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Abstract
The mammalian genome is replete with various classes of non-coding (nc) RNA genes. Many of
them actively transcribe, and their relevance to CNS diseases is just beginning to be understood.
CNS is one of the organs in the body that shows very high ncRNAs activity. Recent studies
demonstrated that cerebral ischemia rapidly changes the expression profiles of different classes of
ncRNAs: including microRNA, long noncoding RNA and piwi-interacting RNA. Several studies
further showed that post-ischemic neuronal death and/or plasticity/regeneration can be altered by
modulating specific microRNAs. These studies are of interest for therapeutic development as they
may contribute to identifying new ncRNA targets that can be modulated to prevent secondary
brain damage after stroke.
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1. Introduction
Non-coding RNAs (ncRNAs) are functional RNAs which will not translate to form proteins
like mRNAs (Berezikov, 2011). In mammals, >98% of the transcriptional output is
comprised of various classes of ncRNAs that range from 17 to >9,000 nucleotides in length
(Ketting, 2011; Wright and Bruford, 2011) (Table 1). While transfer RNAs and ribosomal
RNAs that play significant roles in protein translation and ribosomal integrity are well-
known, many other classes of ncRNAs with distinct regulatory functions are transcribed
from the intergenic as well as intragenic regions of the genome (Guil and Esteller, 2012;
Ishizu et al., 2012; Lee, 2012). For several decades, ncRNAs have been considered
transcriptional non-sense or genomic dark matter. However, recent studies indicate
significant functions for many classes of ncRNAs, particularly in controlling transcription
and translation to maintain normal cellular physiology (Ambros, 2004; Dharap et al., 2009;
Fire et al., 1998; Place et al., 2008). Several studies also suggest that altered expression and
function of ncRNAs modulate the pathophysiology of CNS disorders (Dharap et al., 2009;
Dharap et al., 2011, 2012; Harries, 2012; Krichevsky et al., 2003; Lee, 2012; Qureshi and

© 2013 Elsevier Ltd. All rights reserved.

Corresponding Author, Raghu Vemuganti, PhD, Associate Professor, Department of Neurological Surgery, University of
Wisconsin, 600 Highland Ave, Madison WI 53792, Phone: 608-263-4055, Vemuganti@neurosurgery.wisc.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclosure/Conflict of Interest: No duality of interest to declare.

NIH Public Access
Author Manuscript
Neurochem Int. Author manuscript; available in PMC 2014 November 01.

Published in final edited form as:
Neurochem Int. 2013 November ; 63(5): 438–449. doi:10.1016/j.neuint.2013.07.014.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Mehler, 2012; Salta and De Strooper, 2012; Saugstad, 2010; Schonrock and Gotz, 2012).
These studies have provided impetus for further evaluating ncRNAs in detail, to identify
them as biomarkers of stroke risk as well as mediators of post-stroke pathologic changes.

While the list of various classes of ncRNAs given in Table 1 is exhaustive, as of today only
the expression profiles of microRNAs (miRNAs), piwi-interacting RNAs (piRNAs) and
long noncoding RNAs (lncRNAs) are known to be altered after stroke (Dharap et al., 2009;
Dharap et al., 2011, 2012; Dharap and Vemuganti, 2010). The goal of this review is to
discuss the studies that show the functional significance of ncRNAs and in particularly
miRNAs in secondary brain damage after acute insults to CNS.

2. Stroke alters cerebral protein-coding gene expression
Following stroke, the secondary brain damage progresses rapidly during the first 3 days and
then at a much slower pace up to 2 weeks. The core of the ischemic insult undergoes
irreversible damage very quickly. Whereas, the area surrounding the core known as
penumbra can be protected with therapy (Olson, 1985). The extent of the core and penumbra
depends on several factors including the severity and duration of the ischemic insult. In most
cases, the volume of the core is smaller than penumbra to start with, but as the time
progress, the infarct grows by encroaching penumbra. The secondary neuronal death is a
major cause of infarct growth which leads to the long-term neurological dysfunction after
stroke. Many pathological mechanisms including excitotoxicity, ionic imbalance leading to
edema, inflammation, oxidative stress, endoplasmic reticulum stress and transcriptional
failure act synergistically to mediate the neuronal death in the post-ischemic brain (Dirnagl
et al., 1999).

