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Abstract
Congenic strains continue to be a fundamental resource for dissecting the genetic basis of complex
traits. Traditionally, genetic variants (QTLs) that account for phenotypic variation in a panel of
congenic strains are sought first by comparing phenotypes for each strain to the host (reference)
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strain, and then by examining the results to identify a common chromosome segment that provides
the best match between genotype and phenotype across the panel. However, this ‘‘common-
segment’’ method has significant limitations, including the subjective nature of the genetic model
and an inability to deal formally with strain phenotypes that do not fit the model. We propose an
alternative that we call ‘‘sequential’’ analysis and that is based on a unique principle of QTL
analysis where each strain, corresponding to a single genotype, is tested individually for QTL
effects rather than testing the congenic panel collectively for common effects across
heterogeneous backgrounds. A minimum spanning tree, based on principles of graph theory, is
used to determine the optimal sequence of strain comparisons. For two traits in two panels of
congenic strains in mice, we compared results for the sequential method with the common-
segment method as well as with two standard methods of QTL analysis, namely, interval mapping
and multiple linear regression. The general utility of the sequential method was demonstrated with
analysis of five additional traits in congenic panels from mice and rats. Sequential analysis
rigorously resolved phenotypic heterogeneity among strains in the congenic panels and found
QTLs that other methods failed to detect.

Introduction
Both genetic variants and environmental factors contribute to the multifactorial origins of
phenotypic variation and disease risk. Identifying these genetic variants, which are also
known as quantitative trait loci (QTLs), is key to developing diagnostic markers and drug
targets as well as to understanding the molecular foundations for systems properties and
organismal biology. Typically, several tasks are involved in finding these QTLs in model
organisms (Abiola et al. 2003; Glazier et al. 2002; Lander and Schork 1994; Nadeau et al.
2000), the first of which involves detecting and mapping them in crosses and genetically
heterogeneous populations. Although mapping sometimes resolves the QTL to a single gene
or other single structural, regulatory, or functional element (e.g., Cilila et al. 2001; Fridman
et al. 2000; Huberle et al. 2009; Yamanouchi et al. 2007), more often additional genetic and
functional studies are needed. Therefore, the next task frequently involves isolating the QTL
in congenic strains. This is often challenging because sometimes QTLs that are identified in
crosses are no longer evident in congenic strains and sometimes the locus is found to involve
several closely linked genetic variants with related phenotypic effects (Lauwerys and
Wakeland 2005; Legare and Frankel 2000; Legare et al. 2000; Morel et al. 2001; Shultz et
al. 2003). The final step in QTL analysis involves functional studies to characterize the
phenotype and genetically engineered models to prove gene discovery.

A congenic strain is made by transferring a chromosome segment from a donor strain to a
host strain by repeated backcrossing and selection, a process that is continued until the
integrity of the host strain background has been restored (Flaherty 1981; Silver 1995; Snell
1948, 1958, 1978). Marker-assisted selection can be used to reduce the number of backcross
generations (Markel et al. 1997). More recently, chromosome substitution strains (CSSs)
have been used as a resource to accelerate construction of congenic strains (Moreno et al.
2007; Shao et al. 2008; Youngren et al. 2003). For many of these genetic and functional
studies, panels of congenic strains rather than single strains are being made and
characterized (Moreno et al. 2007; Shultz et al. 2003; Youngren et al. 2003).

Traditionally, analysis of a panel of congenic strains has tested for a single locus that fully
accounts for phenotypic variation. We call this the ‘‘common-segment’’ method. The
hypothesis is that strains that are phenotypically similar share the same QTL. This method,
which has been used since the introduction of congenic strains (Irwin 1939; Snell 1948,
1958, 1978), has led to many important discoveries and is the foundation for many aspects
of genetic research (Flaherty 1981; Silver 1995; Snell 1948, 1958, 1978). Despite its wide
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use however, the common-segment method has several important but often overlooked
limitations. The first is that the genetic model is inherently subjective, the second is that
interpretation of strains with discordant phenotypes that do not fit a simple genetic model is
difficult to resolve in a formal manner, and the third is that there is no formal method for
dealing with closely linked QTLs. As a result, the genetic control of complex phenotypic
traits can be ambiguous and sometimes underestimated.

