage of cardiac hypertrophy to HF.

A. Cardiac mitochondria through the transition from cardiac hypertrophy to
failure
1. Mitochondrial biogenesis

Primary mitochondrial cardiomyopathies in human subjects lead to mitochondrial
proliferation in cardiomyocytes [11]. Mitochondrial proliferation also occurs in murine
models of cardiomyopathies associated with ablation of either the adenine nucleotide
translocase 1 [12], frataxin [13], Mn-SOD [14], or mitochondrial transcription factor A
(TFAM) [15]. In TFAM knockout mice—with early metabolic switch towards decreased fat
and increased glucose oxidation, and progressive cardiomyopathy—there is a decrease in
mtDNA replication and transcription, as well as impaired mitochondrial electron transport
chain (ETC) associated with increased mitochondrial mass [15]. Despite the increase in the
number of mitochondria, the mitochondrial defect is not compensated for, as shown by
severe ATP depletion.

In acquired cardiomyopathy, the cardiomyocyte hypertrophy phase, in which there is an
increase in mitochondrial biogenesis, is essential to delay cardiac decompensation induced
by pressure overload. If the hypertrophic phase is bypassed—as in mice deficient in
mammalian target of rapamycin (mTOR) that have been challenged by aortic constriction—
a severe and rapidly progressive dilated cardiomyopathy occurs [16].

During compensated cardiac hypertrophy mitochondrial density seems to match the energy
demand of the hypertrophic cardiomyocyte but decreases during cardiac decompensation. In
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homogenates of cardiac tissue derived from pressure overload-hypertrophied hearts the
activities of the mitochondrial marker enzymes citrate synthase and cytochrome c oxidase,
as well as the expression of oxidative phosphorylation genes, were unchanged [17, 18]. Dai
et al. recently showed that angiotensin II and experimental mtDNA deletions lead to
upregulation of mitochondrial biogenesis signaling in cardiac hypertrophy, and the latter is
completely blunted when the disease progresses to HF [5]. Garnier et al. found that HF
induced by aortic banding in rats is associated with downregulation of all main transcription
factors of mitochondrial biogenesis [19]. In their study, the amount of PGC1α mRNA is
linear with the expression of both the mitochondrial marker enzyme, citrate synthase, and
two protein subunits of cytochrome c oxidase encoded by either mitochondrial or nuclear
DNA.

The status of mitochondrial biogenesis in human HF has not been clearly defined. The
amount of TFAM, mtDNA, and mRNA for all mitochondrial-encoded subunits of the ETC
is normal in explanted failing heart when compared with donor hearts, suggesting that there
is no decline in mitochondrial gene expression [20]. However, retrospective analysis of drug
therapy before transplantation identified beta-blockers that may have been provided
protection against this disturbance.

In summary, the data support a reciprocal relationship between alterations in mitochondrial
biogenesis and cardiac pathology.

2. Mitochondrial oxidative capacity
Defects in individual components of the ETC and phosphorylation apparatus
in HF—Very little data exist regarding the activity of individual components of the
mitochondrial ETC during the period of compensated cardiac hypertrophy. Griffiths et al.
reported a decrease in complex I and II activities without a change in complex amounts in
the early pressure-overload cardiac hypertrophy induced by thoracic aortic banding in
neonatal rabbits [21]. In mice, transverse aortic constriction leads to an increase in some
nuclear-encoded enzymes of the Krebs cycle and subunits of complex I, III, IV, and V of the
ETC [22]. Similar results were obtained in aortic constriction in rats [23] and in old-
spontaneously hypertensive rats with left ventricle dysfunction [24]. However, these studies
do not provide information about either the consequence of this proteomic remodeling on
the activities of individual ETC complexes or the consequence of ETC changes on oxidative
phosphorylation and energy generation. In contrast to these studies, we attempted to link the
activities of ETC complexes to the integrated mitochondrial function, and measured both the
individual activities of ETC complexes and oxidative phosphorylation rates in freshly-
isolated cardiac mitochondria from canine hearts. In a moderately severe stage of
microembolism-induced HF, we found that the individual mitochondrial ETC complexes
were unchanged whereas mitochondrial oxidative phosphorylation was severely decreased.
The defect resides in the assembly of ETC complexes in respirasomes that support oxidative
phosphorylation [8].

Most groups perform the measurement of ETC complex activities on homogenates or
mitochondrial particles prepared from frozen-thawed cardiac muscle tissue of hearts already
in the decompensated stage. Variable mitochondrial defects have been reported to occur in
the ETC complexes and components of the phosphorylation apparatus in heart mitochondria
in HF of different etiologies (Table 1), and were briefly evaluated by us in recent reviews
[25, 26]. Using the pacing-induced model in dogs as a model of human dilated
cardiomyopathy, Marin-Garcia et al. reported a severe decrease in the activity of complex III
in frozen-thawed cardiac tissue homogenates [27–29]. A decrease in complex III activity
also was observed in cardiac tissue homogenates from human subjects undergoing cardiac
transplantation who had either idiopathic or ischemic dilated cardiomyopathy [30]. Based on
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studies of mitochondrial particles isolated from frozen cardiac tissues, Ide et al. reported a
decrease in complex I activity in pacing-induced canine HF [31], whereas in human dilated
cardiomyopathy Buchwald et al. found defects in complexes III and IV [32]. A complex IV
defect was reported in an experimental model of pressure overload HF, the spontaneous
arterial hypertension in rats, when measured in frozen-thawed isolated cardiac mitochondria
[33]. In human subjects, the decrease in complex IV activity measured in freshly-isolated
heart mitochondria is correlated with the ejection fraction of the affected hearts [34].