Many studies documented that strokes extensively alter the mRNA expression profiles in
both the blood and brain of humans, as well as in experimental animals. These studies
showed that following a stroke, the major classes of transcripts altered are those related to
inflammation, immune response, apoptotic, autophagic and necrotic cell death, ionic
balance, oxidative metabolism, transcriptional control, neurotransmitter function, immediate
early genes and protein chaperones (Carmichael, 2003; Eltzschig and Eckle, 2011; Giffard
and Yenari, 2004; Read et al., 2001; Sharp et al., 2011b; Weinstein et al., 2004; Yi et al.,
2007). All these pathways are thought to participate either in secondary neuronal death or
plasticity/reorganization in the post-ischemic brain (Kapadia et al., 2008; King et al., 2010;
Lipton, 1999; Onteniente et al., 2003; Sharp et al., 2011a; Vemuganti and Dempsey, 2005;
Yi et al., 2007).

One highly important observation for genomic studies has been that the expression of many
transcription factors that promote either neuronal death or neuroprotection change rapidly
after stroke and post-ischemic outcome can be altered by modulating these transcription
factors (Bernaudin et al., 2002; Collino et al., 2006; Iadecola et al., 1999; Kapadia et al.,
2006; Satriotomo et al., 2006; Shih et al., 2005; Song et al., 2011; Tanaka et al., 2000a;
Tanaka et al., 2000b; Tureyen et al., 2008; Tureyen et al., 2007; Venna et al., 2012).

3. Stroke influences non-coding RNA profiles
The mRNAs and proteins altered after a stroke have been used as major targets for stroke
therapeutic development in the past few decades. However, recent studies on ncRNAs have
changed our perspective of stroke pathophysiology. Because different classes of ncRNAs
operate above the level of mRNA transcription and protein translation, they need to be
studied in depth to understand stroke pathology, and to design new stroke therapies. Our
recent studies showed that focal ischemia significantly alters the expression profiles of
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miRNAs, piRNAs and lncRNAs in rodent brain (Dharap et al., 2009; Dharap et al., 2011,
2012; Dharap and Vemuganti, 2010).

3.1. Stroke-induced changes in microRNAs
The miRNAs are the most studied of all ncRNAs. Functionally, miRNAs bind to consensus
8-bp seed sequences in the 3’UTRs of mRNAs to prevent their translation (Jackson and
Standart, 2007; Lewis et al., 2005; Lewis et al., 2003; Pillai et al., 2007). The miRNA seed
sequences have also been observed in the promoters of many protein-coding genes, and their
binding has been shown to induce the expression of those genes (Dharap et al., 2009; Orom
et al., 2008; Place et al., 2008; Vasudevan et al., 2007). The sequences of miRNAs are
conserved among various species, indicating their evolutionary importance. Furthermore,
the miRNA function is highly redundant, as the 3’UTRs of most mRNAs contain binding
sites for multiple miRNAs, and a specific miRNA binding site can be found in the 3’UTRs
of several mRNAs. Hence, miRNAs influence both transcription and translation.

Many labs have showed that cerebral ischemia alters miRNA profiles in the blood and brain
of rodents and humans (Dharap et al., 2009; Jeyaseelan et al., 2008; Liu et al., 2010a; Tan et
al., 2009). In particular, microarray studies from our laboratory showed that cerebral
miRNAome responds rapidly to focal ischemia (Dharap et al., 2009). In the ischemic cortex,
11 miRNAs altered as early as 3h of reperfusion, and many of them showed long-term
expression changes of up to 3 days of reperfusion (Dharap et al., 2009). Interestingly, the
number of miRNAs that altered increased progressively and 46 miRNAs showed altered
expression by 3 days of reperfusion. Because miRNAs does not code for any proteins, their
actions will be mediated by the mRNAs they target. Using bioinformatics, we analyzed the
targets common to miRNAs altered after focal ischemia and interestingly, many of the
mRNAs targeted by these miRNAs are also known to be altered after stroke (Vemuganti et
al., 2002). Furthermore, many of those fit into pathophysiologic mechanisms that modulate
either secondary brain damage or neuroprotection after ischemia. For example, many
cytokines, chemokines, adhesion molecules and complement components that modulate
inflammation were observed to be targeted by multiple miRNAs altered after stroke (Fig. 1).
Furthermore, several heat shock proteins (HSPs), growth factors and anti-oxidant enzymes
that minimize the secondary neuronal death are also targeted by the set of stroke-sensitive
miRNAs (Fig. 2). Stroke is a known modulator of transcription factors that either positively
or negatively impact the post-ischemic outcome. We observed that the 3’UTRs of several
transcription factor coding mRNAs including HIF-1, NF-kB, C/EBPβ, PPARγ, Egr1, IRF1
and STAT3 have binding sites for stroke-responsive miRNAs (Fig. 3). The miRNAs that
target transcription factors have wide-ranging functional implications in post-stroke outcome
as transcription factors can alter the expression of hundreds of down-stream target genes.