We propose a formal method to systematically analyze complex traits in a panel of congenic
strains. This method, called sequential analysis, readily detects multiple QTLs, regardless of
whether they act in an additive or epistatic manner. The method objectively deals with
strains that conflict with simple genetic models by systematically testing each strain
(genotype) individually for QTLs in a way that is similar to the methods for analyzing
chromosome substitution strains (Belknap 2003; Nadeau et al. 2000; Shao et al. 2008;
Singer et al. 2004). We demonstrate the attributes of this method with results for five traits
in panels of congenic strains for three chromosomes in mice and for two traits in a panel of
congenic strains in rats. In particular, we compare results of sequential analysis with those of
other methods of QTL analysis, including interval mapping, multiple linear regression, and
common-segment. Although results of sequential analysis were recently reported in several
cases (Millward et al. 2009; Shao et al. 2008), the analytical methods are reported here for
the first time.

Analytical methods
Principles of the common-segment method

Typically, a sliding window is moved along the genetic map for the complete panel of
strains to identify the best match between genotype for the genetic interval and phenotype
for the strain. A statistical test such as Student’s t test is used at each marker to determine
whether each congenic strain differs significantly from the B6 host strain, after Bonferroni
correction (p = 0.05) for multiple testing. At this location, strains with phenotypes that differ
significantly from the host strain should share a chromosome segment that is derived from
the donor strain, whereas strains whose phenotype does not differ from the host strain should
share a chromosome segment with the host strain. In the ideal case, a single interval will
show a perfect match between genotype and phenotype. In practice, discordant strains are
found that do not fit a simple genetic model. To resolve these ambiguities, some results are
argued, in an ad hoc manner, to be false positives or false negatives, or additional QTLs are
postulated.

Principles of the sequential method
We propose a method that is based on comparing phenotypes for sequential pairs of
congenic strains, beginning with the strain with the shortest congenic segment and the host
strain, and then in a stepwise fashion to strains with progressively longer, overlapping
congenic segments. For each strain, the size of the congenic segment is calculated as the
distance between the markers derived from the host strain that immediately flank the
congenic segment. The location of these markers is usually based on the most recent
consensus genome sequence, which for the present purposes was the consensus sequence of
the mouse and the rat genomes (www.ensembl.org).

If the phenotypes for the strain with the shortest congenic segment and the host strain differ
significantly, we conclude that at least one QTL maps to the congenic segment. By contrast,
if the phenotypes for the congenic strain and the host strain do not differ significantly, we
conclude that the congenic segment does not have a QTL with a significant phenotypic
effect. Next, the congenic strain with the next-longer, overlapping segment is compared to
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the previous congenic strain. If the introduced segment does not have a single QTL with a
significant effect, the phenotypes for the first and second strains will not differ. By contrast,
if the introduced segment has a QTL, the phenotypes for the first and second congenic
strains will differ significantly, thereby assigning a QTL to the chromosome segment that
differs between the two congenic strains. This process is repeated until each strain in the
panel has been tested once and only once. In this study, we used Bonferroni correction to
control the false-positive rate, with 0.05 as the significance threshold. Given the limited
number of congenic strains that are available for most panels, permutation tests are not
meaningful (Doerge and Churchill 1996).

The main task is to optimize the sequence of pairwise comparisons, while at the same time
limiting the total number of comparisons so as to minimize the penalty for multiple
hypothesis testing. This can be described as an optimization problem: given a set of strains
(Si) and genetic differences between strains (Di,j), find a set of comparisons to minimize ∑
(Di,j) and use Si at least once but no more than twice. Graph theory provides a solution
because the optimal sequence is analogous to the spanning tree problem. In our graph
representation, nodes correspond to strains, and edges correspond to strain comparisons. The
weight of an edge is defined as the physical difference in sequence or genetic length of the
congenic segment for a pair of strains. Only connected nodes are compared, and a fully
connected graph represents the case of exhaustive pairwise comparisons. Optimization
involves finding a directed graph starting from the root, which is the host strain, such that
the sum of edge weights is minimized and that each node is visited twice only (excluding the
root node) and each strain is tested against the reference strain once only.

A Minimum Spanning Tree (MST) is a solution to optimizing the sequence of strain
comparisons. In this study we used Kruskal’s algorithm to find the MST (Corman et al.
2003). The pseudocode is shown in Supplementary Table 1. With the MST, sequential
comparisons are then conducted from root to leaves of the tree. An MST has two
advantages: First, an MST guarantees that each node is visited at most twice, which in turn
minimizes the total number of comparisons and hence the penalty for multiple testing.
Second, an MST is usually unique because in most cases the physical or genetic distance
between any pair of strains is different from the distances in other pairwise comparisons. As
a result, edges in the graph usually have different weights, a property that typically yields a
unique MST.

