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Abstract

We consider the problem of sample size determination for count data. Such data arise naturally in 

the context of multi-center (or cluster) randomized clinical trials, where patients are nested within 

research centers. We consider cluster-specific and population-average estimators (maximum 

likelihood based on generalized mixed-effects regression and generalized estimating equations 

respectively) for subject-level and cluster-level randomized designs respectively. We provide 

simple expressions for calculating number of clusters when comparing event rates of two groups 

in cross-sectional studies. The expressions we derive have closed form solutions and are based on 

either between-cluster variation or inter-cluster correlation for cross-sectional studies. We provide 

both theoretical and numerical comparisons of our methods with other existing methods. We 

specifically show that the performance of the proposed method is better for subject-level 

randomized designs, whereas the comparative performance depends on the rate ratio for the 

cluster-level randomized designs. We also provide a versatile method for longitudinal studies. 

Results are illustrated by three real data examples.
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1. Introduction

Randomized clinical trials involving multiple centers are used extensively in large-scale 

studies to evaluate effects of medical interventions on health outcomes. These studies 

involve both cross-sectional and longitudinal designs. Most studies that are submitted to the 

Food and Drug Administration involve clinical trials of a drug relative to an appropriate 

placebo control in multiple centers. In such studies, the convention is to randomly assign 

experimental conditions to subjects nested within centers or sites. This kind of 

randomization is termed as subject-level randomization and the studies are called multi-

center studies. Hence in multi-center studies each center receives both treatment and control 

regimen. In many cases, subject-level randomization is not practical and randomization is 

implemented at the center (schools, hospitals, counties etc.) level, i.e. all subjects belonging 

to a center receive the same intervention (e.g. drug or placebo). This randomization scheme 

is called the cluster-level randomization and the studies are called cluster randomized 

studies. Merits of both randomization scheme are discussed extensively in [1].
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The clustered count (e.g. number of infections, exacerbations, hospital visits etc.,) data are 

generally analyzed by using Cluster-Specific (CS) or Population-Averaged (PA) Poisson 

regression models [2]. The choice of analysis method depends on whether the covariate of 

interest varies within or between the clusters [3]. If the primary focus is on the cluster 

specific responses, then CS models also known as mixed models are preferred. Some form 

of the Maximum Likelihood (ML) method is frequently used to estimate the parameters [4]. 

On the other hand, the generalized estimating equation (GEE) approach is commonly used 

to estimate the parameters in PA models. Although, for log linear models, the estimated 

treatment effect has been shown to be unbiased even when clustering (due to omitted 

covariates) is not accounted in the analyses [2, 5], the precision of the estimates do depend 

on the analyses. Therefore, a sample size calculation which ignores clustering risks yielding 

biased estimate of required sample size.

Observations within each cluster are usually positively correlated. An appropriate sample 

size determination method for such data must consider the dependencies among cluster 

members [6]. Sample size determination methods for clustered data are well developed for 

linear models [7],[8]. In recent years, focus has shifted towards non-linear models. Several 

authors have proposed complex iterative solutions for longitudinal designs in the generic 

framework of population averaged models using GEE approach [9], [10], [11]. On the other 

hand, a methodology for cluster specific models using mixed-effects models (MM) has been 

developed specifically for a repeated-count measurements [12]. These methods are based on 

the first order Taylor series approximation of the non-linear functions.

Sample size formula for cross-sectional designs can be derived either from methods 

developed for longitudinal studies or can be derived independently. Simple independently 

derived expressions of sample size for cluster randomized studies for a two group 

comparison of various non-Gaussian data are found in [13],[14]. Their expressions are based 

on the coefficient of variation (CV) which is not as commonly reported as intraclass 

correlation (ICC) in the literature. Thus, simple expression to calculate sample size which 

directly utilizes ICC is necessary. On the other hand, for multi-center studies independently 

derived formula for count data are not commonly available. Although longitudinal methods 

can be simplified to obtain expression for cross-sectional design, the expression so derived 

are based on the approximation. We independently derive an alternative expression utilizing 

properties of a Poisson distribution that provides significant improvement over the 

approximated methods.

In cross-sectional studies the parameter of interest is the regression coefficient 

corresponding to the treatment group indicator. Whereas, in longitudinal studies, the interest 

is on the time by treatment interaction. The notion of sample size determination arises in 

testing of these corresponding parameters. In this paper we (i) provide an exact sample size 

expression for multi-center cross-sectional studies and show that it provides better estimate 

compared to the expression derived from the longitudinal method, (ii) provide simple 

sample size expressions based on the ICC for cluster randomized cross-sectional studies and 

derive conditions in which it is favorable compared to the alternative, and (iii) provide a 

very flexible sample size expression for longitudinal designs which accommodates 
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differential allocation of subjects across groups along with differential attrition rates over the 

follow up time points.