Other groups have also identified extensive changes in miRNA expression profiles in the
post-ischemic brain.Jeyaseelan et al. (2008) reported extensive changes in the miRNA
expression in rat cerebral cortex after focal ischemia and the targets of the stroke-responsive
miRNAs include those that mediate excitotoxicity, oxidative stress, inflammation and
apoptosis. This study further showed that blood miRNA profiles also change following focal
ischemia (Jeyaseelan et al., 2008). Another study showed that permanent focal ischemia as
well as intracerebral hemorrhage alters the miRNA expression profiles in rodent brains (Liu
et al., 2010a). Using pathways analysis, they showed that the down-stream targets of the
ischemia-sensitive miRNAs are associated with biological functions: including cell cycle
regulation, cellular growth and proliferation, posttranslational modification, cardiovascular
function and cell death.
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3.2. Effect of intracerebral hemorrhage (ICH) on microRNAs
Although ICH accounts only for 10% to 15% of all strokes, the associated mortality rate is
very high (~50% within the first 30 days) (Gonzales, 2013). Recent studies showed that in
humans, the blood miRNA profiles change significantly following ICH (Guo et al., 2013;
Liu et al., 2010a; Zheng et al., 2012). Liu et al. (2010) showed that in the blood of rats
subjected to ICH, 21 miRNAs were upregulated and 20 miRNAs were down-regulated
compared to sham control (Liu et al., 2010a). Zheng et al. (2012) analyzed the miRNA
profiles in the plasma of 32 ICH patients and showed that 30 miRNAs are differentially
expressed between the 14 patients with hematoma enlargement and 18 patients without
hematoma enlargement (Zheng et al., 2012). Interestingly, a recent study showed significant
differences between the male and female patients; while 70 miRNAs were altered in males,
only 42 were altered in females following ICH compared to the respective healthy controls
(Guo et al., 2013). This study also observed that 13 out of the 30 miRNAs upregulated in
ICH were unique and not changed in ischemic stroke patients. All these studies indicate that
specific miRNAs in blood can be used as biomarkers for identifying the ICH among stroke
patients as well as can distinguish those with hematoma progression from those without
among the ICH patients.Liu et al. (2010) showed that miRNA profiles also alter in the brain
tissue after ICH in rats and interestingly 3 miRNAs miR-298, miR-155 and miR-362-3p
were altered in both blood and brain of these animals (Liu et al., 2010a). Further studies are
needed to evaluate the functional significance of miRNAs in ICH-mediated brain damage.

3.3 Stroke-induced changes in piRNAs and lncRNAs
The piRNAs are one of the most expressed classes of the ncRNAs in eukaryotes. They target
and silence RNAs formed by different classes of transposons to maintain genetic
equilibrium (Cordaux and Batzer, 2009; Gogvadze and Buzdin, 2009; Halic and Moazed,
2009; O'Donnell and Boeke, 2007). A recent study from our lab showed that stroke rapidly
alters the cerebral piRNA profiles in rodents (Dharap et al., 2011). We observed that by 1
day of reperfusion, expression levels of 105 piRNAs were altered in the cerebral cortex of
rats subjected to transient focal ischemia. Interestingly, 25 of those showed >5 fold change.
With bioinformatics, we identified that the stroke-sensitive piRNAs target retrotransposons
and hence might play an important role in preventing mutations after a stroke. Our studies
also showed that a set of transcription factors redundantly target the piRNA promoters and
those might be responsible for the piRNA changes observed after a stroke. At this point, the
functional significance of the piRNAs in post-stroke pathophysiology needs to be
experimentally validated. Those studies will pave ways to design new therapies to prevent
post-stroke brain damage.

Although many lncRNAs are known to be transcribed from the mammalian genome, their
functional significance in normal physiology and in disease pathologies is poorly
understood. Unlike other ncRNAs, no common function as a group is identified so far for
lncRNAs. However, lncRNA homeostasis is essential for normal brain function as many of
them regulate transcription by acting as scaffolds for the chromatin modifying proteins
(Gupta et al., 2010; Hung et al., 2011; Pasmant et al., 2007; Tsai et al., 2010; Yu et al.,
2008). A recent microarray profiling study from our lab showed that stroke in rodents
significantly influences cerebral lncRNAome (Dharap et al., 2012). Bioinformatics showed
that many of these stroke-responsive lncRNAs have >90% sequence homology with the
exons of protein-coding genes, but none of the lncRNAs translate into protein products due
to the absence of open-reading frames (Dharap et al., 2012). These lncRNAs might act as
mimics to control the function of the homologous mRNAs.
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4. Functional implications of microRNAs in post-ischemic brain
While several studies showed that stroke significantly alters the expression profiles of
various classes of ncRNAs, the functional significance of these changes has been evaluated
only in a limited manner. The miRNAs are the only class of ncRNAs that have been
analyzed for their role in post-ischemic pathophysiology. Secondary neuronal death after
stroke is known to be synergistically mediated by several mechanisms including
excitotoxicity, energy failure, ionic imbalance leading to edema, oxidative stress,
endoplasmic reticulum (ER) stress, inflammation, transcription factor failure and aberrant
methylation (Fig. 4). As discussed above, miRNA dysfunction might be a contributor to
most of these post-stroke pathologic changes.

