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Abstract

Chronic kidney disease–mineral and bone disorder (CKD-MBD) is the term used to describe a 

constellation of biochemical abnormalities, bone disturbances that may lead to fractures, and 

extraskeletal calcification in soft tissues and arteries seen in CKD. This review focuses on the non-

invasive diagnosis of renal osteodystrophy, the term used exclusively to define the bone 

pathology associated with CKD. Transiliac bone biopsy and histomorphometry with double-

labeled tetracycline or its derivatives remains the gold standard for diagnosis of renal 

osteodystrophy. However, histomorphometry provides a “window” into bone only at a single point 

in time, is invasive, and not practical to study continuous changes in bone morphology. Further, 

CKD is a risk factor for fractures, and the etiology is multi-factorial and not fully explained by 

histomorphometry findings alone. The propensity of a bone to fracture is determined by bone 

strength, which is affected by bone mass and bone quality; the latter is a term used to describe the 

structure and composition of bone. Bone quantity is traditionally assessed by Dual X-ray 

Absorptiometry (DXA) and CT based methods. Bone quality is more difficult to assess non- 

invasively, but newer techniques are emerging and described in this review. Ultimately, the 

optimal diagnostic strategy for renal osteodystrophy may be a combination of multiple imaging 

techniques and biomarkers that are specific to each gender and race in CKD with a goal of 

predicting fracture risk and optimizing therapy.

Renal Osteodystrophy: Then and Now

Kidney Disease has been known to be associated with bone abnormalities for decades. As 

early as 1883, Lucas recommended the term “renal rickets” for the bone deformities 

associated with albuminuria(1). In 1943, Liu and Chu first used the term renal 

osteodystrophy as “the generic name to include cases of osseous disorder associated with 

renal insufficiency, while the exact nature of the pathological process in the skeleton is still 

undetermined”(2). The term “renal osteodystrophy” was then used to variably describe bone 

histology findings, skeletal abnormalities, and disordered biochemical and hormone levels 
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(calcium, phosphorus, parathyroid hormone, vitamin D) associated with kidney disease 

through the rest of the 20th century.

In 2005 expert nephrologists in the field of bone and mineral disease felt the term renal 

osteodystrophy did not completely depict the full spectrum of systemic symptoms associated 

with mineral and bone disorders in CKD. The term Chronic kidney disease–mineral and 
bone disorder (CKD-MBD) was coined to encompass a constellation of abnormalities seen 

in progressive kidney disease that include 1) altered levels of calcium, phosphorus, 

parathyroid hormone (PTH), and vitamin D; 2) disturbances in bone modeling and 

remodeling, with the associated development of fractures or impaired linear bone growth (in 

children); and 3) extraskeletal calcification in soft tissues and arteries(3). It was 
recommended that the term renal osteodystrophy be used exclusively to define the bone 
pathology associated with CKD(3). Renal Osteodystrophy is one measure of the skeletal 

component of the systemic disorder of CKD-MBD. Transiliac bone biopsy and 

histomorphometry with double-labeled tetracycline or its derivatives remains the gold 

standard for diagnosis of renal osteodystrophy.

Bone in CKD

Bone remodeling is an ongoing lifelong process. Bone resorption occurs by osteoclasts and 

new bone or osteoid, is formed by osteoblasts. The new bone formed is mineralized to 

become mature bone. This process relies on complex cell signaling pathways to achieve 

coupling between these various processes. Together these processes control replacement of 

bone following micro-fractures that routinely occur with physical activity, thus maintaining 

bone architecture. At any given time, about 10–20% of the skeleton undergoes remodeling 

and a typical remodeling cycle can take up to 3–6 months(4). The mineral and endocrine 

functions disrupted in CKD are critically important in the regulation of bone remodeling. As 

a result, bone abnormalities are found almost universally in patients with CKD requiring 

dialysis and in the majority of patients with CKD Stages 3–5(5–7). The ultimate assessment 

of bone remodeling abnormalities is altered bone strength leading to fractures. Dialysis 

patients in their 40s have a relative risk of hip fracture 80-fold that of age and sex-matched 

controls(8). In patients with stage 4 CKD, the risk of hip fracture was nearly 4-fold that of 

the general population without CKD(9). Therefore identifying imaging techniques and 

biomarkers that can non-invasively identify those at risk for fractures is important both from 

a research perspective as well as for patient care.