The rest of the paper is organized as follows. In Section 2, we provide a generic expression 

of sample size formula for a two group comparison. In section 3, we consider both multi-

center and cluster randomized cross-sectional designs; and derive expressions for calculating 

the required number of centers/clusters in each design. In section 4, we consider longitudinal 

studies. In Section 5, we illustrate our results with three real data examples. The article is 

concluded with a discussion in section 6. All derivations are presented in the Appendix in 

Section 7.

2. General sample size determination

Let β be a model parameter related to the treatment effect. In this section we provide a 

generic expression to determine the required number of clusters N for testing the null 

hypothesis H0 : β ≤ 0 against the alternative hypothesis H1 : β = , at a significance 

level α in order to achieve at least (1 – η)100% power. Let  be a consistent estimator of β. 

Let zα denote the (1 – α)th percentile point of a standard normal distribution. We denote the 

variance of  under the null and alternative hypotheses by  and  respectively, thus 

 and . Let . We propose z as a test statistic 

for H0. Note that z follows a standard normal distribution asymptotically. Our decision rule 

is to reject H0 if  > c. The threshold value c is determined under the following two 

conditions.

(1)

(2)

Solving (1) and (2) we obtain

which gives

(3)
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The expression in the right side of (3) provides the lower bound for the number of clusters 

required to achieve at least (1 – η)100% power. For two-sided hypothesis, zα is replaced by 

zα/2 in equation (3). One may also choose to compute variances of  based entirely on 

alternative hypothesis value of β. In that case ϕ(0) is replace by ϕ( ) in equation (3).

3. Cross-sectional studies

3.1. Subject-randomized/Multi-center Designs

In this section we discuss cross-sectional subject-level randomized designs and provide 

formulae for determining number of clusters using the MM method. Multi-center 

randomized clinical trials with subject-level randomization are often used in medical 

research. It is the most frequently used design for evaluating the efficacy and safety of a 

therapy allowing for between-site variation. In such trials, participants are recruited from 

multiple centers (N), and within each center n/2 subjects are randomly assigned to treatment 

and n/2 subjects are randomly assigned to control conditions. Let yij be the count of events 

for the jth subject in the ith center with an associated 1 × 2 covariate vector zij = (1, xij) with 

corresponding coefficients γ = (β0, β1). The xij is 1 for a subject assigned to treatment 

condition and it is 0 for a subject assigned to the control condition. Hence, the structure of 

the design matrix for the ith cluster is as follows:

(4)

where 1k is a vector of 1’s of dimension k. We assume n is an even number. Here, we have 

assumed equal cluster sizes for convenience. Towards the end of this subsection, we discuss 

an alternative when number of subjects are different across the clusters.

Whittemore provided an approximate closed-form solution for sample size determination for 

the fixed-effecs multiple logistic regression model [15]. He assumed a distribution on 

covariates and utilized its moment generating function to obtain a closed-form estimate of 

the asymptotic covariance matrix of the maximum likelihood estimate. The approximation is 

valid when a probability of response is small. Signorini applied a similar approach to obtain 

the exact solution for the sample size required for a fixed-effect Poisson regression model 

[16]. However, for clustered count data, fixed-effect Poisson regression based estimates are 

inefficient. We extend this approach from fixed-effect to the mixed-effect Poisson 

regression models.

For mixed-models, a cluster-specific intercept u is assumed to be randomly distributed with 

a probability distribution. A normal distribution with mean 0 and variance σ2 is a common 

choice for the distribution of u. We denote this normal density function by g(u). Then the 

mixed-effects Poisson regression model incorporating the correlation of subjects(j) nested 

within the same center (i) is specified as follows:
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(5)

Under the normal distribution assumption of ui, λij follows a log-normal distribution with 

the following mean and variance.

(6)

and

(7)

where σ2 is the inter-cluster variance parameter on the log-lambda scale and (e2β0+2β1xij+σ2)

(eσ2 – 1) is the corresponding inter-cluster variance on the original scale. In model (5), β0 

and β1 are fixed parameters. β0 and β0 + β1 represent event rates in control and treatment 

groups respectively on the logarithmic scale. The correlation of the subjects nested within 

the same cluster is accounted for by the presence of the cluster effect ui. We assume that x ~ 

Bernoulli(1, p) and denote it by fx(xij). The parameter p determines the proportion of 

subjects allocated to each treatment groups within a cluster. The likelihood function for the 

joint distribution of Y, x and u is

A vector of maximum likelihood estimators of regression parameters converges 

asymptotically to a multivariate normal distribution with mean vector (β0, β1)’ and 

covariance matrix , where  is the Fisher Information matrix which 

has the following expression.

