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Abstract

Understanding the inherent dynamics of the EEG associated to sleep-waking can provide insights into its basic
neural regulation. By characterizing the local properties of the EEG using power spectrum, empirical mode
decomposition (EMD) and Hilbert-spectral analysis, we can examine the dynamics over a range of time-scales. We
analyzed rat EEG during wake, NREMS and REMS using these methods. The average instantaneous phase, power
spectral density (PSD) of intrinsic mode functions (IMFs) and the energy content in various frequency bands show
characteristic changes in each of the vigilance states. The 2nd and 7th IMFs show changes in PSD for wake and
REMS, suggesting that those modes may carry wake- and REMS-associated cognitive, conscious and behavior-
specific information of an individual even though the EEG may appear similar. The energy content in θ2 (6Hz-9Hz)
band of the 1st IMF for REMS is larger than that of wake. The decrease in the phase function of IMFs from wake to
REMS to NREMS indicates decrease of the mean frequency in these states, respectively. The rate of information
processing in waking state is more in the time scale described by the first three IMFs than in REMS state. However,
for IMF5-IMF7, the rate is more for REMS than that for wake. We obtained Hilbert-Huang spectral entropy, which is a
suitable measure of information processing in each of these state-specific EEG. It is possible to evaluate the complex
dynamics of the EEG in each of the vigilance states by applying measures based on EMD and Hilbert-transform. Our
results suggest that the EMD based nonlinear measures of the EEG can provide useful estimates of the information
possessed by various oscillations associated with the vigilance states. Further, the EMD-based spectral measures
may have implications in understanding anatamo-physiological correlates of sleep-waking behavior and clinical
diagnosis of sleep-pathology.
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Introduction

Since its discovery by Berger [1], the electroencephalogram
(EEG) has been recognized as an important tool in psycho-
behavioral studies and sleep research. It is the commonest and
the most characteristic feature for objectively defining various
stages of sleep-waking. Cortical activation is shown by EEG
desynchronization, while sleep-spindles and slow waves
(0.4Hz-4Hz) are the hallmark of EEG during behavioral arousal
(wakefulness) and non-rapid eye movement sleep (NREMS)
respectively. The rapid eye movement sleep (REMS) is
characterized by EEG desynchronization, apparently similar to
that shown in wakefulness, atonia of anti-gravity muscles, and
rapid eye movements observed in the electrooculogram (EOG).

During NREMS the neuronal firing patterns change from
rapid firing, characteristic of arousal, to low frequency
synchronized rhythms [2]. It was believed that these rhythms
are generated due to reciprocal interactions in thalamo-cortical
neural networks [2,3]. The ascending reticular activating
system, comprising of neurons and their connections in the
brainstem core, is necessary for the tonic maintenance of
cortical activation [4] when awake. Early stages of sleep are
characterized by the presence of α-waves (7Hz-14Hz) in the
EEG, which changes to slow oscillations (0.1Hz-4Hz) as sleep
deepens. REMS is characterized by abolition of low-frequency
oscillations and an increase in cellular excitability apparently
comparable to that as in wakefulness [5]. Central
neurotransmission plays a key role in the modulation of the
EEG. For example, cholinergic and noradrenergic
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neurotransmission can affect the EEG slow wave activity by
blocking the postsynaptic receptors [6,7]. Disruption of any of
the neurotransmission systems can lead to alteration of EEG
as seen in pathological or cognitive disorders [8–11].
Therefore, analyzing the dynamical properties of the EEG can
provide insights into understanding the mechanism of its basic
regulation [12].

Traditional methods such as the fast Fourier transform (FFT)
and wavelet analysis have been extensively employed to study
various features in the EEG during sleep [13–16]. Parameters
that can be calculated through these methods have been
shown to have implications in assessing patho-physiological
states. For instance EEG slow wave activity (SWA), namely
spectral power in the frequency range 0.4Hz-4HZ is an
important parameter to estimate sleep homeostasis and is a
function of the duration of prior wakefulness [17]. Borbély
proposed a two process model of sleep wake regulation that is
based on SWA and the circadian rhythm. This model [18]
postulates that the architecture and propensity of sleep are
determined by the interaction of two constituent processes: the
homeostatic process S which correlates with SWA and the
circadian process C which correlates with sleep timing. The
process S increases as an exponentially saturating function
during waking and it decays exponentially during sleep. The
upper (sleep onset) and lower (sleep termination) thresholds of
the process S are controlled by the process C which, being
circadian, is independent of sleep and waking [18,19].
Experiments as well as simulation studies of this model explain
diverse phenomena such as rebound sleep after sleep
deprivation, internal desynchronization in the absence of time
cues, sleep fragmentation under continuous bed rest, sleep
during shift work and circadian phase dependence of sleep
duration [20–22]. Spectral power and high-voltage spindle
analysis could serve as a useful tool for evaluating the efficacy
of pharmacological strategies aimed at alleviating the
neurotransmission deficit [23].

