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Natural killer (NK) cells are lympho-
cytes of the innate immune system that 
play a critical role in the immunosurveil-
lance of several tumors, including glio-
blastoma multiforme (GBM). Effective 
antitumor immune responses depend on 
the interaction between the activating 
receptor NKG2D, which is expressed on 
NK, CD8+ and γδ T cells, and its ligands 
(NKG2DLs) on the surface of target cells, 
including MHC class I-related chain A 
and B MICA/B as well as multiple UL16-
binding proteins (ULBP1–4). NKG2DL 
are upregulated by cells, including malig-
nant cells, in response to stress. Through 
NKG2D, NK cells prevent the growth of 
malignant cells expressing NKG2DLs, 
and the blockade of NKG2D impairs 
the NK cell-mediated lysis of target cells. 
Both the downregulation of NKG2DLs 
or their matrix metalloproteinase 
(MMP)-dependent shedding, resulting 
in the release of soluble NKG2DL frag-
ments, represent strategies whereby GBM 
cells evade NKG2D-mediated immuno-
surveillance.1 In line with this notion, 
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the induction or ectopic overexpression 
of MICA in glioma cells enhances NK 
and T cell-mediated antitumor responses 
in vitro and delays GBM growth in vivo.2

Several physiological and pathological 
cellular processes are governed by epi-
genetic events such as histone acetylation 
and deacetylation. Histone acetylation 
is mediated by histone acetyltransferases 
(HATs) and generally allows for active 
gene transcription. Conversely, his-
tone deacetylation is catalyzed by his-
tone deacetylases (HDACs), and favors 
gene repression. Histone acetylation is 
a reversible, dynamic and highly regu-
lated process that plays a crucial role in 
the regulation of gene expression (Fig. 1). 
In addition, a growing number of non-
histone proteins has been shown to 
undergo reversible acetylation by HATs 
and HDACs. Alterations in this dynamic 
equilibrium, such as those caused by the 
aberrant expression or functional activa-
tion of HATs and HDACs, can disturb 
cell homeostasis and result in patho-
logical states. Deletions or inactivating 

mutations in multiple genes coding for 
HATs as well as an increased activity 
of HDACs have indeed been associated 
with oncogenesis and tumor progres-
sion, as they alter the transcription of 
genes that regulate key functions such 
as proliferation, cell cycle progression 
and apoptosis.3,4 More interestingly, the 
transcription of many immunomodula-
tory genes such as those encoding MHC 
class I molecules, proteins of the antigen-
processing machinery (APM) like trans-
porter associated with antigen processing 
1 and 2 (TAP1/2), proteins associated 
with the proteasome like large multifunc-
tional protease 2 (LMP2) and tapasin as 
well as multiple NKG2DLs appears to be 
regulated by histone acetylation/deacety-
lation. Numerous studies have demon-
strated that a variety of HDAC inhibitors 
(HDACis) like valproic acid, sodium 
butyrate, vorinostat, romidepsinor and 
trichostatin A (TSA) induces the expres-
sion of NKG2DLs on tumor cells, facili-
tating their recognition and destruction 
by cytotoxic lymphocytes.5,6 In addition, 

Natural killer (NK) cells are integral components of the antitumor immune response. The downregulation of ligands 
for NK-cell stimulatory receptors represents a strategy whereby glioblastoma cells can evade NK-cell attacks. Histone 
deacetylase inhibitors can stimulate the (re)expression of these ligands, driving cytotoxic responses against glioblastoma 
cells that efficiently inhibit tumor growth.
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immunostimulatory activity of HDACis 
against GBM.

HDACis have pleiotropic effects on 
malignant cells. They inhibit proliferation, 
sensitize cells to death receptor ligand- or 
radiation-induced apoptosis, mitigate 
migration, modulate angiogenesis and 
induce the expression of oncosuppressor 
genes as well as that of a variety of immu-
nostimulatory genes. Because of these 
qualities, HDACis are considered as excit-
ing anticancer agents. Several epigenetic 
modulators have already been approved by 
FDA and EMEA for cancer therapy and 
appear to be well tolerated by patients. Up 
to date, about a dozen HDACis have been 
tested in clinical trials for the treatment of 
different types of cancer, including GBM, 
either as standalone therapeutic interven-
tions or in combination with other anti-
cancer agents.6,9 It has become increasingly 
clearer that—besides their intrinsic effects 
on tumor cells—HDACis limit tumor pro-
gression by regulating immune responses. 
HDACis can provide immunomodulatory 

detectable upon TSA administration, 
GBM cells responding to TSA released 
high-mobility group box 1 (HMGB1), an 
endogenous Toll-like receptor 4 (TLR4) 
ligand that promotes cytotoxic T-cell 
mediated antitumor immune responses. 
Furthermore, TSA led to the upregu-
lation of the NKG2DLs MICA und 
ULBP2, at both the mRNA and surface 
protein level, resulting in the recogni-
tion and efficient lysis of GBM cells by 
lymphokine activate killer and CD56+ 
NK cells (Fig. 1).8 Such an enhanced 
cytotoxic response was at least partially 
dependent on NKG2DL expression 
by glioma cells, as it was significantly 
reduced when NK cells were pre-treated 
with a NKG2D-neutralizing antibody. 
In a mouse model of GBM, TSA delayed 
tumor growth independently from the 
induction of cancer cell death, an effect 
that was strictly dependent on the pres-
ence of functional NK cells. These find-
ings provide proof-of-principle evidence 
in support of a therapeutically relevant 

HDACis downregulate the expression 
of MMP9, thus inhibiting the release of 
MICA and MICB from the surface of 
tumor cells.7 Finally, it has been shown 
that HDACis enhance the NK cell-
mediated lysis of tumor cells and reduce 
tumor growth in vivo as they promote 
the expression of MICA or ULBP2.5

We have recently investigated the 
immunomodulatory effects of TSA on 
GBM cells in vitro as well as its therapeu-
tic activity in vivo, in a GBM xenograft 
model.8 We were able to demonstrate 
that, besides its acute cytotoxicity, TSA 
synergized with death receptor ligands 
in the killing of GBM cells, puta-
tively as it inhibits the expression of 
anti-apoptotic factors such as cellular 
CASP8 and FADD-like apoptosis regu-
lator (CFLAR) or X-linked inhibitor of 
apoptosis (XIAP). More interestingly, 
TSA influenced several processes that are 
involved in antitumor immune responses. 
Thus, whereas no changes in the expres-
sion levels of APM components were 

Figure 1. Antitumor activity of HDAC inhibitors. (Left) the inhibition of histone deacetylases (HDACs) causes both transcriptional 
and non-transcriptional effects, leading to profound alterations in cell homeostasis. Middle: The re-acetylation of histones upon HDAC inhibition 
stimulates gene transcription. (Right) As a result of HDAC inhibition, NKG2D ligands (NKG2DLs) such as MHC class I-related chain A and B (MICA/B) or 
UL16-binding proteins (ULBPs) are upregulated, rendering glioblastoma multiforme (GBM) susceptible to recognition and lysis by natural killer (NK) cells.
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properties by enhancing the antigenicity of 
tumor cells (via the upregulation of MHC 
class I and II molecules or MICA/B), 
by regulating the production of several 
cytokines such as tumor necrosis fac-
tor α (TNFα), interleukin-1 (IL-1) and 

interferon γ (IFNγ), as well as by inhib-
iting the immunosuppressive functions of 
regulatory T  cells (Tregs).10 In summary, 
accumulating evidence provides a strong 
rationale in support of clinical studies to 
further evaluate the safety and therapeutic 

profile of HDACis in combination with 
anticancer immunotherapy.
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