Bone Strength and Fractures in CKD

Fracture risk is determined by bone strength, or the ability of a bone to resist breakage. Both 

cortical and trabecular bone are important for bone strength - cortical bones resist bending or 

buckling, and trabeculae distribute force in cancellous bone. Bone strength is composed of 

both bone quantity and quality(10). Bone quantity is traditionally measured by bone mineral 

density (BMD) using Dual Energy X-Ray Absorptiometry (DXA), though newer CT based 

measures are now available. Bone quality is determined by bone turnover and mineralization 

(assesed by histomorphometry) as well as microarchitecture such as geometry, connectivity, 

and collagen cross-linking (see Figure 1). Microarchitecture of bone has been predominately 
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evaluated in animal models but recent MRI techniques hold promise in humans. In CKD, 

metabolic abnormalities, altered bone cell differentiation pathways and disturbances in bone 

remodeling likely result in deterioration in bone quality. Thus, it is not surprising that there 

is increased fracture risk in CKD with abnormalities of both bone quantity and quality. 

Table 1 lists bone strength measurement techniques.

Bone histomorphometry

The clinical assessment of bone remodelling is best done with a bone biopsy, usually of 

trabecular bone at the iliac crest. The patient is given a tetracycline derivative approximately 

3 to 4 weeks before the bone biopsy and a different tetracycline derivative 3 to 5 days before 

the biopsy. Tetracycline binds to hydroxyapatite and emits fluorescence, thereby serving as 

a label of the bone to allow assessment of bone change over time, termed dynamic 

assessment.

In 1983, Sherrard and others(11) proposed a classification system for the histomorphometric 

analysis of renal bone disease using parameters of bone turnover, percentage of 

unmineralized bone (osteoid) area as a percent of total bone area and fibrosis to distinguish 

the various forms of renal osteodystrophy. Three groups were named: high turnover disease 

(mild hyperparathyroidism or severe hyperparathyroidism with fibrosis called osteitis 

fibrosa cystica),low turnover bone disease (adynamic bone disease or osteomalacia) and 

mixed uremic osteodystrophy. Aluminum bone disease was diagnosed by special staining 

for aluminum deposits at the mineralization front. The focus on this classification scheme 

was on bone turnover, and at the time, it was felt that PTH was the main regulator of bone 

remodeling and therefore the primary noninvasive biomarker used. The prevalence of these 

various forms of renal osteodystrophy has changed over the years. There has been a decrease 

in osteomalacia and aluminum disease and an increased prevalence of adynamic bone 

disease (37 – 60% of dialysis patients), with a notably stable or slight reduction in the 

proportion of high bone turnover disease at 40 – 50%(12–14). These changes may be the 

result of a change in patient characteristics (more elderly patients and increased prevalence 

of diabetes) and/or treatment modalities. Recently the KDIGO initiative also standardized 

the nomenclature for reporting bone biopsy to reflect the role of turnover and also 

incorporate mineralization and volume (Figure 2)(15). The latter is a reflection of both the 

amount of bone at the onset of kidney disease and the severity and duration of the 

abnormalities with kidney disease. For example, if a patient starts dialysis after severe bone 

loss from post-menopausal or corticosteroid induced bone disease, the bone volume may be 

low even if remodeling is normal. If this same patient develops severe osteitis fibrosa, the 

resulting bone volume will be even lower than another patient with the same magnitude of 

osteitis fibrosa who may have had normal bones when starting dialysis.

Bone histomorphometry findings provide tissue-level evidence of changes in turnover, 

mineralization and volume and thereby some aspects of bone quality. However, bone 

biopsies performed at the iliac crest may not reflect concurrent changes in bone in the 

vertebrae. Also histomorphometry depicts a single point in time and becomes impractical to 

perform repetitively to assess response to treatment. Historically, bone histomorphometry 

has evaluated only the changes in the trabecular bone, although cortical bone thickness and 
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porosity are equally important in determining fracture risk(16, 17). This is especially 

important in CKD since hyperparathyroidism can cause thinning in the cortex(18). 

Simultaneously in the trabeculae, increased remodeling and increased bone volume may be 

observed, although new trabeculae may be irregular and lack connectivity and strength(18). 

There are no prospective studies of different histomorphometric patterns and the risk of 

fracture in CKD. Given the invasiveness of the procedure and limited availability of 

physicians trained to perform and interpret the results, long term prospective studies have 

not been feasible. Despite these problems, bone biopsy gives a true “picture” into the bone 

in CKD patients and remains the gold standard for the diagnosis of renal osteodystrophy, 

one component of CKD-MBD. However, it may not be the best test to study renal 

osteodystrophy progression and response to therapies due to the factors above. Therefore, 

there is an ongoing quest for biomarkers and imaging methods to study renal 

osteodystrophy.