However, traditional methods are limited by both
fundamental as well as pragmatic considerations, and are
relatively worse for discriminating the changes in wake and
REMS states [24] due to the nonlinear and non-stationary
structure of EEG signals. It should be pointed out that several
nonlinear dynamical tools have been employed earlier in the
analysis of EEG during sleep-wake stages [25–28]. Measures
based on nonlinear dynamics have not been uniformly
successful in providing a faithful classification protocol for the
wake and REMS states, and therefore, failed to characterize
the dynamics or mechanism that regulates these states. The
present study is an attempt to understand the dynamical
aspects of the EEG. Adaptive methods such as empirical mode
decomposition (EMD) have been applied to rat EEG recordings
associated to various vigilance states. EMD is a fully data
driven method that acts locally in time. A given signal is
analyzed in terms of its intrinsic modes of oscillation: these are
the intrinsic mode functions (IMFs). The IMFs were then further
analyzed to obtain quantitative measures such as power
spectral density (PSD), average Hilbert phase, and Hilbert-
Huang spectral entropy (HHSE).

Materials and Methods

Surgical details and EEG recording
Studies were conducted strictly following the National

Institutes of Health guidelines for the care and use of laboratory
animals and the experiments were approved by the Institutional
Animal Ethics Committee of Jawaharlal Nehru University, India.
All experiments were conducted on chronically implanted freely
moving male Wistar rats (n=12) of weight 280g-320g. Rats
were maintained at 12:12 light: dark cycle (lights on at 7:00
AM) and ambient temperature 24±10 °C with food and water ab
libitum. The rats were surgically prepared for chronic sleep-
wake recording as reported earlier [29]. In brief, under surgical
anesthesia (ketamine hydrochloride 80 mg/kg and xylazine
hydrochloride 10 mg/kg i.p.), four stainless steel screw
electrodes were fixed on the skull for recording bilateral EEG.
Two screw electrodes were placed at 2.0 mm rostral and 2.0
mm lateral (frontal bone), while two others were fixed at 2.0
mm caudal and 2.0 mm lateral (parietal bone) to the bregma.
Another screw electrode was implanted over the frontal sinus
to serve as the animal ground. Electrodes (flexible wires
insulated except at the tip) were connected bilaterally to dorsal
neck muscles and muscles near the external canthus of the
eyes to record bilateral electromyogram (EMG) and EOG
respectively. Leads from all the electrodes were soldered to a
nine-pin connector and the complete assembly was anchored
to the skull with dental acrylic.

Rats were allowed to recover from surgery for at least one
week. During the recovery days the rats were adapted to the
recording chamber and cables. On the day of recording an
animal was placed in a semi sound-proof Faraday cage and
was connected to a recording cable that was lightly suspended
above them by a counter-weighted beam. The recording was
done for 5-6 h (beginning at 9:00 AM) each day. During
experiments, EEG, EMG and EOG signals were recorded
continuously using a polysomnographic recording device
(Embla; Medcare Flaga Medical Devices, Reykjavik, Iceland).
The electrophysiological signals were digitally sampled at a
frequency of 100Hz and stored in a computer using the Embla
recording device (Somnologica Studio; Medcare Flaga Medical
Devices).

Sleep Scoring
Vigilance states were manually scored offline using 10s

epochs and were subdivided into active wake, NREMS and
REMS as reported earlier [29,30]. The waking state was
identified by the presence of desynchronized EEG
accompanied by a high EMG tone and/or muscle movement
and eye movements in the EOG. NREMS was characterized by
EEG synchronization (>75% epoch) and the appearance of
spindle in EEG, no active muscle movement in EMG and
reduced eye movements in EOG. REMS was identified using
EEG desynchronization, muscle atonia and frequent eye
movements, usually following NREMS (Figure 1). Based on the
physiological sleep profile the representative collections of 10
sec epochs (n = 240 for each stage) of the wake, NREMS and
REMS stages were subjected to programs written in MATLAB
for further analysis.