(8)

The variance of  is given by the second diagonal element of . Thus

(9)
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The details of the derivation of  are provided in Appendix 7.1. We calculate the 

required number of clusters by substituting the expression of  from (9) into the sample 

size formula in (3). Hence the expression of the proposed number of clusters (Np) is:

(10)

The Fisher Information matrix in (8) is exponentially proportional to σ2. The term e(β0+σ2/2) 

in the Fisher Information matrix comes from the mean of a log-normal distribution (see 

equation (6)). The addition of σ2/2 to β0 implies the inflation of the background incidence 

rate. It is well known in epidemiological studies when the disease is prevalent, smaller 

sample sizes are sufficient to detect the treatment effect. The expression in (10) implies that 

the background incidence rate effectively increases with larger values of σ2 and as a result, 

we need less number of clusters. For linear models, Roy et al. [17], and Heo and Leon [18] 

observed that determination of sample size does not depend on the inter-cluster variance 

parameter when randomization is performed at the subject level. On the contrary, for the 

current model, the variance parameter plays an important role in sample size determination 

due to the lognormal nature of the distribution which brings the variance parameter to the 

regression parameters to determine the mean efficacy.

It is not always practical to assume that the number of subjects n across all the clusters are 

the same. However, certain minimal information on the cluster sizes must be available to 

calculate N. In practice, investigators can usually make informative assumption about 

number of subjects expected in the largest ( ) and the smallest ( ) cluster. We may impose 

uniform( , ) distribution on n and replace it with  in equation (8). With such 

assumption, equation (10) is modified as follows:

(11)

To study the impact of unequal cluster size, let . Further, letting , it is easy to 

show that NpM is larger than Np by a factor of . For example, if the largest cluster is 4 

times larger than the smallest cluster, i.e. a = 4, then NpM is 1.6 time larger than Np. That is, 

a consequence of specified discrepancy in cluster sizes is an increase in required number of 

clusters by 60% to achieve the same power.

3.2. Comparision with corrected Ogungbenro and Aarons method

Ogungbenro and Aarons developed a sample size calculation method for repeated measures 

based on an approximate inference in the generalized linear mixed models [12],[19]. When 
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this method is applied to cross-sectional designs, we obtain following variance expression 

for  (see Appendix).

(12)

Using the general expression of N in (3), number of clusters required by the Ogungbenro 

and Aarons’ method (NOA) is as follows.

(13)

Now, we analytically prove that NOA > NP for all possible combinations of σ2, β0, and . Let 

us assume the balanced sample sizes, i.e. p = 0.5 in Np, A = 1 +  and B = e−β0.

(14)

It is easy to show that , and 

. Also for α = 0.05, and η = 0.20 both zα and zη are 

positive. Hence (14) holds and thus NOA > Np, i.e., the exact method we derived requires 

less clusters compared to the Ogungbenro and Arrons approximated method. In the 

following section, for some parametric combinations, we numerically show how our method 

performs better than the method proposed by Ogunbenro and Aarons.

3.3. Simulation Study for Subject-Level Randomization

We conduct a limited simulation study to investigate the performance of our method 

proposed for clustered count data in the previous section. For simplicity we consider a 

balanced design with n subjects nested within each of N clusters. The observed event count 

yij for an individual j (= 1⋯n) in cluster i (= 1⋯N) is assumed to follow a Poisson 

distribution with rate λij along with xij = 1 for a treated subject and xij = 0 for a control 

subject. We fix the Type 1 error rate at 5% and determine the number of clusters required to 

achieve 80% power.

We generate data from a Poisson distribution with mean λij. The event rate λij is assumed to 

follow the model in equation (5) i.e. λij|ui = exp (β0 + β1xij + ui), where ui is a cluster-

specific random effect that follows N(0, σ2). We evaluate regression parameters β0 and β1 

for a wide range of values representing different background rates and varying rate ratios 

respectively. To induce a moderate intra-cluster correlation among the subjects nested 
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within the same cluster we set σ2 to 0.5. We generate 10,000 independent simulation runs of 

yij for each combination of parameters.

Tables 1a-1b report the required number of clusters obtained by using formula (10) and (13) 

for various combinations of pre-specified parameters. In addition we compute the 

corresponding power via simulation (provided in the parenthesis). In Table 1a we fix the 

background rate at 0.20 (i.e. β0 = −1.6), between-cluster variance parameter at 0.5, n = 20, 

50, and 200. We compute N for various values of the treatment effect β1. For each value of 

β1, we provide (in parenthesis) the corresponding effect size (i.e. percent increment of the 

incidence rate in the treatment group compared to that in the control group). Results in Table 

1a show that the required number of clusters monotonically decreases with the increasing 

magnitude of the treatment effect.

In Table 1b, the inter-cluster variance parameter is again set at a moderate value of 0.5 and 

the treatment effect is assumed to be 20% higher than that of the control. The background 

rate is varied from 0.20 to 4.9. Table 1b reveals that when the background incidence rate 

(i.e. the rate in control group) becomes more prevalent, we need fewer clusters (N) in order 

to detect the same magnitude of the treatment effect. This table also shows that the OA 

method requires two to four times more clusters compared to the proposed method 

depending on the values of control effect and within center sample sizes.

In addition, Table 1c reveal that for larger inter-cluster variances fewer clusters are required 

to estimate and detect the specified effect size by the proposed method. This counter 

intuitive result is a consequence of inflation of background incidence rate by the inter-cluster 

variance parameter. The simulated power provided in these tables is between 80 and 84 

percent. Similar gain in power allowing a reduction in sample size for the higher inter-

cluster variance have been reported for continuous data [8] and for binary data [10].