We note that the sequential method does not make assumptions about whether the genetic
control of phenotypic variation is simple (monogenic) or complex (multigenic), or results
from additive versus epistatic QTL effects. We also note that with the sequential method,
congenic strains that do not differ from the host strain can nevertheless provide definitive
evidence for a QTL.

Special considerations are needed when multiple consecutive nonsignificant effects act in
the same phenotypic direction. In these cases, the last strain in the sequence differs
substantially from the first, even though the phenotypic difference between each pair of
strains in the sequence is not statistically significant. These trends result from the action of
multiple QTLs, each of which has a modest effect acting in the same phenotypic direction.
Although comparison of strains at the ends of the phenotype distribution can be used to test
for directional effects, the genetic location of the QTLs nevertheless remains ambiguous.

Interval mapping
Interval mapping has been widely used to detect QTLs underlying quantitative traits (Lander
and Botstein 1989). Maximum likelihood is used to estimate the phenotypic effect and LOD
score at any given genetic location for a putative QTL. If a LOD score is greater than the
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score corresponding to the genome-wide significance level, a QTL is claimed. In the present
study, the R/qtl package (Broman et al. 2003) was used for QTL detection. At any given
genomic location, only two genotypes are possible, AA or BB, and therefore each congenic
strain can be treated as a recombinant inbred (RI) strain. The recombinant inbred line (RIL)
cross scheme in R/qtl therefore was adopted to analyze panels of congenic strains.

Multiple QTL mapping with a multiple linear regression model
We fit a multiple linear regression model to our data. Suppose we have M markers and N
strains. Consider a regression Y = Xβ, where Y is the trait value, X represents markers with
−1 as genotype A and +1 as genotype B. βm is the parameter we try to fit for marker m; it
measures the contribution of m to the variation of the trait values, with each genetic marker
treated as an independent variable (feature). Here, QTL mapping is viewed as a feature
(model) selection problem. Given a data set, the problem is dissecting a subset of variable X
(markers) so that they can reasonably explain the phenotypic variation across a set of
congenic strains. Selected markers are considered QTLs. We used least angle regression
(LAR) to fit the model (Efron et al. 2004) and the Cp statistic or cross validation was used to
determine the number of selected markers.

The purpose of feature (model) selection with linear regression is to choose a linear model
such that the chosen variables (markers) efficiently predict the trait values. The difficulty is
to determine the tuning parameters of the objective function. For instance, in least shrinkage
and selection operator (Lasso; Tibshirani 1996), the Lasso estimate (B) is subject to Σ B ≤ t,
where t ≥ 0 is a tuning parameter. Although cross validation can be used for estimating t, a
large number of observations are usually required. In LAR, at each step the algorithm adds
one variable (marker); if it stops at step K, then K markers are selected, hence K QTLs are
identified. A Cp-type statistic can be used to estimate the prediction error and select the
subset of K markers. Cross validation can also be used to select K markers. As our results
show, the MLR has uncertainty to select the optimal set of variables, thus QTL
identification.

Congenic strains and phenotypes
Panels of congenic strains

For the mouse, a panel of 15 congenic strains was derived from the C57BL/6J-Chr6A/J/NaJ
chromosome substitution strain (CSS-A6, Shao et al. 2008), a panel of 9 congenic strains
was derived from the C57BL/6J-Chr10A/J/NaJ chromosome substitution strain (CSS-A10;
Shao et al. 2008), and a panel of 7 congenic strains was derived from C57BL/6J-Chr13A/J/
NaJ (CSS-A13; Nathan et al. 2006). Each panel collectively spans the length of the
chromosome, and the congenic segments are bounded on one end by a telomere, except for
the 6C15 and 13C25 strains. Details about the construction of the CSS-A6 and CSS-A10
panels can be found in a recent publication (Shao et al. 2008) and well as that for CSS-A13
(Fig. 1f, g, cf. Nathan et al. 2006). For the rat, the panel composed of 23 SS-13BN congenic
strains was reported previously (Moreno et al. 2007).

Sample sizes
Sample sizes for the chromosome 6 study: C57BL/6J (29), CSS-A6 (21), 6C1 (15), 6C2
(29), 6C3 (26), 6C4 (27), 6C5 (25), 6C6 (26), 6C7 (25), 6C8 (23), 6C9 (26), 6C10 (25),
6C11 (27), 6C12 (25), 6C13 (24), 6C14 (22), and 6C15 (39); sample sizes for the
chromosome 10 study: C57BL/6J (40), CSS-A10 (40), 10A1 (40), 10A2 (39), 10A3 (40),
10A4 (40), 10A5 (40), 10A6 (40), 10A7 (39), 10A8 (40),and 10A9 (38); and samples sizes
for the chromosome 13 study: 13C1 (27), 13C25 (16), 13C5 (23), 13C6 (15), 13C65 (20),
13C7 (18), and 13C8 (23).
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Phenotype assays
Methods for plasma insulin, homeostatic model assessment (HOMA), and plasma
cholesterol are described in Shao et al. (2008) and those for measuring mean arterial
pressure are described in Moreno et al. (2007). Females were examined daily between 0800
and 1300 h, and the age (days) and weight (g) at vaginal opening were recorded (Nathan et
al. 2006).