EMD Analysis of Vigilance State Specific Rat EEG
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EEG analysis
Power Spectral Analysis.  From the Fourier transform of

the EEG signal,F(ω) , the PSD S(ω)was calculated for the
identified 10s EEG epochs in different sleep-wake states
(described above). The mean PSD profile for each stage is
given by

S ω = F ω F∗ ω (1)

Where, 〈 .〈 denotes an average over the individual epochs.
In each of the states, only those scoring epochs that were free
from artifacts were included. As mentioned earlier, the NREMS

Figure 1.  Typical single channel fronto-frontal EEG signals during different vigilance states (Wake, NREMS, and
REMS).  Standard acronyms are used, EEG: Electroencephalogram, EOG: Electrooculogram, EMG: Electromyogram.
doi: 10.1371/journal.pone.0078174.g001
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scoring epochs were chosen based on high spindle density by
visual inspection (Figure 1).

Empirical Mode Decomposition and Hilbert
transform.  The EMD analyses a given signal s(t) into a series
of component waveforms termed the IMF [31]. Each IMF,
obtained by a standard sifting process, is characterized as
having a number of extrema and number of zero-crossings that
was identical or differs by one. Secondly the mean value of the
envelope defined by local maxima and envelope defined by
local minima is zero. Each IMF thus obtained satisfies
completeness and orthogonality and represents the modulation
of a certain frequency at a specific time scale. In this study, we
used an improved EMD code as described by Rilling and
Goncalves [32]. The EMD algorithm is described as follows

i) Identify the extrema of the signals(t).
ii) Connect all the maxima by a cubic spline interpolation to

find the upper envelopeemax(t). Similarly, find the lower
envelope emin(t) by using minima.

iii) Calculate the mean envelopem t =
emax t +emin t

2 .

iv) Subtract this mean envelope from the signal to obtain the
detailh(t)=S(t)-m(t).

v) This detail h(t) is checked for IMF characteristics
mentioned above. For robust and efficient calculation of IMF, a
stopping criteria is used [31,32]. If this criterion is satisfied, the
first IMF is given byC1=h(t), else the residual h(t) is treated as
the original signals(t), and one returns to step (ii). The process
described in (i)-(v) is called sifting.

The stopping criterion for sifting [32] is based on setting a
threshold to the evolution function σ(t)=|m(t)/a(t)|
wherea(t)=(emax(t)−emin(t))/2. The usual strategy to take as
σ(t)<θ1 for some prescribed fraction 1−αof the total duration,
while σ(t)<θ2for the remaining. The valuesα=0.05,θ1=0.05 ,
θ2=0.5are used here.

vi) Compute the residual signal r1(t)=s(t)-C1(t) and subject to
subsequent IMFs(Ci(t)), treating ri(t)as the original signal using
the above procedure (i)-(v) . The decomposition terminates
when the residual becomes monotonic and from which no
further IMFs can be extracted.

The signal s(t) can thus be represented as a sum of n IMFs,
Ci(t)and a residual r(t)

s t =∑i=1
N Ct t +r t (2)

The Hilbert–Huang transform is a two–step process, the first
being the above decomposition of the signal into its intrinsic
mode functions using EMD. The second step is to construct the
Hilbert spectrum of each IMF by applying the Hilbert transform;
this provides an energy frequency-time distribution. The
analytical signal corresponding to s(t) is given by [33] .

ψ t =s t + is̃ t =A t eiφ t (3)

Where, s̃ t is the Hilbert transform of s(t), namely

s̃ t = 1
π P.V . ∫

−∞

+∞ s t′

t− t′
dt′ (4)

P.V. denotes the Cauchy principal value. The quantities

A t = s t 2+ s̃ t 2 (5)

and

φ t =tan−1 s̃ t
s t (6)

define the amplitude and phase of the analytic signal. When
s(t) is aperiodic (as is typically the case for IMFs) the frequency
ω t = φ̇ t  is not constant. Indeed, the nature of its variation
reveals much about the dynamics [34]. Together with the
instantaneous frequency ω(t) and Eqs. (2,3), we obtain the
Hilbert spectrum H(ω,t) that gives the likelihood of the exact
occurrence time of a specific frequency of oscillation. The total
amplitude contribution from each frequency value can be
calculated from the marginal Hilbert spectrum given by

h ω = ∫
0

T
H ω,t dt (7)

Where, T is the total time duration of the time series. We
note that applying the Hilbert transform to IMFs is meaningful
since they satisfy the condition of being symmetric with respect
to the local zero mean. The instantaneous phase of the
oscillations can be found from the analytic signal thus
constructed.