3.4. Cluster Randomized Designs

In a cluster-randomized study, research sites are randomly assigned to different intervention 

regimens, and all subjects within a cluster receive the same treatment. The treatment effect 

in these studies is now exclusively a between-center effect, since each center or site has only 

one treatment. Analyses of data from this type of study should invariably involve use of PA 

regression models (center, subject, occasion). A positive intra-class correlation (ICC) 

between outcomes of individuals nested within the same cluster is expected due to the 

differences in characteristics between clusters, the interaction between individuals within the 

same cluster, or to commonalities of the intervention experienced by the entire cluster.

In this section we provide a simple expression of number of clusters in cluster randomized 

cross-sectional studies. The expression we present here is essentially a Rochon’s method 

simplified for a comparison of two groups in cross-sectional cluster randomized design. 

However, in addition to providing an expression that utilizes ICC, the purpose of this section 

is to analytically compare the derived method with the equally compelling alternative 

method and show the conditions when each approach has its advantage over the alternative.
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We assume that there are N clusters and n participants are nested within each cluster. One 

half of the N clusters are randomized to the treatment and the other half are randomized to 

the control. The design matrices are  for the ith cluster assigned to the control 

and  for the i’th cluster assigned to the treatment.

3.4.1. Generalized Estimating Equation—PA models are often used to model 

clustered count data and are analyzed using the GEE approach. The model for the ith cluster 

with n × 1 vector of counts yi, and n × m matrix of covariates is

Then, the estimating equation for N clusters is given by:

(15)

where  and R(ρ) is an assumed 

working correlation matrix of yi. The GEE estimator  is the solution to equation (15). 

Under certain regularity conditions, as the number of clusters N increases,  is consistent 

and asymptotically normally distributed [20]. Hence to , where VG 

= limN→∞VG,N with

(16)

For clustered data, the exchangeable working correlation matrix with elements corr(yij, 

yij’)=ρ is usually used. For the purpose of sample size calculation we assume that this 

working correlation structure is the true one and Cov(yi) = Vi. Then the asymptotic 

covariance matrix of  simplifies to  with 

. Hence,

(17)

We use the expressions of Zic and Zi’t for clusters assigned to control and treatment 

respectively and derive the following expression for Cov( ):
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(18)

Using the expression of Cov( ) in (18) we compute the following asymptotic variance of .

We use the expression of N in (3) and obtain the required number of clusters for the cluster-

level randomization for GEE.

(19)

As mentioned earlier, the expression in (19) is essentially a simplification of Rochon’s 

method for a comparison of two groups in cross-sectional cluster randomized design. This 

result reveals, as for the continuous data, the sample size required for the cluster randomized 

design of count data is a simple multiplication of sample size required for ordinary Poisson 

regression by the design effect. In the following section, we discuss an alternative method 

which we will use as a comparator for our method.

3.4.2. Hayes-Donner method—In this context, Hayes and Bennett [13] compute the 

sample size based on the coefficient of variation (CV). They assume that the ith cluster 

nested within the sth group has an event rate (λi) that follows a normal distribution with 

mean λs and variance σ2. They provide the following expression for the number of clusters 

NHD.

(20)

(21)

where

Amatya et al. Page 10

Stat Med. Author manuscript; available in PMC 2014 October 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The expression in (21) is derived by [14]. The first factor in the equation (21) is the sample 

size required for comparing two group rates when CV=0. They observed that in the presence 

of inter-cluster variation it requires more clusters. The factor denoted by IF is known as the 

inflation factor which is a quadratic function of CV. The CV is not as commonly reported as 

the ICC in cluster randomized studies. Therefore, the expression in (21) needs to be 

modified in order to utilize the ICC to calculate sample size for our comparison. As there is 

no direct relationship between CV and ICC, we use a heuristic approach by equating the 

inflation factor from (21) and (19) to approximate CV from the ICC as follows.

(22)

The number of clusters (NHD) in equation (21) can be expressed in terms of ICC by 

substituting the expression of CV2 in equation (22).

Denote the rate ratio (i.e ) by RR. In Appendix 7.2 we define a function f(RR) using the 

difference of the expressions of NP1 and NHD. In Figure 1, we observe that for RR less than 

1, f(RR) is less than 0, which implies that our method requires less number of clusters 

compared to the Hayes-Donner method when RR < 1. This Figure also shows that Hayes-

Donner method performs better than the proposed method for RR between 1 and 3. We do 

not consider values of RR more than 3 as they are hardly observed in practice.

3.5. Simulation Results for Cluster-Level Randomization

We have conducted a limited simulation study to investigate the performance of our 

proposed methodology for analyzing cluster-randomized count data. For simplicity we again 

consider a balanced design with n subjects nested in each of the N clusters. In this design 

N/2 clusters are randomized to the treatment group and the remaining N/2 clusters are 

randomized to the control group. The observed event count yij for an individual j (= 1⋯n) in 

cluster i (= 1⋯N) is assumed to follow a Poisson distribution with rate λij along with xij = 1 

and xij = 0 for subjects in treated and control clusters respectively.