Dual Energy X-Ray Absorptiometry (DXA)

Dual Energy X-Ray Absorptiometry (DXA) measures areal bone mineral density (aBMD) in 

gm/cm2 using minimal radiation and rapid scan times. BMD assessment by DXA has good 

reproducibility (<1–2% coefficient variation) and reliable reference ranges for age, gender, 

and race (19). The World Health Organization defines osteoporosis based on bone density 

2.5 standard deviations below the mean for young white adult women (t-score) (20). In the 

general population, aBMD by DXA is an accepted surrogate end point after prospective 

studies demonstrated an age dependent predictive value of DXA for fractures(21). However, 

studies with some anti-osteoporosis agents such as sodium fluoride showed improved DXA 

yet worsened fractures. Other therapies have a much larger effect on fractures than on 

DXA(22).These findings led to increased appreciation of the importance of bone quality, 

which is not assessed by DXA, and forced the use of fractures as end points for approval of 

new therapeutics for the treatment of osteoporosis.

The KDIGO CKD-MBD guideline recommends DXA to assess fracture risk in patients with 

stage 1 through early stage 3 CKD, as long as biochemical testing does not suggest CKD-

MBD(23). However, in CKD stages 3b–5, the guideline did not recommend DXA due to the 

lack of definitive data demonstrating that DXA predicts fracture in CKD-MBD. DXA 

assessed areal bone mineral density (aBMD) and therefore is only assesses bone mass not 

quality in both CKD and non-CKD patients. DXA does not correlate with bone 

histomorphometry or provide information on bone microarchitecture. It also does not 

provide compartmental assessment (cortical vs. trabecular bone), though using DXA at the 

ultradistal radius for fracture prediction is a valid assessment of cortical bone (the ultradistal 

radius is nearly all cortical bone).

However, multiple studies evaluating patients with CKD have utilized DXA and 

demonstrated use of this assessment technique. Secondary analyses of subjects with eGFR< 

60 showed that BMD was predictive of fractures in intervention trials of bisphosphonates, 

teriparatide, denosumab, and raloxifene(24–26). In 2007, Jamal et al published a meta-

analysis of six studies totaling 683 dialysis subjects that showed that those with fractures 

had significantly lower aBMD at all sites except for the femoral neck. The standardized 
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mean difference between patients with fractures and those without fractures was largest for 

the ultradistal radius : −1.24 (−2 to –0.5)(27). Another cross-sectional study in 144 dialysis 

patients showed that those with fractures had significantly lower aBMD at the distal radius 

than those without fractures (28). More recently, an important study by Yenchek et al. 

analyzed the effect of CKD on fracture risk prediction by DXA in 587 older adults with 

CKD, enrolled in the Health, Aging and Body Composition Study. In this study with median 

follow-up of 11.3 years, prevalent osteoporosis and each SD decrease in BMD at the 

femoral neck was associated with greater than a 2-fold increased risk of fracture in patients 

with CKD compared to those without CKD(29). These data therefore support that DXA can 

predict fracture risk in patients with CKD. Importantly, DXA remains an inexpensive, 

widely available technique that can be easily standardized across sites. Given this reliability, 

DXA is likely a good tool in longitudinal CKD research studies for the serial assessment of 

bone mineral density in response to interventions. Unfortunately, to date, such studies are 

too limited in size and duration.

Quantitative Computerized tomography (QCT) and Peripheral Quantitative 

Computerized Tomography (pQCT)

QCT allows 3D imaging of cross-sections of the central and axial skeleton to provide spatial 

or volumetric bone mineral density (vBMD). It also allows distinction between cortical and 

trabecular compartments. The technique also allows the calculation of biomechanical 

parameters such as the ability of a bone to resist bending or torsion, which affect fracture 

risk by using special software. In CKD, QCT measures of trabecular bone density at the 

spine have been correlated with trabecular bone volume histomorphometry(30). A single 

study of 72 dialysis patients showed that prevalent vertebral fractures were best predicted by 

L1-L3 cortical BMD and that every 1 mg increase of bone mineral content in cortical bone; 

about 1 mg was associated with 4% decrease of fracture risk(31).