Alterations in the components of the phosphorylation apparatus characterized by decreased
amount and activity of ATP synthase were reported to occur in pig cardiac tissue with
ischemic HF induced by left circumflex coronary artery ligation [35], as well as in dogs [36]
and human patients with dilated cardiomyopathy [37]. Complex V activity is severely
decreased when measured in cardiac muscle frozen-thawed homogenates from dogs with
pacing-induced HF [27–29]. Schultheiss et al. found a decrease in the ANT transport
capacity in explanted cardiac tissue of patients with dilated cardiomyopathy [38] associated
with an increase in the amount of the total ANT protein [39] and a shift in the ANT isoform
expression characterized by an increase of the ANT1 and a decrease in ANT2 [40], which
restricts ANT function [41]. Altered ANT isoform expression also was found in
endomyocardial biopsies during early stages of dilated cardiomyopathy, suggesting that the
ANT defect may cause the energy deficit and progression of HF. In inflammatory cardiac
diseases there is also an ANT shift, but this does not occur in ischemic, valvular, and
hypertrophic cardiomyopathy [40]. In contrast to human dilated cardiomyopathy, in the
canine pacing-induced HF model we found a decrease in complex I-III activity expressed as
rotenone-sensitive NADH cytochrome c reductase, using fresh tissue homogenate prepared
from both septum and lateral wall of the left ventricle. In contrast, complex I and III
activities in the corresponding SSM and IFM (unpublished observations) are unchanged,
suggesting that the mitochondrial isolation procedure might result in the loss of an
extramitochondrial inhibitor factor, such as cytosolic kinases, that may be responsible for
the depressed mitochondrial complex I-III activity observed in cardiac tissue. These data
highlight the importance of measuring ETC complex activities in both tissue homogenates
and isolated mitochondria.

In summary, there is a broad variability in reported mitochondrial defects in the failing
heart. The causal link between the reported defects and the decrease in mitochondrial
oxidative phosphorylation has not been defined in most of these studies. The assessment of
activities of the individual ETC complexes or components of the phosphorylation apparatus
cannot detect defects in integrated mitochondrial function where oxidation of substrates is
coupled with electron transport and consumption of ADP to synthesize ATP. ETC defects
may not lead to a decrease in mitochondrial oxidative phosphorylation and energy deficit.
The increase in oxidative capacity when the limitation by the phosphorylation system is
released experimentally by an uncoupler [42] suggests that there is an apparent excess in
ETC complex activity relative to the phosphorylation apparatus and the oxidative
phosphorylation requirement [43, 44]. The sites of control of respiration in normal heart
isolated mitochondria are located at complex I in the ETC [45] and at adenine nucleotide
translocase and complex V in the phosphorylation apparatus [46]. In human heart, the
phosphorylation system exerts a strong limitation on oxidative phosphorylation [47]. In
contrast, the site of oxidative phosphorylation control in intact cells is located in complex IV
[48] due to the ATP-allosteric inhibition of the complex [49]. Therefore, the measurement of
ETC complex activities must be complemented with the assay for oxidative phosphorylation
in order to establish a causal link between the reported ETC defects and decreased
mitochondrial function.
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Abnormalities in the integrated mitochondrial function and respirasomes—
Hypertrophic human hearts exhibit an increase in mitochondrial respiratory activity [7].
Similarly, rabbit cardiac mitochondria show increased oxidative phosphorylation rates
during early stage of hypertrophy followed by decreased rates upon progression to HF
induced by aortic constriction in [50]. Doenst et al. report that the pattern of substrate
oxidation predicts the progression of HF in rats with aortic arch constriction [6]. The
oxidation of the complex I substrate, glutamate, has a biphasic pattern with an early increase
followed by a decline coinciding with the drop in contractility and ejection fraction.
Decreased mitochondrial fatty acid oxidation precedes the decline in contractility. Upon the
addition of an uncoupler, oxygen consumption increases in similar fashion in
catecholamine-perfused normal and pressure-overload hypertrophied swine hearts but not in
failing hearts, indicating that mitochondrial oxidative capacity (proximal to the
phosphorylation apparatus) is preserved in compensatory hypertrophy and is decreased in
HF [51].

Decreased state 3 respiratory rates (ADP-dependent) were found when oxygen consumption
was measured in the presence of glutamate+malate in saponin-permeabilized cardiac fibers
isolated from rat [19, 52], dog [9], and human [10] hearts with dilated cardiomyopathy as
well as in pressure overload- and ischemic-induced HF. Similarly, the failing human heart
experiences early defects in complex I-linked respiration and fatty acid oxidation, as well as
in the phosphorylation apparatus [47].