For the CSS-A6 and CSS-A10 congenic panels, we focused on five traits related to diet-
induced obesity and metabolic disease. Males from the two congenic panels as well as the
C57BL/6J (host) and A/J (donor) strains were weaned at 3 weeks of age. Then at 35 days of
age they were placed on either a high-fat, simple-carbohydrate diet or a low-fat, complex-
carbohydrate for approximately 100 days, at which point they were weighed and sacrificed
and various metabolic traits measured (Shao et al. 2008). We focused on body mass index
(BMI) for the CSS-A6 panel and blood glucose and insulin levels as well as HOMA for the
CSS-A10 panel. Details about assay methods and phenotype results have been published
(Shao et al. 2008).

We also studied timing of puberty (age at vaginal opening, VO) and body weight (BW) at
VO for females from the CSS-A13 strain and the seven congenic strains in the CSS-A13
panel. Details about assay methods and about construction of the congenic strains can be
found in Nathan et al. (2006).

Finally, in rats we examined mean arterial pressure (MAP) in a panel of congenic strains
derived from the SS-13BNCSS (Moreno et al. 2007). The rats were raised on a purified
AIN76 diet containing 0.4% NaCl (Dyets Inc., Allentown, PA). Experimental rats were
switched to an 8.0% NaCl diet at 10 weeks of age, and 2 weeks after a microrenathane
catheter was implanted in the left femoral artery for measurement of arterial blood pressure.
After a 2-day recovery period, heart rate and systolic, diastolic, and mean arterial pressure
were recorded for three consecutive days and averaged. A urine sample was collected for 24
h during the second day of recording for measurement of urine total protein and albumin
excretion (Moreno et al. 2007).

Results
Comparing the four methods for two traits in two congenic panels

To assess the relative merits of the common-segment, interval mapping, multiple linear
regression, and sequential methods, we focused on body mass index (BMI) in the CSS-A6
panel of congenic strains and glucose (GLU) in the CSS-A10 panel.

BMI in the CSS-A6 congenic panel—BMI differed significantly between C57BL/6J
and CSS-A6 (Fig. 1a), demonstrating at least one QTL on the substituted chromosome. The
15 strains in the CSS-A6 panel were studied to establish the number and location of these
BMI QTLs (Bmiq).

The common-segment method failed to identify a single interval that provided unambiguous
evidence for a QTL that accounts for the phenotypic variation in BMI among C57BL/6J
CSS-A6 and the congenic panel (Fig. 1a). To illustrate the difficulties, we highlight a
candidate QTL location that provided the best match between genotype and phenotype
(BMI). Although 12 of 15 strains fit a single-QTL model, three strains (6C2, 6C9, and
6C11) had discordant phenotypes. According to the candidate QTL location, the BMI for
congenic strain 6C2 was significantly less than expected, whereas the BMI for strains 6C9
and 6C11 were significantly higher than expected. Similar discordances were found with
alternative candidate locations for the QTL.
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Interval mapping was then carried out with the R/qtl package. For each trait, the estimated
significant LOD score threshold was based on 1000 permutation tests. The threshold was
1.71 for BMI and 2.07 for GLU. For BMI, the peak of the LOD curve was around marker
M36 with a LOD score of 0.85 (Fig. 2a). Because it is less than the threshold value of 1.71,
no QTL was detected by the interval mapping.

Multiple linear regression (MLR) was implemented with the R/LARS package. Tenfold
cross validation was used to determine K, the number of markers to select. Let Rss be the
residual sum of squares and Rss_0 be the response values, then R2 = 1 – Rss/Rss_0 can be
considered the proportion of variation explained by the selected markers. For BMI, MLR
chose markers M36 and M159, with R2 = 0.22. Therefore, MLR identified two QTLs, near
markers M36 and M159, which were also identified as Bmiq4 and Bmiq1 with the
sequential method (see below). However, the R2 of 0.22 implied that these two QTLs
explained only a small portion of BMI variation among these strains. Indeed, LAR missed
QTLs Bmiq2 and Bmiq3. We also calculated the Cp statistic to determine the number of
selected markers. The minimal Cp statistic occurred at step K = 12, indicating that all
markers should be included; in other words, the entire chromosome is one QTL. Therefore
the Cp statistic did not provide useful information to identify QTL locations.