Peripheral QCTs (pQCTs) avoid the large dose of ionizing radiation exposure for patients by 

focusing on the tibia and distal radius. A cross-sectional study in 52 hemodialysis patients 

showed that decreases in distal radial cortical vBMD, cortical area, cortical thickness as well 

as decreases in torsional strength and bending strength were all significantly associated with 

odds of a fracture(32). Although this is a single study, these results are in line with expected 

associations between loss of bone quality and fracture risk in dialysis patients. Currently, 

pQCTs are not available for clinical purposes but show promise as predictors of fracture risk 

if similar results are shown in future larger prospective studies.

High Resolution Peripheral computerized Tomography (HRpQCT)

The resolution of QCTs (0.5 mm) is not sufficient for detection of trabecular architecture 

disruption. However, the resolution of HRpQCT is 100 µm which allows evaluation of 

trabecular microarchitecture (bone volume fraction, trabecular thickness, separation and 

number) in addition to the parameters measured by QCTs and pQCTs as detailed above. 

HR-pQCTof the radius and tibia was used to discriminate those with and without fractures 

in a cross-sectional study of 74 stage 5D CKD patients (with 30 prevalent fractures) and 40 

controls without kidney disease or fractures(32, 33). All HR-pQCT parameters were found 
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to differ significantly between patients with and without a history of fracture at the tibia 

except trabecular thickness. In contrast, at the radius, only trabecular number and trabecular 

thickness was significantly different in those with fractures and those without fractures(33, 

34). This is surprising since trabecular vBMD was not associated with fractures in the pQCT 

study described above(32, 34).

In a HR-pQCT study in CKD stages 2–5, there was a difference in parameters in patients 

with and without a history of fractures(35). However, the power of the various HRpQCT 

parameters to individually discriminate between those with and without fractures by ROC 

(receiver operating curve) analyses was <0.75. When considering patients with the longest 

duration of CKD, the AUC improved to >0.8 for multiple parameters including radial 

cortical thickness, radial total vBMD and cortical vBMD. Interestingly, aBMD by DXA of 

the ultradistal radius performed similarly in its ability to discriminate prevalent fractures in 

this sub-population with the longest duration of kidney disease(35). In another study the 

discriminatory capacity of DXA was compared to HRpQCT in 211 patients with CKD 3–5, 

of whom 74 had fractures by X-ray or self-report. The greatest area under the ROC curve 

was obtained for aBMD by DXA at the ultradistal radius (AUC: 0.80; 95% confidence 

interval 0.74 to 0.87) even when compared to HRpQCT measures. The addition of vBMD 

and cortical thickness to aBMD at the ultradistal radius did not improve discrimination 

significantly(36). Therefore, high resolution computerized tomography techniques do 

provide assessment of bone architecture but their use at this time is limited to research 

centers and their additive value over available biomarkers and methods has not yet been 

proven.

Finite-element analysis (FEA) has been used to reconstruct HRpQCT images to study large 

regions of trabecular bone. This method allows for testing local stress and strain 

distributions in the trabeculae, as well as calculations of the percentage of the total load that 

is carried by trabecular bone(37). Recently, Trombetti et al. compared FEA for failure 

loading and stiffness in 33 hemodialysis patients and age and gender matched controls using 

HR-pQCTs. This population of women dialysis patients had lower radial cortical porosity 

and more disturbances of trabecular microarchitecture compared to controls. Consistent with 

this, both stiffness and predicted failure load in the distal radius and tibia were lower in 

women with ESRD, but not in men, compared with age-matched controls(38). The number 

of post-menopausal women was the same in both study groups, excluding menopausal state 

as the cause for this observed difference.

High-resolution MRI (HR-MRI) allows 3D imaging of the bone geometry and trabecular 

microarchitecture at peripheral sites. A critical benefit of this technique is its ability to 

generate information without ionizing radiation. HR-MRI imaging was used to analyze the 

trabecular bone structure of the calcaneus to compare this technique with bone mineral 

density (a BMD) by DXA in predicting therapy-induced bone loss and prevalent fractures. 

The study was done in 48 patients before and 12 patients after kidney transplantation 

respectively and 20 controls.. The strongest discriminators between patients with and 

without fractures were trabecular parameters, even after adjustment for age and BMD. Using 

receiver operating characteristic analysis the highest diagnostic performance was found for a 

combination of BMD and architecture measures AUC=0.85(39).
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Micro-MRI is a technique that can be used to study bone architecture with excellent spatial 

resolution almost similar to an actual bone biopsy. Trabecular orientation and structure are 

clearly elucidated (40). A study of 17 hemodialysis patients with secondary 

hyperparathyroidism showed disruptions of the distal tibial trabecular network as compared 

to controls (40). There are no studies comparing this technique to other imaging methods in 

the ability to predict fractures in CKD.