Spectral entropy measures have recently been used to
monitor the depth of anesthesia in humans [35]. We used the
entropy measures from Hilbert transform to evaluate the
information processing during vigilance states. From the
normalized marginal Hilbert transform, namely

h ω = h ω
∑ωh ω (8)

it is possible to obtain the Hilbert-Huang spectral entropy
(HHSE), denoted SHas

SH =
−∑ωh ω log h ω

logm (9)

Where, m is the number of frequency components.
We calculated the power spectral densities, relative power in

various frequency bands, δ (0.4Hz-4Hz), θ1 (4Hz-6Hz), θ2

(6Hz-9Hz), α (9Hz-14Hz), β1 (14Hz-20Hz) and β2 (20Hz-45Hz)
and the instantaneous phase of the IMFs for further analysis.

Statistical Analysis
Statistical analysis (of the results section below) was done as

follows: the total power in each of the frequency bands δ, θ1,
θ2, α, β1 and β2 in each of the vigilance states was averaged
over all epochs to obtain the mean and standard deviation.
One-way ANOVA was performed with the vigilance states as a
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factor on the mean PSD of each frequency bands and HHSE
values.

Results

EEG Power spectrum
To verify the spectral power in the EEG during different

sleep-wake states we computed the FFT of each 10s epoch
collected from the baseline recording in a total of 12 rats.
Figure 2 shows the power spectrum of the EEG during the
different vigilance states and as can be seen there are clear
differences in the power densities across the sleep-wake
stages. The absolute power density during NREMS
(2.0-20.0Hz) is higher than that in the wake and REMS. The
power densities in waking were higher than in REMS from
0.5-4.0 Hz and lower from 4.0-30 Hz (Figure 2); this is
consistent with earlier studies [14].

Empirical Mode Decomposition
Each of the EEG epochs of 10 sec duration during different

sleep-wake states was subjected to EMD. A standard
implementation of the EMD algorithm yields about 10 IMFs,
though typically the first 7 are significant (see Figure 3) and are
subjected to further analysis. The frequency content of the
remaining IMFs falls below a physiological bandwidth (≤
0.1Hz). Figure 4 shows the average power densities of the
leading 7 IMFs, denoted by IMF1 through IMF7. Characteristic
changes are observed in the PSDs of the vigilance states, with
the average trend being that the power densities in NREMS are
more than wake and REMS. This is also accompanied by
higher power in NREMS as can be seen in Figure 2. IMF
spectral densities for wake and REMS follow the same trend.
Closer inspection reveals that the PSD of IMF2 in waking state
is higher than in REMS. Similarly the PSD of IMF7 in REMS
exceeds the corresponding quantity in the wake, suggesting
that the second and seventh modes carry information that is
different for wake and REMS even though the EEG appears
similar. We further categorized the absolute power densities

Figure 2.  Fronto-frontal absolute EEG power spectral density (V2/Hz) in wake, NREMS and REMS of 10 sec epochs from
n=12 rats.  EEG power densities during NREMS were significantly higher than in REMS and wake. See text for details.
doi: 10.1371/journal.pone.0078174.g002
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into six frequency bands; δ (0.4Hz-4Hz), θ1 (4Hz-6Hz), θ2

(6Hz-9Hz), α (9Hz-14Hz), β1 (14Hz-20Hz) and β2 (20Hz-45Hz).
As seen in Figure 5, the PSDs are distributed differently in
different states. In all of the frequency bands, the PSDs in
NREMS were the highest (Table 1).

In order to quantify the energy content of the IMFs of the
wake and REMS, the average difference in the energies for the
two states are computed and are displayed in Figure 6. The
PSD in the δ-band for IMF4-IMF6 are higher in wake state than
in REMS. Unlike δ-band, all other bands show higher PSD for
IMFs in REMS than in wake state. In higher frequency bands
like β1 and β2, these values are negligible for IMF3-IMF7
(Figure 6e, f). However, the change in energy of the wake and
REMS of IMF1 in β2 is larger, indicating that the oscillations
occurring at this time scale are predominant in REMS. Thus, a
detailed analysis of IMFs can provide insight into the basic
dynamics that is characteristic of the individual states.