Figures 2 (a)-(b) show the effect of the ICC on the number of clusters required to obtain a 

power of 80% for testing β1. These figures reveal that for a larger ICC we need significantly 

more clusters. We also notice in these figures that for the same ICC, we require fewer 

clusters when the corresponding cluster sizes (n) are increased. For larger cluster sizes (n > 

55), however, there is a minimal impact of further increment of n on the reduction of N. We 

fix RR < 1 for 2 (a). In this Figure we observe that for .05 ≤ ρ ≤ .55 the proposed method 

requires less number of clusters compared to the Hayes-Donner method for both cluster 

sizes n = 10 (compaaring first two lines from the top) and n = 55 (compaaring first two lines 

from the bottom). Figure 2 (b) depicts the opposite picture when RR > 1. In this Figure we 

see that for very small values of ρ the difference between the number of clusters determined 

by these two method is indistinguishable. However, for larger values of ρ Hayes-Donner 

method performs better. These findings match with our expectation discussed in the 

previous section.
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4. Longitudinal studies

In this Section we consider longitudinal studies and provide a formula for determining 

number of subjects required to achieve a desired power. The derivation closely follows 

Ogungbenro and Arrons approach but with one important correction. Let p proportion of 

total N subjects are randomly assigned to treatment (xis = 1) and the remaining 1 – p 

proportion are randomly assigned to control conditions (xis = 0). Let yist and λist denote 

outcome count variable and the conditional mean, respectively, of the ith subject belonging 

to the sth group at the tth time point. For such a design, we consider the following two-level 

mixed-effects Poisson regression model.

(23)

In (23), β0 + β1g(t) is the fixed linear trend (of a continuous time function g(t)) for the 

control group, and β0 + β2 + (β1 + β3)g(t) is the linear trend for the intervention group on the 

log scale. ν0i + ν1ig(t) is the random linear trend for the ith subject and it takes into account 

of the correlation that exists between multiple observations nested within the same subject. 

We assume that the random-effects follow a bivariate normal distribution given by

(24)

We denote the variance-covariance matrix of the above random-effects by Σν. Here we point 

out that as oppose to unstructured covariance matrix used here, OA uses diagonal matrix 

which limits its use only to the uncorrelated random effects.

The statistical significance of the treatment effect is determined by the significance of group 

by time interaction parameter β3. The function g(t) can be any function of t such as sqrt(t), 

log(t), (t – c)r etc. which allows investigators to model non-linear mean response over time. 

The main interest is in testing the following hypotheses

(25)

Let T be a number of outcome assessment occasions, β be the vector of fixed-effects 

parameters and νi be the vector containing the random-effects parameters for the ith subject, 

i.e., β = [β0, β1, β2, β3] and νi = [ν0i, ν1i] . Further, let mist be a vector consisting of partial 

derivatives of the mean λist with respect to random-effects νi computed at νi = 0, i.e., 

. Let Mis denote the matrix containing the row vectors mist for all 

the time points t = 1, …, T, and Jis denote the Jacobian of the transformation from the mean 

space to the parametric space (see Appendix for details). Hence the dimensions of Mis and 

Jis are T × 2. The first order approximation of the variance-covariance matrix of the pseudo-

observation for the ith subject (see [12] and [19]) can be written as,
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(26)

where

Ogungbenro and Aarons erroneously referred Vis as a covariance matrix of the parameters. 

It actually is the covariance matrix of the linearized dependent variable. The matrix Wis is a 

T × T diagonal matrix containing the conditional variance of the ith subject at each time-

point. The first term on the right hand side of the equation (26) is the variance of random-

effects transformed to the mean space by the Jacobian matrix Mis. Therefore, the 

contribution of the ith subject from the sth group to the Fisher information matrix is

(27)

A critical error in the Ogungbenro and Aarons’ original paper is the use of Vis as oppose to 

 in the current derivation. We do not see theoretical basis for using Vis in equation (27). 

Hence, the corrected approximate Fisher Information matrix based on all the subjects in both 

the groups is,

(28)

Note that I( ) depends on the conditional variance Wis. We can estimate the conditional 

variance when observations are available. However, for sample size determination when 

observations are not provided in advance, we replace the diagonal elements of the 

conditional variance by their respective values evaluated at ν = 0. By doing so, the 

dependence of Wis on ith subscript disappears. In addition, both Mis and Jis do not depend 

on the ith subscript. Hence the overall Fisher information matrix for all subjects can be 

written approximately by dropping the ith subscript,

(29)

where  and p is the proportion of total subjects assigned 

to the treatment group. The 4-th diagonal element  of the inverse of the Fisher 

information matrix I( ) is the estimated variance of . Thus, a number of subjects required 

in each group can now be calculated by using (3) with . Final sample size in the 

treatment group is obtained by multiplying calculated N by the p.