Our lab observed that miR-145 was upregulated in a rapid and sustained manner in rat brain
after focal ischemia, and miR-145 knockdown increased its target antioxidant enzyme
superoxide dismutase-2 protein levels in neurons leading to decreased infarct size (Dharap et
al., 2009). The miRNAs were also shown to modulate the inflammatory responses in the
post-ischemic brain. Our studies showed that miRNAs altered in the ischemic brain target a
set of pro-inflammatory molecules including cytokines (IL-6 and IL-1β), chemokines
(MIP1α and MCP-1), complement components (CC3 and CC4), adhesion molecules
(ICAM-1, P-selectin and E-selectin) and enzymes like COX2 and iNOS that form free
radicals (Dharap et al., 2009) (Fig. 1). The miR-181c and miR-21 were shown to minimize
the oxygen-glucose deprivation induced neuronal apoptosis by suppressing the pro-
inflammatory response mediated by TNF-α and FasL in activated microglia (Zhang et al.,
2012b, c). The miR-146a known to be upregulated after ischemia was thought to potentiate
the Toll-like receptor signaling, leading to neuroprotection after stroke (Zhang et al., 2012a).

Several miRNAs have been shown to target the pro-apoptotic pathways leading to
neuroprotection after stroke. Neurons in the ischemic penumbra are known to survive after
stroke, and these cells showed increased miR-21 levels for days after ischemia (Buller et al.,
2010). Furthermore, in one study, when cortical neuronal cultures were transfected with
miR-21, they showed reduced expression of the pro-apoptotic FAS ligand and curtailed cell
death when subjected to oxygen-glucose deprivation (Buller et al., 2010). A recent study
showed that miR-15b induction suppresses the down-stream anti-apoptotic Bcl-2, and
knockdown of miR-15b decreases post-ischemic neuronal death (Shi et al., 2013). The
miR-15a also targets Bcl-2 mRNA. Interestingly, miR-15a expression was shown to be
under the control of the transcription factor PPAR-δ and when PPAR-δ was overexpressed,
post-ischemic miR-15a levels decreased leading to increased Bcl-2 protein levels and
neuroprotection (Yin et al., 2010a). Another study demonstrated that the miR-497 known to
be induced after ischemia also targets Bcl-2 mRNA and post-ischemic knockdown of
miR-497 led to increased Bcl-2 protein levels in neurons with decreased infarction (Yin et
al., 2010b).

Glutamate excitotoxicity is a known promoter of ischemic neuronal death. The miR-223 has
been shown to protect hippocampal neurons after global cerebral ischemia by targeting
down-stream glutamate receptors GluR2 and NR2B, thus reducing calcium influx (Harraz et
al., 2012). Cerebral edema is dependent on the water movement across cell membranes
controlled by a family of aquaporin (AQP) proteins and AQP-4 knockout mice showed
reduced cerebral edema after focal ischemia (Manley et al., 2000). The 3’-UTR of AQP-4
mRNA contains a binding site for miR-320a, and treatment with anti-miR-320a decreases
aquaporin-4 protein levels and curtailed edema and infarction when rodents were subjected
to focal ischemia (Sepramaniam et al., 2010).
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Cerebral ischemia is known to induce HSPs, which act as protein chaperones to minimize
neuronal damage (Barreto et al., 2012; Stetler et al., 2009; Zhan et al., 2010). The miR-181
induced in the ischemic core targets the HSP70 family members, particularly GRP78/BIP
which is essential for protein folding in ER (Ouyang et al., 2012). Conversely, miR-18,
when down-regulated in the ischemic penumbra, contributes to neuronal survival.
Furthermore, in one study, miR-181a inhibition was observed to be neuroprotective after
focal ischemia (Ouyang et al., 2012).