Respiratory studies using cardiac fibers do not differentiate between the two distinct
mitochondrial populations, SSM and IFM [53, 54] which may be differentially affected by
HF. For example, Lindenmayer et al. reported a 40% decrease in glutamate- and succinate-
supported state 3 respiratory rates in heart mitochondria isolated from guinea pigs with
congestive HF induced by stenosis of the ascending aorta [55]. The experimental protocol
reveals that these authors isolated in fact cardiac SSM. Sordahl et al. reported that a similar
model of HF in rabbits was associated with only 22% decrease in glutamate+malate- and
succinate- supported state 3 respiratory rates of heart mitochondria [50]. We believe that the
difference in the degree of mitochondrial defect is due to the fact that each study of the
foregoing reports reports the mitochondrial respiratory properties of different cardiac
mitochondrial populations. Lindenmayer et al. more than likely studied SSM, since their
experimental protocol used the polytron, whereas Sordahl et al. studied a mix of the two
types of mitochondria, SSM and IFM, because the isolation protocol included a protease
complemented by polytron homogenization. The latter approach partially diminished the
severity of the initially observed defect. These data indicate that the two mitochondrial
populations are differentially affected by HF, with IFM being less affected.

Our approach to the integrated function of the ETC coupled to ATP synthesis, membrane
transport, dehydrogenase activities, and the structural integrity of the mitochondria utilizes
the analysis of oxidative phosphorylation in freshly-isolated cardiac SSM and IFM. The
investigation of the two metabolically and structurally distinct populations of mitochondria
[56] led us to reconcile the disparate finding regarding the oxidative properties of heart
mitochondria in dystrophic cardiomyopathy in hamsters [57, 58]. A decrease in respiratory
state 3 rates with complex I or II substrates was present only in IFM. The decrease in state 3
respiratory rates was reversed by the addition of an uncoupler, indicating that the defect
resides in the phosphorylation apparatus. The control of oxygen consumption by
phosphorylation (“coupling”) as well as the efficiency of oxidative phosphorylation was
preserved. The defect in IFM was progressive and paralleled the degree of peripheral
congestion [56].
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In a follow-up to the work performed by Sharov et al. on oxidative phosphorylation in
saponin-permeabilized cardiac fibers in canine intracoronary microembolization-induced HF
of moderate severity [9], we performed a study of respiratory properties of the two
populations of freshly-isolated heart mitochondria [8]. Both populations of heart
mitochondria were equally affected in this model of HF, with a decrease in respiratory rates
with substrates donating electrons at complex I, II, III, and IV caused by a decreased amount
of the I/III2/IV respirasome [8]. The occurrence of mitochondrial dysfunction and decreased
supercomplex organization at an early stage of the disease leads to the hypothesis that the
decline in bioenergetics contributes to the progression of HF.

Rapid ventricular pacing in dogs mimics human idiopathic dilated cardiomyopathy. We
found that oxidative phosphorylation is decreased at complex III in both SSM and IFM
isolated from the cardiac septum. The oxidation of both complex I and II substrates is
unchanged, indicating that the isolated decrease in complex III-supported respiration does
not play a relevant pathophysiological role in decreasing mitochondrial respiratory
properties isolated from cardiac septum. In contrast, SSM from the left ventricle lateral wall
are unaffected; IFM show a decreased oxidative phosphorylation at complexes I, II, and III
that is partially relieved by the uncoupler, dinitrophenol, with complex II and III substrates.
These data suggest a complex alteration of cardiac IFM from left ventricle wall in this type
of HF involving the components of the phorphorylation apparatus and possibly the
organization in supercomplexes (unpublished observation). The data also indicate a regional
distribution of mitochondrial defects with the left ventricle lateral wall being the major
target.

We conclude that studies on mitochondrial function in freshly-isolated cardiac SSM and
IFM yield a more accurate picture of the consequence of the ETC complex changes in
cardiac hypertrophy and HF. Also, the assessment of integrated mitochondrial function as
oxidative phosphorylation is the only assay able to localize the modification within the
oxidation or phosphorylation apparatus, and should direct further investigation towards
indentifying the specific site of alteration. By investigating mitochondrial oxidative
phosphorylation over the course of the disease, it is concluded that compensatory cardiac
hypertrophy is associated with an increase in cardiac mitochondrial oxidative capacity, and
that in congestive HF mitochondria exhibit pronounced dysfunction.

Does mitochondrial bioenergetic failure cause the progression of cardiac
hypertrophy to cardiac failure?—Both cardiac systolic and diastolic function are
dependent on mitochondrial-generated ATP, suggesting that mitochondrial bioenergetic
decline contributes to the progression of HF. Normal myocardium has the ability to switch
between glucose and fatty acids as fuel sources (metabolic flexibility). The catabolism of
fatty acids provide up to 90% of the ATP in the healthy heart [8]. Most clinical [9–11] and
experimental [12–14] studies find that both pathological hypertrophy and heart failure are
accompanied by metabolic inflexibility characterized by a decrease in fatty acid oxidation.
Does mitochondrial remodeling induce this metabolic remodeling? Studies performed on
pathological hypertrophied hearts show no change in the expression of mitochondrial fatty
acid transport and oxidation enzymes [15], whereas others report a decrease in their
expression, which would predict a decrease in mitochondrial fatty acid oxidation [16]. The
decrease in mitochondrial fatty acid oxidation is reported to predict the onset of contractile
dysfunction in pressure overload-challenged rats [17]. Overt heart failure is associated with
a severe decrease in fatty acid oxidation [18]. In terms of ATP production, one molecule of
palmitate yields far more ATP than does glucose. Therefore, to maintain a constant ATP
content, a pronounced increase in glucose oxidation must accompany a relatively modest
decrease in fatty acid oxidation. Most studies report that the decrease in FA oxidation is not
compensated for by an increase in glucose oxidation [13, 19]. The metabolic remodeling in
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heart failure is the focus of numerous extensive reviews [20, 21]. The general conclusion is
that there is no true metabolic switch characterized by a decrease in fat oxidation and a
corresponding increase in glucose oxidation, and that the failing heart is an energy-
compromised organ.