The sequential method by contrast provided unambiguous evidence for four QTLs (Bmiq1–
4) on chromosome 6 (Figs. 1A, 2A). The BMI for strain 6C2 was significantly less than that
for 6C1, demonstrating that a QTL (Bmiq1) is located between the markers at 4.5 and 29.8
Mb in the congenic segment that differs between these two strains. Interestingly, the BMI
for 6C3 was significantly greater than that for 6C2, indicating that a second QTL (Bmiq2)
must be located in the interval between the markers at 29.8 and 45.5 Mb that is unique to
6C3. Comparing BMIs for 6C4 with 6C3 revealed a third QTL (Bmiq3) between markers at
45.5 and 55.3 Mb. Finally, the BMI for 6C12 was significantly less than that for 6C13,
providing evidence for the fourth QTL (Bmiq4) between markers at 93 and 126 Mb. A
unique attribute of the sequential method is that strains such as 6C3 and 6C4, which did not
differ phenotypically from C57BL/6J, nevertheless provided unambiguous evidence for
QTLs (Bmiq2 and Bmiq3) that were not detected with the other three methods, common-
segment, interval mapping, and linear regression. Thus, the sequential method reliably
resolved interpretation of each strain in the panel and in particular accounted for the
seemingly exceptional phenotypes.

GLU in the CSS-A10 congenic panel—Glucose levels differed significantly between
C57BL/6J and CSS-A10, indicating at least one QTL (Gluq) on the substituted chromosome
10 (Fig. 1b).

The common-segment method failed to provide an unambiguous location for this QTL (Fig.
1b). Although seven of the nine strains provided a strong candidate location, both congenic
strains 10C1 and 10C4 had significantly lower than expected glucose levels according to a
single-QTL model. The common-segment method does not have an easy explanation for
these conflicting results.

The LOD curve from the interval mapping method peaked between D10Mit230 and
D10Mit95, with a LOD score of 1.3 (Fig. 2b). Because this score was lower than the
threshold value of 2.07, interval mapping did not detect a statistically significant effect on
GLU.

MLR identified markers D10Mit230 and snp6817 with tenfold cross validation. These two
markers corresponded to two of the QTLs identified with the sequential method, Gluq2 and
Gluq4. The corresponding R2 was 0.45, which provided little evidence for a QTL.
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The sequential method provided unambiguous evidence for four QTLs (Gluq1–4) on
substituted chromosome 10 (Fig. 1b). The significant difference between 10C1 and C57BL/
6J shows that a QTL (Gluq4) is located in the A/J-derived segment in the 10C1 strain.
Similarly, the significantly elevated glucose level in 10C2 versus that in 10C1 demonstrates
a QTL (Gluq3) in the congenic segment that is unique to the 10C2 strain, between markers
at 120 and 126 Mb. The reduced glucose level in 10C6 versus 10C5 is evidence for a third
QTL (Gluq2) between markers at 92 and 104 Mb. Finally, the elevated glucose level in
10C7 versus 10C6 demonstrates the fourth QTL (Gluq1) between markers at 68 and 92 Mb.
Again, the sequential method detected two QTLs (Gluq1 and Gluq3) that were not detected
with the other methods (Fig. 2b).

With these results we conclude that the sequential method performs better than the common-
segment, interval mapping, and multiple linear regression methods. Reasons for these
contrasting results are considered in the Discussion section.

Comparing results for the sequential method with published reports
The utility of the sequential method is highlighted with a reanalysis of MAP for females and
males from a panel of 23 congenic strains involving chromosome 23 from the rat SS strain
as host and the BN strains as donor (Moreno et al. 2007; see also Supplementary Table 2A
and B for data and analysis, 2C for marker locations, and Supplementary Fig. 1 for the
MST).

The common-segment method identified four QTLs for mean arterial pressure (MAP) in the
SS-13BN panel of rat congenic strains with reasonable empirical support, but also with
several ambiguities (Moreno et al. 2007).