During the chronic phase after cerebral ischemia, angiogenesis and neurogenesis increases,
which might be an endogenous effort to promote plasticity (Ergul et al., 2012; Wiltrout et
al., 2007). The miR-210 induced after cerebral ischemia contributes to post-ischemic
angiogenesis by modulating the Notch signaling pathway (Lou et al., 2012). The miR-17/92
cluster was shown to mediate the postischemic increased proliferation and survival of the
neural progenitor cells in the subventricular zone of the lateral ventricles (Bellenchi et al.,
2013; Liu et al., 2013; Liu et al., 2009b). In one study, down-regulation of miR-124a in the
progenitor cells of SVZ was shown to lead to depression of Jagged-1 (JAG1), which is a
Notch ligand that participates in the post-ischemic neurogenesis (Liu et al., 2011).
Furthermore, these authors also showed that transfection of neural progenitors with
miR-124a decreases JAG1, leading to inactivation of Notch signaling (Liu et al., 2011). A
combination therapy with VELCADE and tissue-plasminogen activator was shown to
induce neuroprotection by targeting miR-146a and TLR signaling (Zhang et al., 2012a).

The extent of ischemic brain damage is dependent on sex and age (Lewis et al., 2012; Liu
and McCullough, 2012; Manwani and McCullough, 2012). It is well-known that the
secondary brain damage after stroke is less in young female rodents than in young males
(Nordell et al., 2003; Wilson, 2013). The miR-23a has been shown to play a role in this
dimorphism as it targets the X-linked inhibitor of apoptosis (XIAP) which is a major caspase
inhibitor (Siegel et al., 2011). Interestingly, following stroke, miR-23a levels are very
different in the brains of males and females; XIAP mRNA decreases in female brains after
stroke, and the inhibition of miR-23a increases XIAP, leading to neuroprotection (Siegel et
al., 2011). Furthermore, middle-aged female rats are known to develop larger infarcts than
younger female rats. Knockdown of the miRNA Let-7f which targets IGF-1 pathway has
been shown to promote significant neuroprotection in middle-aged female rats following
focal ischemia (Selvamani et al., 2012).

5. microRNAs as biomarkers of ischemia
Identifying patients who have had silent strokes as well as classifying different subtypes of
strokes are challenges for proper treatment options. RNAs are known to be released into
blood, and their profiles change in brain disorders (Scholer et al., 2010; Sharp et al., 2011b).
Many studies showed that mRNA profiles in human blood can serve as a sensitive index to
identify various stroke subtypes and disease progression (Jickling et al., 2013; Jickling et al.,
2012a; Jickling et al., 2011; Jickling et al., 2010; Jickling et al., 2012b; Liu et al., 2010a;
Stamova et al., 2010; Xu et al., 2010).

As miRNAs released into the blood are stable for days, blood miRNA profiles are emerging
as good biomarkers for myocardial infarction as well as stroke (Adachi et al., 2010; Wang et
al., 2010; Weber et al., 2010a). Many miRNAs known to participate in stroke-related
pathologies including endothelial dysfunction, angiogenesis and erythropoiesis have been
shown to be altered in the blood of young and older stroke patients compared to age-
appropriate healthy controls (Gan et al., 2012; Tan et al., 2009; Zeng et al., 2011). The blood
miRNA profiles have also been shown to be altered in rodents following focal ischemia and
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cerebral hemorrhage (Dharap et al., 2009; Jeyaseelan et al., 2008; Liu et al., 2010a; Weng et
al., 2011).

6. microRNAs and ischemic tolerance
While a stroke of sufficient duration kills neurons, a brief ischemic episode preconditions
the brain and promotes ischemic tolerance (Dhodda et al., 2004; Pignataro et al., 2008). This
phenomenon of ischemic preconditioning (PC) is known to be associated with increased
protein synthesis and altered expression of many protein-coding genes (Barone et al., 1998;
Meller and Simon, 2013; Stenzel-Poore et al., 2003). Several chemicals like 3-nitropropionic
acid (3-NP), sevoflurane and isoflurane, as well as exogenous stimuli like brief hypoxia,
enriched environment, hyperbaric oxygen therapy and remote limb PC have also been
shown to induce the cerebral ischemic tolerance (Della-Morte et al., 2012; Galle and Jones,
2012; Nunes et al., 2013; Yan et al., 2013).