Transverse aortic constriction in rats leads to HF that occurs in three different stages, such as
compensated hypertrophy, HF with diastolic dysfunction and preserved ejection fraction,
and HF with reduced ejection fraction [6, 23, 59]. In this experimental model, mitochondrial
oxidative capacity is increased or preserved during the first two stages, and is decreased
during the development of systolic dysfunction, suggesting that diastolic dysfunction is
independent of mitochondrial function whereas mitochondrial damage is involved in the
systolic dysfunction. Diastolic dysfunction precedes systolic dysfunction in the Ang II-
induced hypertensive model of HF [5], a model of pressure overload-induced HF. However,
in the latter, mitochondrial damage accompanies the diastolic dysfunction. These data
suggest that although the primary etiologic factor influences the impact of mitochondrial
dysfunction on cardiac diastolic dysfunction, systolic dysfunction seems to develop in
parallel with mitochondrial damage.

Taken together, the data we have reviewed here show that cardiac hypertrophy is associated
with a similar increase in mitochondrial oxidative metabolism, and that mitochondrial
dysfunction precedes or occurs in parallel with the development of HF. Definitive data to
prove that mitochondrial dysfunction causes the transition from compensated cardiac
hypertrophy to cardiac failure are lacking. However, mitochondrial-targeted strategies have
proven to mitigate left ventricular dysfunction. For example, although hypertensive-induced
hypertrophy does not induce changes in the ANT content and function, the overexpression
of ANT ameliorated cardiac dysfunction in renin-overexpression cardiac hypertrophy [60].
Activation of mitochondrial energy metabolism by overexpression of the protein, frataxin,
sustains the Akt survival pathway in cardiomyocytes through the insulin/IGF-1 receptor
signaling and protects the heart from doxorubicin-induced cardiomyopathy [61].
Overexpression of mitochondrial catalase protects against mitochondrial dysfunction and
cardiac hypertrophy, fibrosis, and failure induced by acute and chronic increase in renin-
angiotensin axis and mtDNA damage [4, 5]. These data underscore a critical role of
mitochondrial bioenergetics in cardiac hypertrophy and failure.

B. Mechanisms for the transition from cardiac hypertrophy to failure
1. Hypertrophic signaling pathways

Persistent cardiac hypertrophy in response to pathological signals is associated with
increased risk for sudden death or progression to HF, irrespective of the initial cause of
hypertrophy [62, 63]. This observation suggests that cardiac hypertrophy, although
considered adaptive, becomes maladaptive and leads to cardiac failure if prolonged. The
significant clinical benefits of medications targeting the neuroendocrine hypertrophic
signaling—β-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor
blockers—on the clinical outcome of human subjects with HF support this concept of
progression. It was recently shown that signaling pathways leading to cardiac hypertrophy
and HF involve the participation of mitochondria [4, 5].

Adrenergic signals—The stimulation of the sympathetic adrenergic system plays a
central role in the response of the heart to increased wall stress. Activation of β-adrenergic
receptors (β-AR) increases the heart rate (chronotropy), contractility (inotropy), and
relaxation speed (lusitropy). There are at least two major types of β-AR in the heart, β1-and
β2-AR, which bind to heterotrimeric guanosine triphosphate binding proteins (G proteins)
and have different, even opposing, effects on gene expression, cell growth, and cell death.
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β1-AR couple to the stimulatory G protein (Gs), activate adenylyl cyclase (AC) and increase
cytosolic cAMP, which binds the regulatory subunits of protein kinase A (PKA) and
releases the catalytic subunits (cPKA). cPKA mediates the increase in Ca2+ entry via L-type
membrane Ca2+ channels and phosphorylates proteins involved in Ca2+ handling, such as
phospholamban and the sarcoplasmic reticulum Ca2+-release channel called ryanodine
receptor [64]. The net result of these events is an increase in cytosolic Ca2+ responsible for
enhanced myofilament contraction.

In contrast, β2-AR couple to both Gs and inhibitory G proteins in both murine [65] and
human [66] myocardium. In the human heart, the β2-AR effect on excitation-contraction
coupling is also mediated by cAMP-PKA-dependent phosphorylation of proteins similar to
β1 stimulation. However, the β2-AR-initiated cAMP signaling is limited to subsarcolemmal
microdomains and modulates the sarcolemmal L-type Ca2+ channels, increasing Ca2+ entry
[67]. By stimulating the Gi proteins, β2-AR activation delivers cell survival signals to
cardiomyocytes via stimulation of the phosphoinositide 3-kinase (PI3K)-Akt (protein kinase
B)-glycogen synthase kinase-3β-GATA4 (zinc finger transcription factor) pathway [68–71].
Also, stimulation of β1-AR induces cardiomyocyte apoptosis [72]. In sharp contrast, β2-AR
stimulation does not cause cardiomyocyte hypertrophy and apoptosis, instead protecting
cardiomyocytes against apoptosis induced by assaulting factors such as β1-AR signaling and
ROS [73].