For the sequential method, the complexity of this panel of strains is illustrated with its MST,
with ten tips of the tree and the longest branch having six nodes (Supplementary Fig. 1A).
For females, the sequential method identified three QTLs (Supplementary Table 2A). The
first QTL coincided precisely with the QTL reported in the original study. This QTL is
located telomeric to marker Rat111 and is responsible for the significant reduction in MAP
in congenic strain B13C1 relative to the SS reference strain. The second QTL, which
significantly reduces MAP in B13C5 relative to B13C6, was mapped to a similar but smaller
interval as the QTL in the original study; the sequential method maps this QTL to the
interval between markers Rat60 and Rat20 rather than between markers Rat60 and Rat 91.
The third QTL, which significantly reduced MAP in B13C18 relative to B13C14, was
mapped to a similar but smaller interval than was reported originally; the sequential method
reduced the QTL from the interval between markers Rat77 and Rat83 to the interval
between Rat61 and Rat197. The sequential method did not detect significant evidence for
the fourth QTL that was reported in the original study between markers Rat88 and Rat127.

For males, the sequential method identified two QTLs (Supplementary Fig. 2B), one located
between markers Rat60 and Rat20 and the second between markers Got45 and Rat19. Both
QTLs significantly reduced MAP.

Analyzing five traits in two mouse congenic panels with sequential analysis
Insulin (INS) in the CSS-A10 congenic panel—The INS level in CSS-A10 was
reduced sixfold compared to that in C57BL/6J (Fig. 1c), indicating that at least one INS
QTL (Insq) is located on chromosome 10. The sequential method provided compelling
evidence for two QTLs (Insq1 and Insq2) (Fig. 1c). The significant difference between 10C3
and 10C4 provides evidence for Insq1 between markers at 104 and 120 Mb. Similarly, the
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difference between the 10C5 and 10C6 shows that Insq2 is located in the segment between
92 and 104 Mb, which differs between these strains.

HOMA in the CSS-A10 congenic panel—The HOMA level in CSS-A10 was
significantly reduced relative to that in C57BL/6J, suggesting at least one QTL (Homaq) on
chromosome 10 (Fig. 1d). The sequential method showed strong evidence for three QTLs
(Homaq1–3). The 10C1 versus C57BL/6J comparison shows that Homaq1 is located in the
most telomeric interval, telomeric to the marker at 126 Mb. The significantly lower HOMA
in 10C4 versus 10C3 shows that Homaq2 is located in the chromosome segment between
markers at 104 and 118 Mb, which is unique between these two strains. The still lower
HOMA in 10C6 versus 10C5 shows that Homaq3 is located in the unique chromosome
segment in the 10C6 strain, between markers 82 and 103 Mb. Finally, CSS-A10 and 10C9
differed significantly, suggesting QTL effects distal to the marker at 68 Mb. The most
parsimonious interpretation is that the combined action of the C57BL/6J-derived alleles of
Homaq1–3 accounts for the significant increase in HOMA in 10C9 versus CSS-A10,
although these combined effects do not appear to be additive.

Plasma cholesterol (Pchol) in the CSS-A10 panel—The plasma cholesterol levels in
CSS-A10 and C57BL/6J differed significantly, indicating that at least one Pcholq QTL is
located on chromosome 10 (Fig. 1e). The sequential method provided unambiguous
evidence for four QTLs (Pcholq1–4). The significant difference between 10C1 and C57BL/
6J shows that Pcholq1 is located in the segment distal to the marker at 126 Mb. The
significantly higher plasma cholesterol level for 10C2 compared with that for 10C1 shows
that a second QTL (Pcholq2) is located in the segment that is unique to the 10C2 strain
between markers at 120 and 126 Mb. Evidence for the third QTL (Pcholq3, between
markers at 82 and 103 Mb) is found in the significantly lower cholesterol level between the
10C5 and 10C6 strains. Finally, the difference between the 10C7 and 10C6 strains shows
that the fourth QTL (Pcholq4), which significantly increases cholesterol level, is located
between markers at 67 and 89 Mb. Together these four QTLs account for a considerable
portion of the heterogeneity in cholesterol level among the panel of congenic strains for
chromosome 10.

Vaginal opening (VO) in the CSS-A13 congenic panel—The age (in days) at
vaginal opening in pubertal females differed significantly for the CSS-A13 and C57BL/6J
strains, demonstrating at least one VO QTL (Voq) on chromosome 13. Only the 13C25
versus CSS-A13 comparison provided a statistically significant result, suggesting that Voq
is located in the A/J-derived interval distal to the marker at 78 Mb (see Supplementary Table
3 for marker locations).

Body weight (BW) at VO in females from the CSS-A13 congenic panel—Body
weight at VO also differed significantly between CSS-13 and C57BL/6J females, indicating
at least one ‘‘BW at VO’’ QTL (Bwvoq) on chromosome 13 (Fig. 1g). Only one comparison
was significant, 13C8 vs. C57BL/6J, which maps Bwvoq1 to the most telomeric interval
distal to the marker at 118 Mb (Fig. 1g).