Cerebral ischemic tolerance has been shown to change the expression of many miRNAs in
rodent brain (Dharap and Vemuganti, 2010; Lee et al., 2010; Liu et al., 2012a; Lusardi et al.,
2010). Following a brief PC insult, cerebral ischemic tolerance is known to develop quickly,
within 1 to 3 days and expression of several miRNAs alters during this critical period,
starting as early as 6h after PC (Dharap and Vemuganti, 2010). The down-stream targets of
the PC-responsive miRNAs are known to be critical for the acquisition of ischemic
tolerance, including the members of TGF-β signaling, mTOR signaling, MAP kinase
signaling, ubiquitin-proteasomal system, JAK-STAT signaling and Notch signaling (Dharap
and Vemuganti, 2010). The protein levels of methyl CpG binding protein 2 (MeCP2) which
is a global transcriptional activator/repressor (Chahrour et al., 2008; Nan et al., 1998)
increases during the development of ischemic tolerance and interestingly this effect seems to
be mediated by the down-regulation of many miRNAs that target the 3’-UTR of MeCP2
mRNA (Lusardi et al., 2010). Several miRNAs including miR-615-3p are involved in
hypoxia-induced ischemic PC by targeting the protein kinase C family members (Liu et al.,
2012b). Cerebral ischemic tolerance induced by 3-NP treatment was shown to be mediated
by the down-regulation of miR-199a leading to depression of its target sirt1 protein which is
a known neuroprotectant (Xu et al., 2012b). In another study, sevoflurane preconditioning
was shown to induce miR-15b, which in turn suppresses the translation of its target Bcl-2
mRNA leading to reduced apoptosis and neuroprotection (Shi et al., 2013). Increased protein
conjugation to ubiquitin-like modifiers (ULMs) mediates neuroprotection during torpor in
rodents, which was shown to be associated with decreased levels of cerebral miR-200 and
miR-182 family members that target various ULM proteins (Lee et al., 2012). Inhibition of
miR-200 family and/or miR-182 family increased protein conjugation to ULMs and made
SH-SY5Y cells tolerant to oxygen-glucose deprivation-induced cell death (Lee et al., 2012).

7. Non-coding RNAs as future stroke therapeutic targets
The therapeutic applicability of ncRNAs is not yet fully understood. Currently no drugs that
modulate ncRNAs are in clinical use. However, all the above recent studies show their
promise in controlling various pathological features that promote post-stroke neuronal death
and/or neurological dysfunction. Many reagents that either increase (premiRs, miRNA
mimics and viral vectors that encode miRNAs) or decrease (antagomiRs and miRNA
sponges) the levels of miRNAs are currently being tested in animals for various pathologies
(Bhalala et al., 2012; Dharap et al., 2009; Krutzfeldt et al., 2005; Pandi et al., 2013; Yin et
al., 2010b). To use them in a clinical setting, it is essential to develop the vehicles/
transporting agents to efficiently transfer the miRs to the brain from systemic circulation.
Modifications such as polyamination and phosphorothioation, and using fectamines,
nanoparticles and microvesicles are few current strategies for efficient transfer and
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prevention of degradation of miRNAs (Chen et al., 2010b; Elmen et al., 2008a; Noguchi et
al., 2012; Rahbek et al., 2010). Furthermore, it is also essential to study the toxicity and
long-term effects of miRNA therapeutics before they can be used as drugs.

Some recent studies tested miRNAs for their therapeutic efficacy to prevent tumor growth.
Efficient silencing of miR-122 in the liver was achieved by the administration of
cholesterol-conjugated antagomiR-122, which decreased the hepatic tumor growth within
days (Krutzfeldt et al., 2005). Systemic administration of antagomiR-122 modified with the
locked nucleic acid chemistry was also shown to silence the miR-122 in non-human
primates and this compound entered Phase II clinical trials (Elmen et al., 2008b; Haussecker
and Kay, 2010). Treatment with 2′-O-methyl modified antagomiR-21 was shown to reduce
breast cancer growth (Si et al., 2007). A miRNA sponge was used to silence the
OncomiR-17-92 cluster which is implicated in the growth of various types of tumors (Ebert
et al., 2007). These studies might take the center stage in the next few years of ncRNA
research. However, extensive toxicity testing is needed to use the ncRNA reagents in
humans to understand their non-specific actions.

8. Carotid atherosclerosis alters mRNA and non-coding RNA expression
profiles

Although carotid atherosclerotic (CA) plaque rupture is a major cause of stroke in humans,
the mechanisms responsible for this are not completely understood. Our lab analyzed the
gene expression profiles of CA plaques from symptomatic and asymptomatic patients to
understand the mechanisms of plaque stability and embolization. We chose the patients with
clinically identifiable symptoms in contrast to those with no symptoms based on the
asymptomatic carotid stenosis study (ACAS) (Baker et al., 2000). We observed that the
expression levels of 236 of the 44,860 mRNAs analyzed were higher in the symptomatic
patients compared to the asymptomatic patients and 90% of those transcripts belong to the
functional classes that promote plaque growth including signal transduction, ionic
homeostasis, nucleotide and protein metabolism, organogenesis, cell growth, cell
maintenance and cell adhesion (Dempsey et al., 2010; Vemuganti and Dempsey, 2005,
2006). We also observed that symptomatic plaques show significantly higher enrichment of
many mRNAs that are related to angiogenesis indicating an active capillary formation
leading to the development of stroke symptoms (Tureyen et al., 2006).