Experimental technologies have been utilized in animal studies but are not yet utilized in 

humans. These include microCT which has very high spatial resolution and can assess many 

components of bone architecture(41). To measure the degree of mineralization, techniques 

such as quantitative back-scattered electron imaging and spectroscopy are used(42). 

Collagen morphology can be assessed by atomic force microscopy (43). Raman and Fourier 

transform infrared spectroscopy are used to study collagen cross linking and other features 

of the matrix(44). These techniques allow for more detailed examination of parameters of 

bone quality.

In summary, there are multiple newer imaging techniques that are available for non-invasive 

assessment of bone, especially in the research setting. DXA is the only imaging modality 

that is widely available for clinical purposes and the only modality standardized enough to 

be used as end points in clinical trials. Many of the other techniques have been studied only 

in cross-sectional studies in small populations of CKD patients. Prospective data to validate 

the ability of each method in predicting fracture risk in CKD is lacking, but will hopefully 

be a focus of future research and funding.

Blood Bone Biomarkers

An ideal biomarker for renal osteodystrophy should be able to detect the loss of bone quality 

and/or quantity early in CKD and/or predict future fractures. An ideal biomarker should be 

easily and reliably measured in a noninvasive or minimally invasive manner and be 

inexpensive to measure with low variability based on circadian rhythm. Further, an ideal 

biomarker should also be one that can be monitored serially in response to treatment and 

demonstrate predictive ability to discriminate between those with and without disease. 

Additionally in the CKD population, an ideal biomarker should not accumulate with GFR 

loss and should not be cleared with hemodialysis.

Bone is a “dynamic” organ with 10–20% constantly in a state of remodeling. The control of 

bone remodelling is highly complex but appears to occur in very distinct phases (1) 

osteoblast activation, (2) osteoclast recruitment and resorption, (3) preosteoblast migration 

and differentiation, (4) osteoblast deposition of matrix (osteoid or unmineralized bone), (5) 

mineralization, and (6) quiescent stage (4)(36) Each step of this chain is coupled to the 

subsequent one by signalling mechanisms. One of these is the osteoprotegerin (OPG) and 

receptor activator of nuclear-factor κB (RANK) system that explains the coupling of 

osteoblasts and osteoclasts. This control system is regulated by nearly every cytokine and 

hormone thought important in bone remodelling, including PTH, calcitriol, estrogen, 

glucocorticoids, interleukins, prostaglandins, and members of the TGF-β superfamily of 

cytokines (45). The role of uremia in regulation or dysregulation of this system is not 
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completely understood. Given the bone milieu is so complex, it is unreasonable to expect 

that a single biomarker at a single point in time could portray all these changes, even in the 

absence of kidney disease. It is therefore not surprising that multiple biomarkers have been 

developed and can be broadly classified into markers of turnover, markers of bone formation 

and markers of bone resorption.

Biomarkers used in Clinical Practice for the care of Kidney Patients

Parathyroid hormone (PTH) and total bone specific alkaline phosphatase (b-alp) are 

biomarkers that may reflect bone turnover and bone formation and are currently used in 

clinical practice despite some assay limitations (Table 2). Extremes of PTH generally signify 

extremes of bone turnover; the KDIGO guideline suggests “maintaining intact PTH levels in 

the range of approximately two to nine times the upper normal limit for the assay in stage 5 

CKD” in order to reflect these extremes where the predictive value of PTH is high(23). 

Unfortunately, the ability of PTH values to predict underlying bone histology is less 

discriminatory when within the 2–9 times normal level. B-alp or total alkaline phosphatase 

do not appear to have significantly higher positive predictive value as compared to PTH for 

underlying bone histology per a recent large analysis(46). Total alkaline phosphatase is not 

as specific as b-alp. Vitamin D (25(OH)vitamin D) is also routinely measured to detect 

vitamin D insufficiency/deficiency. Low levels are associated with osteomalacia and hip 

fractures, presumably due to mineralization defects. However, the data is less robust in CKD 

and the subject of many recent reviews and a recent Institute of Medicine report and thus 

will not be covered further(28, 47–49).