Discussion
An important challenge in genetics is discovering and characterizing the basis for
phenotypic variation and common diseases. With new high-throughput genotyping and
sequencing technologies, increasingly powerful analytical algorithms, and availability of
phenotypically and clinically characterized populations, these studies are beginning to yield
insights into disease genetics, protein functions, regulatory controls, and the associated
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systems networks and pathways (Altschuler et al. 2008; Hirschhorn 2009; Manolio et al.
2008; Zhu et al. 2008). Despite significant progress, however, genetic heterogeneity among
populations and limited statistical power continue to challenge QTL discovery. As a result,
the genetic architecture of complex traits tends to be inadequately understood (cf. Kruglyak
2008; Manolio et al. 2009; Shao et al. 2008).

For both gene discovery and functional analysis, model organisms continue to provide an
important complement to studies in humans. Traditional strategies use standard crosses or
small panels of recombinant inbred or recombinant congenic strains that in general have
limited power and resolution. Several new and powerful strategies are now available for
dissecting complex traits, including heterogeneous stocks and advanced intercrosses, large
panels of recombinant inbred strains, complementation/ deletion strains, chromosome
substitution strains, and panels of congenic strains (Churchill et al. 2004; Flint and Mott
2008; Iakoubova et al. 2001; Nadeau et al. 2000). Congenic strains are becoming
increasingly important, in part because they can be readily constructed from the increasing
number of chromosome substitution strains that are being made (Gregorová et al. 2008;
Matin et al. 1999; Moreno et al. 2007; Singer et al. 2004; Takada et al. 2008). Subcongenic
and sub-subcongenic strains derived from congenic strains that define the QTL will be a
powerful way to rapidly and reliably identify genetic variants that are responsible for QTL
effects. Therefore, robust methods are needed for QTL analysis of complex traits in
congenic strains.

We began by comparing the attributes of four methods of QTL analysis in congenic strains,
namely, interval mapping, multiple linear regression, common-segment, and sequential
analysis. Probably because of the limited number of congenic strains in the two panels,
interval mapping failed to find QTLs with statistically significant phenotypic effects.
Multiple linear regression identified four QTLs but failed to identify four others. Common-
segment identified strains that differed significantly from the C57BL/6J host (reference)
strain but failed to find a shared chromosome interval with a perfect match between
genotype and phenotype, with the exceptional strains leading to uncertainty about the proper
explanation. By contrast, sequential analysis found a total of eight QTLs, including four
QTLs, two for each trait, that were not found with any other analytical method. We propose
that these QTLs were detected because sequential analysis tested each of the critical strains
individually relative to the contrast strain, thereby revealing QTLs whose phenotypic effects
were often dependent on the action of closely linked QTLs. Ongoing gene discovery studies
clearly show that QTLs are indeed present at the locations identified with sequential analysis
(Nadeau et al. unpublished).

Considerable phenotypic heterogeneity among congenic strains often leads to discordances
with simple genetic models. Usual explanations for these exceptions include false-negative
or false-positive assay results, undetected double crossovers, additional QTLs, or other
unresolved genetic complexities. The common-segment method does not readily deal with
discordant strains, largely because phenotypes for the congenic strains are interpreted
relative to each other even though the statistical tests compare the congenic strains with
reference strain. In addition, interval mapping and multiple linear regression focus on the
panel of strains as a population rather than explicitly testing the attributes of individual
strains. To resolve this dilemma, direct tests among congenic strains are needed, as is done
with sequential analysis.

The nature of study populations together with their associated methods of QTL analysis
provides contrasting insights into the genetics of complex traits. Interval mapping and
marker regression, as well as common-segment, test for average effects across
heterogeneous genetic backgrounds. The detected QTLs tend to have relatively strong,
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additive effects that are largely independent of genetic background. By contrast, sequential
analysis tests individual genotypes for QTL effects. This approach shares important
similarities with the ways that panels of CSSs are analyzed (Belknap 2003; Nadeau et al.
2000; Singer et al. 2004). CSSs enable adequately powered genome surveys in which
genome segments (chromosomes) are independently tested for QTLs that affect the trait of
interest on a defined and constant genetic background. In this way, statistically robust
conclusions can be made about phenotypes associated with individual genotypes. Thus,
congenic strains analyzed with the sequential method provide similar insights about
individual, often context-dependent genetic effects, whereas segregating populations tested
with conventional analytical methods estimate the magnitude of QTL effects that tend to be
independent of genetic background.