Several miRNAs have also been shown to be associated with CA plaque maturation and
rupture. In macrophages, miR-155 silences Bcl-6 and hence miR-155 induction was shown
to promote atherosclerosis (Nazari-Jahantigh et al., 2012). The miR-145 is known to be
expressed at high levels in the vascular smooth muscle cells (SMC) and SMC-targeted
miR-145 overexpression has been shown to reduce plaque size as well as necrotic core area
indicating that miR-145 is a potential therapeutic target to limit CA plaque rupture, and thus
stroke (Santovito et al., 2013). It has also been shown that deficiency of hematopoietic
miR-155 leads to increased inflammatory monocytes, and thus enhancing CA plaque
development concurrently decreasing plaque stability (Donners et al., 2012). Many
monocyte-specific miRNAs like miR-99b, miR-152 and miR-422a were shown to be
expressed in plaques indicating that these miRNAs can be therapeutic targets to prevent
monocyte recruitment to plaques (Bidzhekov et al., 2012). A recent expression-profiling
study (Raitoharju et al., 2011) showed increased expression of several miRNAs in the CA
plaque samples in comparison to non-atherosclerotic arterial samples indicating the
possibility of these miRNAs playing a role in plaque growth and/or rupture. Furthermore, 5
miRNAs (miR-100, miR-127, miR-145, miR-133a and miR-133b) were shown to be
expressed at significantly different levels between symptomatic and asymptomatic plaques,
which indicate their prognosis to identify plaque instability (Cipollone et al., 2011). The
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miR-33 which is located within the SREBF2 gene, suppresses expression of the cholesterol
transporter ABC transporter A1 leading to lowered HDL levels and treatment with anti-
miR-33 has been shown to regress atherosclerosis in mice deficient in LDL receptors
(Rayner et al., 2011).

Few polymorphisms associated with miRNA function have been shown to promote stroke in
humans. An “A” to “T” single nucleotide polymorphism known as rs2507800 in the
miR-211 binding site in the 3’-UTR of the angiopoietin-1 (Angpt1) mRNA was shown to
increase Angpt1 protein levels that indicate a decreased stroke risk (Chen et al., 2010a;
Jeansson et al., 2011). Down-regulation of aortic miR-155 was shown to correlate with the
development of hypertension in rats (Xu et al., 2008). In humans, a polymorphism known as
A1166C was shown to modify the miR-155 binding site in the 3’-UTR of the angiotensin II
type 1 receptor (AT1R) mRNA, leading to increased AT1R protein levels in homozygous
patients (Ceolotto et al., 2011; Martin et al., 2007). The A1166C polymorphism is known to
be associated with hypertension, which promotes stroke (de Oliveira-Sales et al., 2010;
Mettimano et al., 2002). Other studied indicate that miR-146aG allele and
miR-146aG/-149T/-196a2C/-499G allele combinations are associated with ischemic stroke
pathogenesis in humans (Rah et al., 2013).

The miR-210 inactivation has been shown to prevent angiogenesis, which is a proponent of
plaque rupture (Fasanaro et al., 2008; Fasanaro et al., 2009). In addition to hypertension,
type-2 diabetes is also a stroke risk factor in humans. Down-regulation of miR-126 in
endothelial cells increases the stroke susceptibility in diabetics by de-repressing its target
vascular cell adhesion molecule-1 that facilitates the macrophage adhesion to endothelium,
which is a prognostic factor in CA plaque rupture (Harris et al., 2008; Zampetaki et al.,
2010). The miR-21 is also a neuroprotective miRNA induced by PC-mediated ischemic
tolerance (Dharap and Vemuganti, 2010) and miR-21 knockdown exacerbates and
overexpression decreases neuronal death after stroke (Buller et al., 2010). miR-21 is known
to be induced in CA plaques leading to modulation of its target Bcl-2 that changes the
vascular smooth muscle cell survival and plaque formation (Raitoharju et al., 2011).
Paradoxically, other studies indicate that CA plaque rupture is increased by miR-21
indicating that it might be a pro-stroke miRNA under certain conditions (Weber et al.,
2010b).

9. microRNAs alter after traumatic injury to CNS
Other acute insults to CNS including traumatic brain injury (TBI) and spinal cord injury
(SCI) also share many common features with post-stroke pathophysiology. Some studies
showed that these conditions are also associated with altered profiles and functionality of
miRNAs.