The β-AR agonist, isoproterenol, causes cardiac hypertrophy in mammals [74] that is
abolished by β1- but not by β2-blockers [75]. The sustained β-AR activation with
isoproterenol leads to enlargement of particular cardiomyocytes in parallel with myocyte
loss, interstitial fibrosis, and inflammation. A rapid regression of cardiac hypertrophy occurs
after cessation of isoproterenol administration, indicating that cardiac hypertrophy is
reversible. Moreover, overexpression of components of the β1-Gs-PKA pathway causes
hypertrophy, deterioration of myocardial performance, and fibrosis [76–79] suggesting that
the β1-adrenergic stimulated hypertrophy is maladaptive. In support of this notion, β-blocker
therapy has been shown to improve survival in HF patients [80–82].

A recent study shows that the inotropic response of cardiomyocytes to β-adrenergic
stimulation—assessed as cytoplasmic Ca2+ transient amplitude and cell shortening—is
mediated by mitochondrial ROS-generation in a PKA-cAMP-dependent manner [4]. When
moderately (~ 25%) increased, the mitochondrial-released ROS induced by β-adrenergic
stimulation act as second messengers to facilitate Ca2+ entry via plasma membrane L-type
Ca2+ channels [4]. In contrast, a larger increase in mitochondrial ROS generation upon
palmitate oxidation causes a decrease in Ca2+ transient amplitude and cardiomyocyte
contractility associated with mitochondrial depolarization [83]. Moreover, the prolonged β-
adrenergic stimulation (24 hours) also induces mitochondrial membrane depolarization and
apoptosis [84, 85] that was inhibited by SOD and by catalase mimetics and catalase
overexpression [85], indicating the involvement of β-adrenergic-simulated mitochondrial
ROS as pro-apoptotic signals. Moreover, permeabilized rat cardiomyoctes stimulated with
PKA catalytic subunit exhibit an increase in mitochondrial ROS generation and
mitochondrial membrane depolarization [86]. Using saponin-permeabilized cardiac fibers,
we found that pre-incubation with cAMP decreases mitochondrial oxidative phosphorylation
due to a defect localized within the oxidation side of the pathway at complex IV inter alia of
the ETC [87]. In contrast with cardiac fibers, isolated mitochondria are relatively insensitive
to the effect of cAMP, suggesting that the cytosolic PKA anchored to the outer
mitochondrial membrane is essential to mediate the inhibitory effect of extramitochondrial-
generated cAMP observed in cardiac fibers (unpublished observation). Activation of
mitochondrial soluble adenylyl cyclase (AC) with bicarbonate causes a severe inhibition of
mitochondrial oxidative phosphorylation (unpublished observation), suggesting that
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intramitochondrial-generated cAMP is inhibitory. Studies of the amount and activity of
mitochondrial AC and its major activators—bicarbonate and calcium—should elucidate the
pathophysiological significance of intramitochondrial-generated cAMP in HF.

In conclusion, mitochondrial-generated ROS are necessary members of the physiological β-
adrenergic signaling pathway. They act as beneficial signaling molecules to transmit the
inotropic effect of acute and limited adrenergic stimulation by a cAMP-PKA-dependent
mechanism. Sustained activation of the mitochondrial cAMP-PKA pathway causes
mitochondrial dysfunction, extensive mitochondrial-induced ROS production, decreased
cardiomyocyte contractility, and apoptosis.

The mechanism responsible for the increase in mitochondrial ROS generation and
mitochondrial damage upon activation of the β-adrenergic-PKA-cAMP pathway is
unknown. In heart mitochondria isolated from HF, we found that complex IV
unincorporated into the respirasomes exhibited an increased level of threonine
phosphorylation [87], suggesting that cAMP-dependent phosphorylation of specific complex
IV subunits either limits the incorporation of complex IV into supercomplexes or decreases
supercomplex stability, leading to decreased oxidative phosphorylation [8]. We propose a
sequential mechanistic pathway in which the increase in adrenergic drive as an initial
adaptive event causes a decrease in functional respirasomes, leading to increased ROS
generation and mitochondrial dysfunction. The cAMP generated by β-AR-linked
sarcolemmal AC activates mitochondrial PKA, which phosphorylates threonine residues of
complex IV protein subunits. These postranslational modifications impair the incorporation
of complex IV into supercomplexes, reduce the amount of functional respirasomes, and
decrease mitochondrial oxidative phosphorylation. These modifications result in decreased
ATP generation and the accompanying energy deficit. Improper organization of ETC
complexes in supramolecular assemblies also impedes electron channeling in the ETC, with
an increase in electron leak and superoxide formation. Hydrogen peroxide—formed by
superoxide dismutation--damages adjacent mitochondrial inner membrane proteins,
including subunits of the ETC complexes. These oxidative alterations, which cause the
decreased activity of ETC complexes reported by others in severe HF, potentially augment
the severity of the energy deficit and oxidative stress.

The mechanism by which increased adrenergic stimulation affects mitochondrial function
and leads to cardiac hypertrophy and failure is complex and may be independent of
adrenergic receptors. For example, norepinephrine leads to cardiac hypertrophy through a
mechanism independent of adrenergic receptor binding and mediated by monoamine
oxidases (MAO)—outer mitochondrial membrane flavoenzymes responsible for the
deamination of neurotransmitors generating hydrogen peroxide [1]. The expression of these
enzymes is elevated in pathological heart hypertrophy and failure [2, 3] but is unchanged in
exercise-induced physiological hypertrophy [2]. In addition, pharmacologic and genetic
inhibition of MAO prevents cardiac oxidative stress and contractile dysfunction in mice
under pressure-overload stress [1]. Cross-talk between MAO-generated oxidative stress and
mitochondrial electron transport is suggested [4], which would lead to mitochondrial
damage and amplification of oxidative stress in cardiomyocytes.