Another important measure that can be used to characterize
the oscillations using EMD is the instantaneous phase. The
IMFs obtained through EMD are symmetric with respect to the
local zero mean and have the same number of zero-crossings
and extrema [31] and therefore, the Hilbert transform gives
meaningful instantaneous frequencies. The Hilbert transform
properties of the IMFs in different sleep-wake states reveal the
frequencies involved in the original signal at different time
scales.

We calculated the instantaneous phase of each of the IMFs
using Hilbert transform and these are shown in Figure 7. The
slope of the phase function decreases from higher IMFs to
lower IMFs (Note the scale of the y-axis in Figure 7 a-g).
Similarly, the decrease in the phase function of the same IMF
from wake to REMS to NREMS indicates the decrease of the
mean frequency in these states respectively. The mean
frequency for wake state is greater than in the REMS state in

Figure 3.  Empirical mode decomposition of Wake, NREMS and REMS.  The first 7 IMFs are shown. The frequency gradually
decreases as one move to lower IMFs.
doi: 10.1371/journal.pone.0078174.g003
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first two IMFs. However, this trend changes for IMF5-IMF7, in
which the mean frequency of REMS state is more than wake
state. To examine the changes in detail, we take the difference
of phases for wake and REMS states as shown in Figure 8.
The phase difference changes sign for IMF5-IMF7. These
results suggest that the rate of information processing in
waking state is more in the time scale described by IMF1-IMF3

than in REMS state. However, at the time scale described by
IMF5-IMF7, the rate is more for REMS than that for wake. This
result makes a clear distinction of local time scales involved
across the wake and REMS EEG dynamics.

Figure 4.  Power spectral density of IMFs in wake, NREMS and REMS.  The PSD of NREMS is larger for all of the modes than
wake and REMS. In IMF2 and IMF7, the PSD is different for wake and REMS. These particular IMFs can be considered as
characteristic of vigilance state that they represent.
doi: 10.1371/journal.pone.0078174.g004

Figure 5.  Average absolute power densities of 7 IMFs in different frequency bands.  a) δ-band (0.4Hz-4Hz), b) θ1-band
(4Hz-6Hz), c) θ2-band (6Hz-9Hz), d) α-band (9Hz-14Hz), e) β1-band (14Hz-20Hz) and f) β2-band (20Hz-45Hz). The PSD of
NREMS is significantly more in all bands (for p-values see Table 1).
doi: 10.1371/journal.pone.0078174.g005
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Hilbert-Huang Spectral Entropy
Using information theory, the amount of information

processed by each IMFs is characterized using Shannon
entropy measures [36,37]. As previously mentioned in the
methods section, marginal Hilbert spectrum is calculated for
each of the EEG epochs in all of the three vigilance states and

normalized HHSE is estimated using Eq. (9). The mean HHSE
for wake, NREMS and REMS states are shown in Figure 9.
Oneway ANOVA demonstrate a significant relation between
HHSE and sleep wake states (F=148.22, p<0.001) and post-
hoc pair wise comparison (Tukey test) demonstrated that the
HHSE for wake is significantly higher than REMS (p<0.05).

Table 1. The PSD values of IMF's in δ (0.4-4Hz), θ1 (4-6Hz), θ2 (6-9Hz), α (9-14Hz), β1 (14-20Hz) and β2 (20-45Hz) bands.