Bone Turnover Markers (table 3)

Many bone turnover markers have been studied in the osteoporosis population for fracture 

prediction and to evaluate response to therapy. These bone turnover markers are released 

into circulation during skeletal metabolic activity and can be measured in the serum, if they 

are secreted into the extracellular space or in the urine when excreted in the urine.

Collagen based biomarkers—Osteoblasts secrete C- and N-terminal cleavage products 

of type 1 procollagen called Procollagen type 1N propeptide (s-P1NP) and Procollagen type 

1C propeptide (s-P1CP), which are markers for bone formation. During bone formation 

pyridinoline cross-links bind collagen molecules together. Thus, serum carboxy-terminal 

cross-linking telopeptide of type 1 collagen (s-CTX) and serum amino-terminal cross-

linking telopeptide of type 1 collagen (s-NTX) cross-linking telopeptide of bone collagen 

are measured as fragments of cross-links that are released when bone is resorbed. Among 

the serum biomarkers listed in table 3, many are also dependent on renal excretion. For 

example, osteocalcin is produced by osteoblasts during bone formation and is excreted by 

the kidney and its levels correlate with eGFR. The International Osteoporosis Foundation 

recommends that levels of s-PINP and s-CTX be used as reference standards for bone 

formation and bone resorption respectively in observational and interventional studies in the 

general population. However, each biomarker needs to be re-evaluated and studied 

prospectively in CKD and ESRD population, keeping its renal elimination and circulating 

fragments in consideration.
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Procollagen type 1N propeptide (s-PINP) is an indicator of the synthesis of Type 1 collagen, 

which is a crucial step in bone formation. The most useful assay in patients with CKD 

appears to be one that measures only the intact s-PINP(50). Assays of total s-PINP, used in 

the general population recognize a smaller circulating procollagen 1 antigen in CKD, 

making them difficult to interpret in this population(50). S-PINP has little diurnal variation. 

S-PINP levels may be also useful in ESRD, where their concentrations show no significant 

changes during a dialysis session (as compared to other bone turnover markers such as s-

CTX levels that can change as much as 30% during a single hemodialysis session)(51). 

Therefore, S-PINP is a potential biomarker that could be measured in future observational 

and interventional studies in CKD-MBD; such studies will help us classify its role in 

prediction of bone loss in CKD conclusively.

Tartrate Resistant Acid Phosphatase 5b (TRAP5b)—TRAP5b is released by 

osteoclasts during bone resorption. TRAP5b activity is measured by an immunocapture 

enzymatic assay with an inter-assay CV of 2·95%, an intra-assay CV of 2·15%, and is not 

influenced by TRAP5a activity(52). In a study of 98 CKD 3–5 patients, eGFR was not an 

independent predictor of TRAP5b(53). In contrast, in a study of 19 hemodialysis patients, 

TRAP5b insignificantly increased by 4.8 ± 2.4% as a result of a single hemodialysis 

session(54). There was a significant diurnal variation as well as differences with food intake 

in TRAP5b, however it was much less significant that other markers of resorption, such as s-

CTX, at least in patients with normal kidney function(54). Overall, TRAP5b promises to be 

a valid marker of resorptive activity in CKD and ESRD, however studies correlating it with 

bone histomorphometry findings as well as prospective prediction of fractures are lacking.

Studies of biomarker prediction for bone histomorphometry or fractures in 
CKD—In 2009, The KDIGO guideline summarized the role of these collagen based 

biomarkers in predicting histomorphometry, fractures and bone mineral density based on 

studies published through 2007. Based on those studies the guideline had a weak (2C level) 

recommendation to not routinely measure bone-derived turnover markers of collagen 

synthesis (s-P1CP, s-P1NP) and breakdown (s-CTX, s-NTX). Since 2007, there are very few 

additional studies that examine correlations of these collagen based biomarkers with bone 

histomorphometry and no studies of their role in predicting fractures in CKD. However, 

there may be a potential role for combination of biomarkers with imaging for fracture 

prediction. A recent study illustrated this in 82 patients with CKD 3–5, 23 of whom had 

prevalent fractures, the highest tertile of formation (s-P1NP) and resorption (Trap-5b) 

markers were independently and positively associated with prevalent fracture(55). Further, 

when the highest tertile level of s-P1NP or Trap5b was combined with the T score at the 

femoral neck by DXA, it improved the discrimination of those with prior fracture over the 

T-score alone(55). This indicates an important future role for combining markers of bone 

resorption and formation and imaging in fracture prediction in clinical practice. Prospective 

studies in this field are needed. Most studies that attempt to correlate all these biomarkers to 

bone biopsy findings and fractures are of small sample size and it is important to remember 

that the correlations noted may be specific to only the race or ethnicity of patients studied. 