In longitudinal study, large proportion of recruited subjects do not complete the study. The 

anticipated attrition in sample size must be accounted for in sample size calculation to 
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compensate a loss in the effective power of the study. In order to incorporate the attrition 

rates, let us us denote πst as the fraction of subjects nested within the s-th group measured at 

only the first t time points. We denote this vector of fractions by πs = (πs1,⋯, πsT)’ and call 

it the attrition vector. Therefore, (1 – p)Nπ0t is the number of subjects in the control group 

participated up to t-time points and then dropped from the study. Similarly, pNπ1t is the 

number of subjects in the treatment group who would have participated up to t-time points 

and then dropped from the study. Let us also define a matrix Wst containing first t-diagonal 

elements of Ws and the remaining (T – t) diagonal elements as 0s. In addition let Mst be a T 

× 2 matrix consisting of first t rows of Ms and the remaining (T – t) elements as 0s. 

Similarly let Jst be defined as the first t rows of Js and the remaining (T – t) elements as 0s. 

Thus, the contribution of the fraction of subject from t-time point to the information matrix 

for the treatment and the control group are,

(30)

where,

(31)

Therefore, the overall Fisher information matrix for all subjects accommodating for attrition 

vectors can be written as

(32)

Thus the method presented here is versatile as it accommodates differential allocations 

across groups and also differential attritions over follow up time points. This method can 

also be extended for multiple groups and composite hypothesis testing. Performance of this 

approach in the simplest situation is evaluated via simulation in the next section.

4.1. Simulation study

We present results of a small scale simulation study in Table 2. Results are based on data 

generated using the model in equation (23) with varying values of group by time interaction 

parameter β3 and variance component associated with the slope parameter . Other three 

regression coefficients β0, β1 and β2 in the model (23) were fixed at 0.10, 0.25 and 0.20 

respectively. Similarly, remaining two variance components  and σν0ν1 in the covariance 

matrix of random effect distribution (24) were fixed at 0.5 and 0.20 respectively. Two sets 

of simulations were performed, first for three time point (T = 3) follow up and the second for 

five time point (T = 5) follow up. The sample size N is assumed equal across the two 

treatment groups. The sample size N for each group was calculated using expression (3) with 

variance of  obtained from the 4-th diagonal element of the inverse of the Fisher 

information matrix (32). Power for each combination of parameters is a proportion of p-

values associated with  that are less than 0.05 in corresponding 1000 simulations.
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Table 2 shows that a desired 80% power is achieved based on the sample size calculated 

using proposed method. There is a tendency of achieving more power than required, 

especially, at the lower end of the table where sample sizes are small. It is partly due to the 

bigger impact of rounding on the small sample sizes. For example, adding one extra subject 

in a small but adequate sample size, say 8, is much greater than in adequately large sample, 

say 189.

5. Illustration

5.1. Cross-sectional Studies

To illustrate sample size computation in subject-level randomized studies, we consider a 

study of combination therapy for chronic obstructive pulmonary disease. The chronic 

obstructive pulmonary disease (COPD) is a leading cause of morbidity worldwide. It is 

characterized by chronic progressive symptoms, airflow obstruction, and impaired health 

status. The symptoms are worse in those who have frequent, acute episodes of symptom 

exacerbation. A combination of inhaled long-acting β2-agonists and inhaled corticosteroids 

may improve airflow obstruction, control of symptoms, and health status in patients with 

COPD. In order to study a combination therapy, Calverley et al. [21] conducted a 

randomized, double-blind, placebo-controlled, parallel-group trial of combined salmeterol 

and fluticasone in the treatment of COPD. A total of 1465 outpatients patients with COPD 

were recruited from 196 hospitals from 25 countries, which is about 8 patients per hospitals 

in average. They participated in a 2-week run-in to the trial, a 52-week treatment period with 

clinic visits at weeks 0, 2, 4, 8, 16, 24, 32, 40, and 52, and a 2-week post-treatment follow-

up. Every participating center was supplied with a list of patient numbers (assigned to 

patients at their first visit) and a list of treatment numbers. Patients who satisfied the 

eligibility criteria were assigned the next sequential treatment number from the list. The 

occurrence of acute exacerbations was investigated at every clinic visit. At the end of the of 

follow-up period the estimated exacerbation rate was 1.30 (i.e. β0 = 0.26) for patients 

randomized to placebo and 1.0 for patients randomized to the combination therapy, thus RR 

= 0.769 and β1 = −0.26. The authors did not account for the between center variance in the 

exacerbation rate in their analysis. For this illustration we consider following three values of 

between center variances: 0.1, 0.3 and 0.5. Using expressions in (10) for each parameter 

combination, we find that 46, 42 and 38 hospitals are required respectively to detect 

exacerbation risk reduction of 0.769 attributed to the combination therapy while maintaining 

80% power. We also verify via simulation that the computed number of hospitals provide 

about 78% power for the parameter values considered for this example.