Alterations in ion homeostasis and excitation-contraction coupling in failing cardiomyocytes
may cause oxidative stress and a decrease in Ca2+-dependent mitochondrial ATP
production. For example, adrenergic stimulation causes an increased frequency and
amplitude of cytosolic Ca2+ transients and an elevation in the steady state of mitochondrial
Ca2+[5]. However, mitochondrial Ca2+ uptake is reported decreased in end-stage heart
failure in human subjects [6] and cardiomyocytes upon adrenergic stimulation [7] leading to
an increase in mitochondrial ROS generation [7].
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Renin angiotensin system—Sustained β-AR activation is accompanied by increased
angiotensin II (Ang II) concentrations in plasma and left ventricle [88], and increased
circulating renin and aldosterone levels [88]. The local myocardial renin-angiotensin rather
than systemic stimulation seems to be critical for cardiac hypertrophy, as shown by the
preservation of left ventricle weight upon inhibition of kidney renin release [89].
Angiotensin II binds to angiotensin receptor-1, a Gq protein-coupled receptor, and induces
cardiac hypertrophy. Moreover, animal models overexpressing Ang II downstream
regulators develop cardiac hypertrophy with depressed contractile function[90, 91]. When
the receptor is activated, the bound Gq protein dissociates into individual Gαq and Gβγ
subunits. Gαq and Gβγ initiate a series of events that culminate with diacylglycerol-
mediated activation of protein kinase C (PKC) [92] and mitogen-activated protein kinase
(MAPK) [93]. Activation of either PKC [94, 95] or MAPK [96] leads to a hypertrophic
phenotype in cardiomyocytes.

Dai et al. recently showed that both the hypertrophic response induced by acute Ang II
stimulation and the cardiac decompensation induced by persistent overexpression of Gαq
are mediated by mitochondrial-generated ROS [5]. In these experiments, both Ang II-
induced cardiac hypertrophy and Gαq overexpression-induced cardiac failure are associated
with a similar (28%) decrease in mitochondrial function, oxidative changes of mitochondrial
proteins, mitochondrial damage, and autophagy. Overexpression of mitochondrial catalase
attenuated both heart hypertrophy and contractile dysfunction. The transition from cardiac
hypertrophy to failure was marked by extensive modifications of mitochondrial DNA
(mtDNA) and a profound decrease in mitochondrial biogenesis [5].

2. Mitochondrial DNA
Mitochondria have their own genome, mtDNA, which is a closed-circle double-stranded
DNA molecule of 16.5 Kb. mtDNA contains two promoters, the light-strand and the heavy-
strand promoters that initiate transcription to yield individual mRNAs encoding 13 subunits
of the electron transport chain, 22 tRNAs and 2 rRNA subunits. The transcription from the
light-strand promoter also produces RNA primer to initiate mtDNA replication. Therefore,
mitochondrial function is directly dependent on mtDNA integrity, transcription and
replication. In the heart, the frequency of mtDNA deletions was found to be correlated with
mitochondrial dysfunction [97]. Human cardiomyopathies are associated with mtDNA
mutations and deletions [98, 99]. Karamanlidis et al. identified decreased replication and
depletion of mtDNA as markers of the transition from compensated hypertrophy to right
ventricular failure in children with congenital heart diseases [100]. Decreased mtDNA copy
number is associated with myocardial remodeling and failure after myocardial infarction in
mice [101]. Although connected, the causal relationship between abnormalities in mtDNA
and cardiac failure has yet to be elucidated.

Primary mtDNA defects, such as point mutations or defective transcription, lead to inherited
mitochondrial cardiomyopathies following the rules of heretoplasmy—the presence of both
wild and mutated mtDNA within the same cell—and threshold effect—the disease becomes
apparent when the abnormal mtDNA reaches a certain tipping point. This leads to the idea
that progressive alterations in mtDNA cause the transition from compensated hypertrophy to
heart failure.

A similar degree of left ventricular hypertrophy is obtained upon administration of either
Ang II or the antiviral drug, zidovudine—a nucleoside analog interfering with mtDNA
replication fidelity—and in mice with defective exonuclease proofreading capacity due to a
homozygous mutation of mitochondrial polymerase γ (Polg) [5]. Whereas Ang II treatment
causes a decrease in mtDNA copy number and increase in mtDNA deletion frequency (4.3
fold) associated with cardiac hypertrophy with preserved systolic function, the use of the
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same treatment in Polg mice causes a dramatic increase in mtDNA deletion frequency (29-
fold), severe hypertrophy, and HF with impairment of both systolic and diastolic function,
indicating that the severity of mtDNA mutations accelerates the progression from cardiac
hypertrophy to HF [5]. These data highlight the fact that mtDNA depletion alone is
sufficient to cause cardiac hypertrophy, as also observed in human patients [102]; the
transition to HF seems to follow the threshold rule and is associated with severe mtDNA
damage. Overexpression of mitochondrial catalase attenuated both the mtDNA mutation
frequency and cardiac dysfunction, suggesting that mitochondrial -generated ROS are
responsible for mtDNA damage [5].