Obtaining strong evidence for closely linked QTLs is a major challenge in complex trait
analysis. Segregating populations sometimes provides evidence (e.g., Lauwerys and
Wakeland 2005; Legare and Frankel 2000; Legare et al. 2000; Millward et al. 2009; Morel
et al. 2001; Shao et al. 2008; Shultz et al. 2003), but more usually confidence intervals are
wide and evidence for independent effects is weak. These difficulties arise in part because
obtaining sufficient crossovers to distinguish individual QTL effects is logistically difficult,
and in part because the phenotypic effects of one QTL may obscure the effects of others
either because of epistasis or because the additive actions of one QTL obscure the actions of
other closely linked QTLs (Matin et al. 1999; Youngren et al. 2003). As a result, the genetic
complexity of traits can be underestimated. By contrast, as we demonstrate in this report
(see also Shao et al. 2008), sequential analysis readily detects effects of closely linked QTLs
in congenic panels, with Bmiq3 and Bmiq4 (Fig. 1a), Gluq1 and Gluq3 (Fig. 1b), Pcholq2
and Pcholq4 (Fig. 1e) as examples. By testing for context-dependent effects in individual
congenic strains, these QTLs are readily detected and mapped in genetically defined strains
that can in turn be used immediately to identify the underlying genetic variant.

With the growing focus on the genetic and functional characterizations of complex traits,
dissecting QTLs effects and discovering their underlying genetic basis is an important task.
However, the emerging picture of complex traits reveals a large number of closely linked
QTLs that act in an additive or epistatic manner depending on genetic background (Brem
and Kruglyak 2005; Fawcett et al. 2008; Kenney-Hunt et al. 2008; Kroymann and Mitchell-
Olds 2005; Kruglyak 2008; Pomp et al. 2008; Shao et al. 2008; Sinha et al. 2008; Steinmetz
et al. 2002; Youngren et al. 2003). Sequential analysis of panels of congenic strains is
therefore a significant advance in complex trait analysis.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Comparison of congenic strain analysis with common-segment and sequential methods for
traits related to diet-induced obesity. Results for each method are provided for each
congenic panel and trait, with results for the common-segment provided on the left and that
for the sequential method on the right. Sample sizes are provided in the Methods section.
Selected genetic markers with their approximate locations in the DNA sequence (Mb
coordinates) are provided above the map for each chromosome; the complete map of genetic
markers is provided in the original publications for chromosomes 6 and 10 (Shao et al.
2008) and in Supplementary Table 2 for chromosome 13. The congenic strains are identified
as #C# where the first number (#) refers to the chromosome number, C refers to congenic,
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and the second # refers to the unique congenic strain designation. The maps for the congenic
strains are highlighted in white for segments that are derived from the host strain and in
black from the donor strain. The intervals between the genetic markers that define the
boundaries of the recombination breakpoints are graded from white to black to emphasize
the uncertainty about the location of the crossover. Trait values (mean ± SEM) are listed
between the two analyses. p values are also provided for each analysis, with p-val (vs.
C57BL/6J) for the common-segment method and P-val for each strain comparison for the
sequential method included with the Minimum Spanning Tree (MST). In all cases,
studywide p values are reported after correction for multiple hypothesis testing. a Body
mass index (Bmiq) in congenic strains from CSS-A6. b Blood glucose levels (Gluq) in
congenic strains from CSS-A10. c Plasma insulin (Insq) for the CSS-A10 congenic panel. d
HOMA (Homaq) for the CSS-A10 congenic panel. e Plasma cholesterol (Pcholq) for the
CSS-A10 congenic panel. f Age (days) at vaginal opening (Voq) for the CSS-A13 congenic
panel. g Body weight at vaginal opening (Bwvoq) for the CSS-A13 congenic panel
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Fig. 2.
Comparison of QTL mapping results for BMI and GLU with common-segment, interval
mapping, MLR, and sequential methods. Each method is aligned with the QTLs identified
by that particular method. LOD score (y axis) is for interval mapping only. The dotted line
represents the significance LOD score threshold in the interval mapping and the black line
represents the LOD curve. The bars denote the location of QTLs based on sequential
analysis of the congenic strains, with the short red bar showing the QTLs identified with the
sequential method and the green bar the QTLs identified with MLR. Absence of a bar
indicates that a QTL with a significant phenotypic effect was not found at that locus. a Body
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mass index (BMI) in congenic strains derived from CSS-A6. Additional details about
methods and results can be found in the original publication (Shao et al. 2008). b Blood
glucose levels (GLU) in congenic strains derived from CSS-A10. Additional details about
methods and results can be found in the original publication (Shao et al. 2008)
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