Frequency Band IMF Wake NREMS REMS F-value p-value
δ-band(0.4Hz-4Hz) IMF1 0.56±0.05 6.09±0.69 0.91±0.06 95.46 1.90E-14
 IMF2 0.71±0.10 12.25±1.26 1.01±0.12 129.19 2.22E-16
 IMF3 4.69±0.43 32.48±3.78 5.10±0.51 89.62 4.61E-14
 IMF4 16.77±1.38 49.99±5.52 13.82±1.05 73.48 6.99E-13
 IMF5 13.33±1.10 23.05±2.48 9.56±0.86 52.98 4.98E-11
θ1-band(4Hz-6Hz) IMF1 0.37±0.03 5.51±0.54 0.61±0.04 139.60 1.11E-16
 IMF2 1.27±0.19 27.19±3.30 1.79±0.24 86.54 7.48E-14
 IMF3 7.99±0.89 52.82±5.06 9.24±0.82 154.25 0.00E+00
 IMF4 2.07±0.19 3.26±0.39 2.01±0.18   
θ2-band(6Hz-9Hz) IMF1 0.69±0.07 17.86±2.05 1.25±0.12 107.95 3.33E-15
 IMF2 3.84±0.52 91.67±10.29 5.87±0.82 111.26 2.11E-15
 IMF3 6.44±0.61 28.93±2.39 8.59±0.72 186.03 0.00E+00
α-band(9Hz-14Hz) IMF1 1.77±0.25 65.81±8.31 3.40±0.36 88.01 5.92E-14
 IMF2 7.61±0.79 87.55±9.04 11.17±1.10 151.41 0.00E+00
β1-band(14Hz-20Hz) IMF1 4.09±0.53 71.13±8.57 8.32±0.77 85.20 9.29E-14
 IMF2 5.01±0.42 16.73±0.17 6.64±0.54 54.18 3.76E-11
β2-band(20Hz-45Hz) IMF1 28.70±8.28 63.87±18.43 43.36±12.51 33.21 1.25E-08

All values are in nV/Hz±S.E.M. Since the IMFs form a complete and orthogonal set, one-way ANOVA with state (Wake, NREMS and REMS) as a factor were performed.
The corresponding F and p-values are also given.
doi: 10.1371/journal.pone.0078174.t001

Figure 6.  Changes in energy content of IMFs of wake relative to REMS state.  PSD in δ-band for IMF4-IMF7 is higher during
waking than REMS.
doi: 10.1371/journal.pone.0078174.g006
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Discussion

In the past few decades, sleep research has focused on
identifying the brain structures involved in the regulation of
sleep-wake states, the various neurotransmitters that play a
role, and their mutual interactions; however, most of these are
invasive studies. EEG serves as a hallmark of these neuro-
anatomical and neuro-chemical mechanisms and it is therefore,
important to understand the relevant aspects of EEG [38,39].
Our approach in the present study has been to decipher the
local properties of the EEG in each of the sleep-wake states
through a combination of nonlinear EMD and PSD based
measures.

We find that the absolute PSD during the wake, NREMS and
REMS is consistent with the findings of the earlier studies [14].
From Figure 2, it is evident that the PSD of NREMS is higher
and span of bandwidth is more than other two states. This is
evident even from visual observation: the NREMS EEG epochs
contain high spindle density. This is usually considered as
transition sleep as mentioned earlier under sleep scoring
section. The peak in Figure 2 may be attributed to the burst

discharge patterns (7Hz-14Hz) of thalamic reticular neurons
involved in the generation of spindles [40].

Many spectral methods [13,41,42] and nonlinear dynamics
tools [25,27,28] have been used to analyze EEG for
discriminating various sleep-wake states. Power spectral
analysis using FFT and linear models is useful for predicting
the peak frequency and bandwidth of different vigilance states
[43,44]. These methods are of limited applicability for EEG
signals due to their intrinsic nonlinear and non-stationary
structure. Non-linear measures such as the correlation
dimension (CD), Lyapunov exponent (LE), Hurst exponent (HE)
of sleep wakefulness all provide useful estimates regarding the
composition of EEG in different vigilance states. The CD and
LE decrease from light sleep to deep sleep and they increase
during REMS [25,45]. However, these values are similar for
wake and REMS and do not provide characteristic differences
regarding these two states. The information gained from
nonlinear measures is not redundant to that of obtained from
spectral analysis.

We believe that an adaptive method such as EMD is more
suitable for EEG analysis. The IMF power density displays
variations across the states (Figs. 4, 5, 6). The PSD of the

Figure 7.  Unwrapped phase of the first 7 IMFs for three vigilance states are shown.  The ranking of the rate of change of
phase for wake and REMS is interchanged after the third IMF (Color code – Blue: wake, Red: NREMS and Black: REMS).
doi: 10.1371/journal.pone.0078174.g007
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second and fifth IMFs give characteristics of the wake and
REMS states, and provide useful insight into the frequencies
involved in these states. Other studies using EMD have
investigated diverse properties of EEG like detecting
synchronization mediated by neuronal assemblies [46],
analyzing the depth of anaesthesia [35] and detecting various
phases (pre-ictal, seizure and ictal) of epilepsy [47]. Süleyman
Baykut et al. [24] also employed EMD based techniques for
discriminating sleep and wake states. Using EMD based
energy ratios, they achieved faithful accuracy for discriminating
vigilance states, but their method is not useful for discriminating
the transition sleep, and since their method is based on energy
ratios rather than energy bands, they do not shed light on
frequency bands characteristic to each vigilance state which

are important for locating and understanding sleep stage
dependent generators.