Mitochondrial DNA also contains pro-inflammatory unmethylated CpG motifs [103, 104]
and acts as damage-associated molecular pattern molecule when released from cardiac tissue
in myocardial infarction and skeletal muscle in aseptic trauma patients [105, 106]. Damaged
mitochondria are normally sequestered in autophagosomes that fuse with lysosomes, and are
degraded. Because cardiac-specific impaired autophagy leads to cardiomyopathy in mice,
constitutive autophagy is considered a homeostatic mechanism to maintain cardiac structure
and function, and upregulation of autophagy in failing hearts is an adaptive mechanism to
protect cardiomyocytes from hemodynamic stress [107]. Mitochondrial DNA that escape
from the autophagic process was found to activate innate immunity and cause systemic
inflammatory response syndrome, and trigger Toll-like receptor 9-mediated inflammation in
cardiomyocytes, leading to myocarditis and dilated cardiomyopathy [108].

In conclusion, altered mtDNA or mtDNA released into the cytosol may accelerate the
progression of compensated cardiac hypertrophy to HF by either leading to decreased
mitochondrial bioenergetics or triggering cardiac inflammation.

3. Biogenesis pathways
Mitochondrial division is controlled by transcription of both mitochondrial and nuclear
DNA, requires synthesis of new phospholipids and proteins, and is dependent on the fission
process. The bidirectional communication between the nucleus and mitochondria is key to
adjust mitochondrial bioenergetics to cellular homeostasis. Critical factors for mtDNA
replication and transcription, which also regulate the synthesis of nuclear-encoded
mitochondrial proteins necessary for mitochondrial biogenesis, consist of nuclear respiratory
factors (NRF-1 and NRF-2), mitochondrial transcription factor A (TFAM), and nuclear
receptor proteins including the peroxisome proliferator-activated receptors (PPARs). By
increasing the transcriptional activity of NFRs on TFAM promoter and of PPARs, the PPAR
gamma co-activators (PGC-1α and β) are the master synchronizers of the two genomes.
NFRs increase the expression of TFAM as well as the vast majority of nuclear-encoded
subunits of the tricarboxylic acid cycle and ETC complexes. Mitochondrial transcription is
initiated by the binding of the TFAM on an upstream enhancer of the two mtDNA strands.
PGC-1α controls optimal mitochondrial content, and its amount is directly correlated with
mitochondrial density in both cardiac and skeletal muscle [109, 110]. Also, in healthy
subjects, the expression level of PGC-1α, its downstream transcription factors, and
mitochondrial proteins are linearly related to maximal oxygen consumption, indicating that
PGC-1α is the key factor in determining energy generation capacity [111].

Studies with transgenic mice have shown that deficiencies in nuclear-encoded factors
involved in mitochondrial biogenesis promote cardiomyopathy. For example, conditional
cardiac-specific null TFAM allele in mice leads to a decreased mtDNA level and expression,
progressive mitochondrial ETC defects, and HF [112], whereas systemic homozygous
TFAM knockout strains show severe mtDNA depletion and bioenergetic demise, and die of
cardiac failure during embryonic development [113]. In addition, the cardiac specific TFAM
knockout mice exhibit an early genetic and metabolic switch, hindering fatty acid oxidation
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followed by mitochondrial proliferation and cardiac failure [15]. Both increased
mitochondrial number and metabolic switch cannot compensate for the mitochondrial defect
as shown by severe ATP depletion. In contrast, mice overexpressing TFAM are protected
from developing mitochondrial damage and HF following myocardial infarction [114].

Jamshidi et al. found that a single nucleotide polymorphism in the PPARα gene
independently predicted the degree of left ventricular hypertrophy induced by exercise in
healthy volunteers [115], suggesting that PPARs play a major role in cardiac hypertrophy.
Pathologic cardiac hypertrophy is associated with a suppression of fatty acid oxidation that
is considered a metabolic adaptation for a lower oxygen consumption per ATP generated,
and implies the demise of PPARs as regulators of fatty acid oxidation genes. Homozygous
ablation of the PPARγ gene causes embryonic lethality due to placental and cardiac defects
[116], whereas heterozygous PPARγ deficient mice exhibit an exaggerated cardiac
hypertrophic response to pressure overload [117]. Barger et al. showed that PPARα is
downregulated during pressure overload cardiac hypertrophy [118], whereas transgenic mice
overexpressing PPARα exhibit cardiomyopathy [119], underscoring the critical role of
proper expression of this transcription factor for the heart.

Polymorphisms in the PGC1α gene are correlated with an increased risk for hypertrophic
cardiomopathy in human subjects [120]. PGC1α and β are expressed in highly-oxidative
tissues including heart, and provide the transcriptional control of metabolic specific
programs and mitochondrial biogenesis [121, 122]. PGC1α regulates the expression of
nuclear genes encoding mitochondrial fatty acid oxidation enzymes [123] and the
coordinated expression of both nuclear and mitochondrial genes encoding for mitochondrial
proteins [124]. PGC-1α is considered a coordinator of acute metabolic adaptation, whereas
PGC-1β maintains the mitochondrial biogenesis necessary to cover the basal energy
requirement of the heart. PGC-1β deficiency induces decreased expression of genes
encoding for mitochondrial oxidative phosphorylation components whereas fatty acid
oxidation gene expression is preserved [125], indicating that the two PPAR co-activators
play overlapping but also distinct roles in maintaining cardiac mitochondrial bioenergetics.