To illustrate sample size computation in cluster-level randomized studies, we consider the 

data example presented in [22]. The study evaluated an educational intervention aimed at 

improving the management of lung disease in adults attending South African primary-care 

clinics. Forty clusters were randomized to either intervention or the control arm. In each 

clinic 50 patients were interviewed at baseline and 3 months later. The outcome of interest 

was the number of clinic visits from baseline until follow up. The analysis found β0 = 1.47, 

 = −0.18 and ρ = 0.32. Using these parameter values in equation (19) we calculate number 

of cluster required to maintain 80% power in similar future studies to be 72. With the same 
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values of parameter Hayes-Donner method would require 78 clusters. The result we 

obtained in this example is not surprising as the RR < 1.

5.2. Longitudinal Studies

To illustrate sample size computation in a longitudinal studies, we apply sample size 

calculation formula to one of the examples presented in [19]. This data set is collected from 

a clinical trial of 59 epileptics who were randomized to a new drug (Trt = 1) or a placebo 

(Trt = 0) as an adjuvant to the standard chemotherapy. A multivariate response variable at 

five time points consisted of the counts of seizures at baseline and during the 2-weeks before 

each of four clinic visits. We fit log-linear mixed-effect model in (23) to this data and obtain 

following estimates of the parameters: β0 = 3.34, β1 = 0.20, β2 = −0.43, β3 = −0.14,  = 

0.53, σν0ν1 = −0.03 and  = 0.04. If the same parametric values are expected in future 

studies, 44 subjects will be required in each group based on the propose method to achieve 

80% power.

6. Discussion

Randomized clinical trials are the gold standard for demonstrating efficacy and safety of a 

new intervention. These trials are often conducted in multiple sites. Although the protocols 

are strictly followed, there remains variation among the participating sites. In some cases, 

randomization by subject is not possible and the intervention must be randomly assigned to 

the participating sites. For a trial with event count as an outcome, Poisson regression models 

are routinely used. The number of clusters required in such trials depends on the background 

event rate, inter-cluster variability, cluster size and the expected effect size. We provide 

closed form solutions to determine the required number of clusters for both subject-level and 

cluster-level randomizations. These solutions provide an easy way to compute the number of 

clusters needed to conduct such trials successfully with adequate power to detect the 

hypothesized effect.

The proposed method for cross-sectional studies requires less number of clusters compared 

to Ogungbenro and Aarons method. For cluster-level randomization, a comparison of our 

method with that of Rochon indicates that though the former is a special case, but the 

advantage for considering a cross-sectional design provides us a closed form solution as 

opposed to an iterative solution by Rochon. In addition, we compare our method (thereby 

Rochon’s method) with another simple method proposed by Hayes and Donner. The 

proposed method has a clear edge over the method by Hayes and Donner when the rate ratio 

is less than one.

For cluster-level randomized designs using GEE, the variance of the regression coefficient is 

inflated by a multiplicative factor of (1 – (n – 1)ρ) when it is compared to the variance of 

regression coefficient for an ordinary Poisson regression. The variance of the estimate 

converges to the variance of an ordinary Poisson regression when the intra-cluster 

correlation goes to 0. In subject-level randomization, number of clusters can be substantially 

reduced when cluster sizes (n) are increased. In contrast, for cluster-level randomization, the 

impact of cluster size on the number of clusters is minimal when that number crosses a 
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certain threshold value. For both subject and cluster randomized designs, we need a 

significantly larger number of clusters for rare events.

Our simulation results sometimes produce more power to detect the corresponding effect 

size. This is due to the rounding of the computed sample size to the next integer. This effect 

is more severe for cluster randomized designs as it require two additional clusters in the 

experiment. In light of potential imbalance, model violations and loss of a few clusters, this 

type of overestimation protects against potentially under-powered studies.

For longitudinal designs using mixed-effect models, we presented a corrected version of the 

Ogundbenro and Aarons’ method. The method presented here is versatile in the sense that it 

allows differential group allocations with differential attrition rates. This method can also be 

easily extended for composite hypotheses testings. For GEE approach, an alternative 

procedure is available due to Rochon.
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7. Appendix

7.1. Derivation of Variance of  for Mixed-Effects Poisson Regression 

Models

We assume

(33)

Then assuming x ~ fx(xij) =binomial(1,p), the likelihood function from the joint distribution 

of Y, x and u, will be

The maximum likelihood estimator converges asymptotically in distribution to a 

multivariate normal distribution with mean (β0, β1) and covariance matrix , 

where  is the Fisher information matrix given by
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The covariance matrix of  is

Thus the variance of  is

(34)

7.2. Comparison of Np1 and NHD for Cluster-level Randomized Designs

Let . Hence

Thus,
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7.3. Computation of Mis and Jis

Denote the right hand side of the model (23) the function fist(β, νi) for ith subject from sth 

group at tth time-point. Hence, fist(β, νi) is the linear expression of the ln(λist) at the tth time 

point specific to the ith subject nested within the sth group. Then respective row elements 

for the matrix Mis can be computed by applying the chain rule as follow 

. By noting that, 

 and  we obtain

(35)

Each row of Jis denoted by jist is given as,

(36)