As we unravel the pathophysiology and regulatory mechanisms of bone remodeling 

additional biomarkers may prove valuable.
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Biomarkers of Bone Currently used in Research Applications—Fibroblast 

Growth Factor 23 (FGF23) is produced by osteocytes and is elevated in patients on 

dialysis(56). Plasma FGF-23 levels are inversely correlated with both static and dynamic 

indices of osteoid mineralization in CKD5D(57). Thus, FGF23 may be a marker of bone 

mineralization, but more studies are needed to confirm this. Levels of FGF23 are 100 to 

10000 fold higher in dialysis patients compared to healthy individuals(47). Given that 

FGF23 levels appear to be uniformly very high in dialysis patients, studies will need to 

demonstrate the clinical relevance of changes in FGF23 prior to widespread use as a 

biomarker in this last stage kidney population. Thus, FGF23 may be more useful in earlier 

stages of CKD or as a marker of cardiovascular disease or mortality(58, 59). Another 

biomarker of recent interest is sclerostin, the product of the SOST gene that is produced by 

osteocytes and is an inhibitor of the Wnt signaling pathway that leads to decreased bone 

formation(60). Its levels significantly decrease to increase with decreasing kidney function, 

even when adjusted for age(61). In a study of 60 dialysis patients, sclerostin was superior to 

PTH for positive prediction but PTH was superior for negative prediction of high turnover 

bone disease(62). In another study, sclerostin levels correlated with bone mineral density 

and abnormal microarchitecture assessed by pqCT(63). These promising data will need to be 

confirmed in additional prospective studies. There is no prospective data using serum 

FGF23 or sclerostin in fracture prediction published to date.

Conclusions

Fracture rates in CKD are high due to underlying abnormalities in bone quantity and quality. 

Bone histomorphometry evaluation is the gold standard for diagnosis of ROD. However, 

performing biopsies routinely is not practical; therefore the search for non-invasive methods 

to study bone and predict fractures is critical. The complex signaling mechanisms for bone 

remodeling are altered in CKD and a single biomarker may not be able to predict bone 

histology or fractures accurately. Imaging modalities have also become very important, but 

at this time the only clinically used imaging technique is the aBMD by DXA. Importantly, 

when performed at the ultra-distal radius DXA seems to correlate with fracture risk, though 

prospective studies are required. In patients with earlier stages of CKD, a recent study 

demonstrated other sites have at least an equivalent predictive role for fractures as in the 

general population.(29) DXA, however, does not inform us of bone quality. Newer imaging 

techniques to study bone quality are being developed and tested but are not yet standardized 

across sites. Ultimately, the approach may be a combination of multiple imaging techniques 

and biomarkers that are specific to each gender and race in CKD to predict fracture risk. 

More research is needed to evaluate these noninvasive approaches longitudinally in order to 

determine their use in predicting fractures – the bone abnormality of greatest concern.
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Figure 1. Determinants of Bone Strength
Legend: Bone strength is comprised of both bone density and quality. Bone quality refers to 

bone turnover, microarchitecture, micro-fractures, mineralization as well as the composition 

of mineral matrix. Trabecular microarchitecture includes trabecular thickness, the ratio of 

plates and rods, their connectivity and spacing. Cortical microarchitecture includes cortical 

thickness, porosity and bone size. Composition of mineral matrix includes changes in the 

cross-linking of type 1 collagen and alterations in the size and structure of bone mineral. 
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Bones accumulate microfractures over time even with normal physical activity. The ability 

to repair these affects bone quality.
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Figure 2. 
The figure is a graphical example of how the TMV system provides more information than 

the present, commonly used classification scheme. Each axis represents one of the 

descriptors in the TMV classification: turnover (from low to high), mineralization (from 

normal to abnormal), and bone volume (from low to high). Individual patient parameters 

could be plotted on the graph, or means and ranges of grouped data could be shown. For 

example, many patients with renal osteodystrophy cluster in areas shown by the bars. The 

red bar (OM, osteomalacia) is currently described as low-turnover bone with abnormal 

mineralization. The bone volume may be low to medium, depending on the severity and 

duration of the process and other factors that affect bone. The green bar (AD, adynamic 

bone disease) is currently described as low-turnover bone with normal mineralization, and 