In this study, we have analyzed the instantaneous phase and
power content of each of the IMFs, obtained through EMD in
different states. The rate of change of instantaneous phase
decreases from wake to REMS to NREMS in the first few IMFs
(e.g. IMF1-MF3). However, this trend changed to REMS to
wake to NREMS for subsequent IMFs (IMF4-IMF7). This
suggests that the IMFs show the characteristic oscillations at
different time-scales involved in that particular state of EEG.
We quantified the amount of information processing using the
HHSE which has been used in estimating the depth of
anesthesia [35]. The EEG shows apparent desynchronization
during waking and REMS; however, these states are difficult to
be classified using EEG characteristic alone. Our findings

Figure 8.  The change of phase of REMS relative to wake state for the 7 IMFs.  The change of phase changes sign from
negative to positive after the third IMF.
doi: 10.1371/journal.pone.0078174.g008
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suggest that instantaneous phase of IMF1-IMF3 and HHSE
decrease during REMS compared to that during waking. It is
known that specific neurons containing various
neurotransmitters are responsible for inducing changes in the
EEG in relation to waking, NREMS and REMS. Whether these
characteristic changes in the IMFs may be attributed to the
specific changes in the levels of neurotransmitters and/or to
specific neuronal activities related to waking, NREMS and
REMS, require further investigation. Also, as we know that the
neurons of the ascending reticular activating system are more
active during waking, subject to verification, we propose that
the changes in the physical properties of the EEG waves may
be used as a non-invasive method to understand differential
activities of neurons and their projections to the cortex. HHSE
during waking is larger than that in REMS; it can thus provide a
better estimate for the amount of information processed in
these states.

Since HHSE is a measure of disorder in the system, we may
say that during EEG desynchronization (waking or REMS) the
brain is more temporally disordered than during NREMS state.
However, since HHSE is higher during waking than during

REMS, the former is more disordered state than the latter.
Thus, our findings suggest that from waking to NREMS to
REMS, the brain moves from (relatively) higher disorder to
lower disorder and then to a state of intermediate disorder. The
least disordered state is NREMS, and this separates the other
two states whose disorder levels are higher; this supports our
earlier proposed model [48]. Under normal conditions the
transition of waking to REMS appears to be routed through a
state of higher order, the NREMS. This also supports our
proposition that all these states are playing on a background
basal state, the “T” state [48]. These empirical results suggest
that in addition to conventional spectral measures, the
nonlinear EMD based measures provide useful information
about the dynamics of the EEG during each of the vigilance
states and may be suitable for healthcare applications for
monitoring waking, NREMS and REMS. The differences of
these local time quantitative measures at different locations,
namely a topographic mapping, during different sleep-wake
states can provide useful information for characterizing these
states and their dependent generators.

Figure 9.  Hilbert–Huang spectral entropy for three vigilance states.  HHSE during REMS is intermediate between wake and
NREMS (n=12, F=148.22, p<0.01) and is significantly different than that of wake state (n=12, P<0.05).
doi: 10.1371/journal.pone.0078174.g009
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Conclusions

Our results indicate that dynamics of EEG during sleep-
NREMS-REMS can be deciphered using EMD and spectral
based methods. PSD analysis of EEG alone is not sufficient to
distinguish wake and REMS states. PSD of IMF2 and IMF7 are
characteristic of REMS and wake states, respectively. This
indicates that the oscillations occurring at local time scales of
IMF2 and IMF7 process information differently during these
corresponding states. Similarly, the rate of change of phase
increase for REMS as we move toward slow oscillations as
indicated by higher IMFs. On a global scale, REMS is
intermediately organized state between wake and NREMS
states as is evident from the HHSE. These measures when

experimented with neuro-chemical control of know brain areas
involved in the regulation of each of wake-NREMS-REMS
states can provide fruitful information regarding nature of
neuronal oscillations involved in these states. Moreover,
these measures can be useful to understand patho-
physiological correlates of sleep-waking behavior.
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