Applying the chain rule again, we obtain . Hence, for each 

group the corresponding row vectors of Jis are given as,

(37)

7.4. Derivation of VOA 

In what follows we assume that for s = 1, x = 0, and for s = 2, x = 1. It means that x is an 

indicator variable that takes value 0 for control group and 1 for the treatment group. In the 

model (5)
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Hence,

(38)

where  and . Hence, the second 

diagonal element of  is

(39)
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Figure 1. 
The plot of the difference between number of centers calculated by the proposed method Np 

and Ogungbenro-Aaron method NOA as a function of Rate Ratio (RR). Note that the 

functional value is not a magnitude of difference, it only demonstrates conditions based on 

RR where the Np or the NOA perform better.
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Figure 2. 
Required number of clusters (N) as a function intra-cluster correlation ICC when number of 

subjects nested within each cluster is n. Control group rate λc and treatmemt group rate λt 

are fixed for cluster randomized designs.
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Table 1

Required number of centers N and corresponding power for multicenter trials using a random effect Poisson 

regression model: ln(λi) = β0 + β1x + νi.

(a) Required number centers for varying number of subjects n and β1, while β0 = −1.6 and σ2 = 0.5 were fixed.

0.18 (20%) 0.22 (25%) 0.26(30%) 0.3(35%) 0.34(40%) 0.38 (46%) 0.42 (52%) 0.46 (58%)

20 Np

NOA

179 (0.81)
258

122 (0.82)
172

87 ( 0.82)
123

65 ( 0.81)
92

51 ( 0.83)
71

40 (0.82)
57

33 (0.85)
47

27 (0.83)
39

50 Np

NOA

72 (0.84)
104

49 ( 0.84)
69

35 ( 0.82)
49

26 ( 0.84)
37

21 ( 0.83)
29

16 (0.83)
23

14 (0.86)
19

11 (0.86)
16

200 Np

NOA

18 ( 0.83)
26

13 ( 0.84)
18

9 ( 0.83 )
13

7 ( 0.82)
10

6 ( 0.87)
8

4 (0.80)
6

4 (0.86)
5

3 (0.86)
4
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(b) Required number of centers N for varying number of within center subjects n and baseline rate β0, while β1 = 0.18 and σ2 = 0.5 were fixed.

−1.6 (0.20) −1.2 (0.30) −0.8 (0.45) −0.4 (0.67) 0 (1.0) 0.4 (1.49) 0.8 (2.23) 1.2 (3.32) 1.6 (4.95)

20 Np

NOA

179 (0.82)
258

120 (0.82)
181

81 (0.82)
130

54 (0.84)
95

36 (0.83)
72

25 (0.80)
56

17 (0.82)
46

11 (0.80)
39

8 (0.83)
34

50 Np

NOA

72 (0.82)
104

48 (0.81)
73

33 (0.82)
52

22 (0.83)
38

15 (0.81)
29

10 (0.81)
23

7 (0.79)
19

5 (0.85)
16

3 (0.76)
14

200 Np

NOA

18 (0.82)
26

12 (0.82)
19

9 (0.85)
13

6 (0.82)
10

4 (0.81)
8

3 (0.84)
6
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(c) Required number of centers N for varying number of within center subjects n and between center variance σ2, while β0 = −1.6 and 
β1 = 0.18 were fixed.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5

20 Np

NOA

223 (0.83)
251

202 (0.79)
286

183 (0.81)
324

165 (0.80)
366

150 (0.79)
410

135 (0.80)
458

123 (0.82)
511

111(0.81)
567

50 Np

NOA

90 (0.83)
100

81 (0.81)
114

73 (0.84)
130

66 (0.81)
146

60 (0.81)
164

54 (0.80)
183

49 (0.81)
204

45 (0.77)
227

200 Np

NOA

23 (0.83)
25

21 (0.82)
29

19 (0.83)
32

17 (0.83)
37

15 (0.81)
41

14 (0.77)
46

13 (0.79)
51

12 (0.81)
57
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Table 2

The required number of centers N and corresponding power calculated for longitudinal designs. The treatment 

by time interaction parameter β3 and variance component  associated with the slope parameter varied and 

other regression coefficients β0, β1 and β2 in the model (23) were fixed at 0.10, 0.25 and 0.20 respectively.

T=3 T=5

σv1
2  = 0.25 σv1

2  = 0.75 σv1
2  = 0.25 σv1

2  = 0.75

β 3 N power N power N power N power

0.2 190 0.843 387 0.831 113 0.795 309 0.762

0.3 82 0.863 170 0.815 50 0.814 137 0.771

0.4 46 0.886 95 0.821 28 0.831 77 0.813

0.5 29 0.864 60 0.806 18 0.817 49 0.813

0.6 20 0.887 42 0.833 13 0.834 34 0.779

0.7 14 0.878 30 0.829 9 0.831 25 0.804

0.8 11 0.880 23 0.819 7 0.832 20 0.824

0.9 9 0.879 18 0.820 6 0.876 16 0.820
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