the bone volume in this example is at the lower end of the spectrum, but other patients with 

normal mineralization and low turnover will have normal bone volume. The yellow bar 
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(mild HPT, mild hyperparathyroid-related bone disease) and purple bar (OF, osteitis fibrosa 

or advanced hyperparathyroid-related bone disease) are currently used distinct categories, 

but in actuality represent a range of abnormalities along a continuum of medium to high 

turnover, and any bone volume depending on the duration of the disease process. Finally, the 

blue bar (MUO, mixed uremic osteodystrophy) is variably defined internationally. In the 

present graph, it is depicted as high-turnover, normal bone volume, with abnormal 

mineralization. In summary, the TMV classification system more precisely describes the 

range of pathologic abnormalities that can occur in patients with CKD.

From Moe S, Drueke T, Cunningham J, et al. Definition, evaluation, and classification of 

renal osteodystrophy: A position statement from Kidney Disease: Improving Global 

Outcomes (KDIGO). Kidney Int 2006; 69(11):1945–53.
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Table 1

Techniques to Measure Bone Parameters

Bone measure Technique

Total Bone Density DXA

Cortical and Trabecular bone
Density

QCT, pQCT

Bone Turnover Biomarkers (PTH, b-alp, Sclerostin)
Histomorphometry

Microarchitecture HRpQCT, HRMRI, histomorphometry, microCT,
microMRI

Matrix composition Infrared spectroscopy, Raman spectroscopy

Microfractures Confocal microscopy, histology

Mineralization Histomorphometry, spectroscopic techniques
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Table 2

Bone Biomarkers used in Clinical Practice

Biomarker Sample collection and Assay Predictor of
histomorphometry

Predictor of Fractures

PTH • Multiple assays and poor 
standardization between the 
various assays.

• High diurnal variation.

• Levels vary with 
temperature of plasma 
specimen.

• PTH assays detects variable 
amounts of circulating C 
terminal fragments. Some 
fragments are potentially 
biologically active.

• Co-efficient of variation 
within subject in 
hemodialysis patientsis 
25.6%(64)

• PTH levels higher with 
increased bone turnover 
than those with adynamic 
bone disease in CKD 3–5 
(65)as well as CKD 
5D(66).* No consistent 
relationship between 
PTH and bone formation 
rates or bone volume(67)

• Racial differences(68)

• Inconsistent results for risk 
stratification between high 
or low PTH and 
fractures(69–71)

• Decreased fracture risk after 
parathyroidectomy(7 2)

Bone Specific
Alkaline
Phosphatase
b-alp)

• Co-efficient of variation 
within subject in 
hemodialysis patients is 
12.5%(73)

• Assay not widely available 
clinically

• Cross reactivity of assay 
with the liver-derived 
alkaline phosphate fraction

• b-alp levels are higher 
with higher bone 
turnover in CKD 5D(23, 
74)*

• No relationship of b-alp 
with bone volume (23, 
75)

• No prospective data on b-
alp and risk of fractures in 
CKD

• Higher risk of fractures in 
CKD 5D with high total 
alkaline phosphatase levels 
(76).

*
PTH measured by the intact assay (Elecsys PTH 91–84) assay, Roche Diagnostics corporation, Indianapolis, IN, USA) was equally predictive to 

bone-specific alkaline phosphatase (BAP) of underlying bone turnover with a sensitivity of 0.58 vs 0.403, a positive predictive value of 0.373 vs 
0.287, and a negative predictive value of 0.903 vs 0.877 (PTH vs BAP, respectively) for the detection of increased bone formation rates. The two 
together did not improve sensitivity or specificity (46).
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Table 3

Serum Bone Turnover Markers

Serum Markers of Bone
Resorption

Levels dependent
on eGFR (cleared
renally)?

Serum amino-terminal cross-
linking telopeptide of type 1
collagen (s-NTX)

Yes

Serum carboxy-terminal
cross-linking telopeptide of
type 1 collagen (s-CTX)

Yes

Carboxy-terminal cross
linking telopeptide of type 1
collagen (s-ICTP or CTX-MMP)

Yes

Serum tartarate-resistant acid
phosphatase (TRAP5b)

No

Serum Markers of Bone
Formation

Serum osteocalcin Yes

Serum alkaline phosphatase No

Bone specific alkaline
phosphatase

No

Procollagen type 1C
propeptide (s-PICP)

Yes

Procollagen type 1N
propeptide (s-PINP)

No
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