The general consensus from the literature is that mitochondrial biogenesis signals match the
energy demand of the hypertrophic cardiomyocyte during compensated cardiac hypertrophy,
but in HF these signals fail to keep pace with metabolic and structural remodeling and
increased energy need (Figure 1). For example, PGC1α and PGC1β are overexpressed at the
stage of hypertrophy and return to normal levels at the stage of decompensation of the right
ventricle in children with congenital heart diseases [100]. PGC1α, TFAM, NRF-1 and 2
expressions are increased in cardiac hypertrophy induced by either angiotensin II and AZT
treatment or Polg deficiency in mice, and are decreased in cardiac failure [5]. In contrast,
cardiac hypertrophy induced by transverse aortic constriction is associated with increased
PGC-1β and decreased PGC1α expression, and decreased expression of oxidative
phosphorylation and fatty acid oxidation genes [125]. In the same experimental model, the
decompensated stage of heart failure is associated with a decrease of both PPAR co-
activators [125], further depression in mitochondrial bioenergetics [22], and severe energy
limitation [125].

PGC1α is considered responsible for the metabolic shift from fatty acid oxidation to glucose
oxidation, which precedes cardiac decompensation [126]. This conclusion is in agreement
with the observation that PGC1α knockout mice experience a decrease in mitochondrial
fatty acid oxidation and oxidative phosphorylation with preserved cardiac function [127],
whereas upon pressure-overload challenge they show oxidative stress and experience further
decline in mitochondrial function that coincides with the transition to heart failure [126].
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The lessons from these animal models lead to the conclusions that mitochondrial biogenesis
signaling is preserved in early stages of compensated hypertrophy in order to match the
increased energy need for enhanced workload. There is a critical threshold of mitochondrial
metabolism necessary to keep pace with cardiac workload, and the transition to cardiac
failure seems to be preceded or paralleled by a severe decrease in mitochondrial biogenesis
and oxidative metabolism.

What are the mechanisms leading to changes in PGC1α expression and mitochondrial
biogenesis? During both compensated hypertrophy and HF there is an adaptive adrenergic
and renin-angiotensin stimulations shown to increase PGC1α expression. Also, signaling
pathways that are upregulated in HF, such as MAPK and calcineurin signaling, activate the
PGC1α pathways [128, 129]. Oxidative stress was found to increase the expression of both
PGC1α and PGC1β, as well as their promoter activity, leading to increase of mitochondrial
electron transport expression genes, and mitochondrial and cytosolic ROS-detoxifying
systems via a cAMP response element-dependent mechanism [130]. These data show the
antioxidant role of PGC1α. Activation of the AMPK by energy deficit also induces PGC1α
and PGC1β expression and mitochondrial biogenesis [131, 132]. Although the mechanisms
leading to increased PGC expression in cardiac hypertrophy are understood, the molecular
mechanisms responsible for the drop in PGC signaling upon the transition from
compensated hypertrophy to HF are unidentified. In the face of short-term pressure-overload
challenge, the heart can tolerate a complete absence of PGC1β and an approximate 50%
reduction in PGC1α with relative preservation of left ventricular function [125], suggesting
that additional factors induced by reduced expression of these transcriptional co-activators,
such as oxidative stress, may lead to the transition of cardiac failure.

Conclusions
During compensated cardiac hypertrophy, the adaptive neuroendocrine signals induce
hypertrophic and inotropic response in the heart via mitochondrial-generated ROS in order
to maintain normal wall stress and cardiac output (Figure 2). This adaptation is associated
with preserved or increased mitochondrial biogenesis signals and oxidative metabolism
mediated by PGC1-α and -β factors. Cardiac decompensation is accompanied by a decline in
mitochondrial biogenesis signals and bioenergetics. Although mitochondrial -targeted
strategies to improve bioenergetics have proven beneficial in mitigating cardiac dysfunction,
the causal role of mitochondrial dysfunction in the progression from cardiac hypertrophy to
failure has not been identified. We propose that prolonged systemic adrenergic stimulation
ultimately leads to activation of the mitochondrial cAMP-PKA pathway leading to
decreased mitochondrial respirasomes and oxidative phosphorylation, and mitochondrial-
generated oxidative stress. The resultant oxidative modifications of mitochondrial ETC
complex protein subunits and mtDNA augment the decrease in mitochondrial oxidative
metabolism associated with decline in mitochondrial biogenesis. The mechanism for the
decrease in mitochondrial biogenesis signals including PGCs factors is unknown. The
profound imbalance between energy demand and production leads to decreased myocardial
contractile performance and cardiac output, which are markers of cardiac decompensation.
In conclusion, therapeutic strategies to protect mitochondria against the maladaptive effect
of neuroendocrine drives are required to prevent the transition from adaptive cardiac
hypertrophy to cardiac failure.
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Highlights

• mitochondrial-ROS mediates the adrenergic-induced cardiac adaptation in
pathological cardiac hypertrophy

• cardiac adaptation is associated with preserved mitochondrial biogenesis

• decline in mitochondrial biogenesis and bioenergetics marks the transition to
cardiac decompensation

• bioenergetic failure is mediated by prolonged adrenergic-induced cAMP-PKA
pathway
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Figure 1.
The progression of biochemical features during the transition from cardiac hypertrophy to
heart failure
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Figure 2.
Molecular mechanisms responsible for cardiac hypertrophy and failure
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