9.1. TBI and microRNA
In rodents, traumatic injuries to the cerebral cortex is known to induce cell death in both the
cortex and the hippocampus, followed by altered cognitive and motor functions (Bales et al.,
2009; Blennow et al., 2012; Xiong et al., 2013; Yi et al., 2008). Following controlled
cortical impact (CCI)-induced TBI in adult rats, many miRNAs were altered in the
hippocampus in the first day after the injury and mRNAs that code proteins involved in
signal transduction, transcriptional regulation, and cell proliferation/differentiation, the
processes important for post-TBI pathophysiology are the targets of the TBI-responsive
miRNAs (Redell et al., 2009).Hu et al. (2012) showed that 2 different sets of miRNAs were
altered in the rodent hippocampus at 1 to 7 days after CCI injury. At the earlier time points,
miRNAs that modulate mRNAs involved in apoptosis, inflammation and transcriptional
failure were altered, while at the later time points, miRNAs that regulate intracellular
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trafficking, cytoskeleton and cell adhesion to allow cellular remodeling and synaptogenesis
were altered (Hu et al., 2012). Another showed that fluid-percussion (FP) injury to brain also
alters the miRNA profiles in the cerebral cortex of rats between 6h to 3 days (Lei et al.,
2009).

Hypothermia is known to minimize the secondary neuronal death as well as prolong the
therapeutic window after TBI (Dietrich and Bramlett, 2010). Hypothermia after FP injury in
rats was shown to significantly modulate the post-TBI miRNA profiles indicating their
possible role in hypothermia-mediated neuroprotection (Truettner et al., 2011). A recent
study showed that hypothermia inhibits the proliferation of endogenous neural progenitors in
the hippocampus, probably by negating the post-TBI miR-34a down-regulation and
induction of its target Notch signaling pathway (Wang et al., 2012). Exposure of adult rats to
blast-induced TBI altered the serum levels of let-7i, indicating it as a sensitive biomarker of
brain injury (Balakathiresan et al., 2012). A further study showed that miRNA levels also
alter in the blood following TBI in humans indicating their potential to act as biomarkers for
brain injury (Redell et al., 2010).

9.2. SCI and microRNA
Following SCI in adult rats, expression levels of many miRNAs that control inflammation,
apoptosis and oxidative stress were altered in the first 7 days (Liu et al., 2009a; Yunta et al.,
2012). Strickland (2011) found that miR-124, miR-129 and miR-1 were down-regulated
with concomitant induction of their target SNORD2, which is a translation-initiation factor
following SCI in adult rats. They further showed that miR-21 was significantly induced in
the contused spinal cord indicating an adaptive anti-apoptotic response (Strickland et al.,
2011). SCI in adult mice was shown to increase miR-223 and decrease miR-124a levels and
these changes were thought to promote inflammation and cell death (Nakanishi et al., 2010).
Using in situ hybridization, this group further showed that miR-223 was expressed in the
neutrophils that extravasated the spinal cord parenchyma after an injury (Izumi et al., 2011).

The miRNAs also seem to participate in the plasticity and regeneration after SCI. The
pattern of miRNA changes coincide with the appearance of SOX2, nestin, and REST protein
expression, suggesting that some of the SCI-responsive miRNAs may reflect the emergence
of stem cell niches (Strickland et al., 2011). To understand the role of miRNAs in activity-
dependent plasticity, miRNA profiles have been analyzed in adult rats subjected to cycling
exercise after SCI (Liu et al., 2010b). While SCI induced Let-7a and miR-16 expression,
exercise increased miR-21 and decreased miR-15b. These miRNA changes further
correlated with the expression of their target genes that control apoptosis, suggesting that the
benefits of post-SCI exercise might be mediated in part by miRNAs that modulate apoptosis
(Liu et al., 2010b). Exercise after SCI was also shown to modulate the miRNAs that control
PTEN and mTOR signaling, indicating an increased regenerative potential of the neurons
(Liu et al., 2012c). In another study, when zebrafish spinal cord was transected, the
regenerating neurons showed increased expression of miR-133b and its antisense
knockdown mitigated axonal regeneration and locomotor recovery (Yu et al., 2011). This
study also showed that miR-133b targets RhoA which is an inhibitor of axonal growth and
thus miR-133b induction might be a useful adaptation after SCI. In adult mice, SCI was
shown to induce miR-486 which represses its target mRNA NeuroD6 leading to oxidative
stress and poor outcome, and knocking down miR-486 was shown to promote significant
post-SCI motor function recovery (Jee et al., 2012a). The miR-20a was another miRNA
induced after SCI that blocks the translation of neurogenin 1 (Ngn1) and as Ngn1
participates in plasticity and regeneration, knocking-down miR-20a led to motor neuron
survival and neurogenesis followed by decreased functional deficit after SCI (Jee et al.,
2012b). A recent study showed that neural stem cells transfected with miR-124 differentiate
more efficiently into adult neurons leading to decreased secondary cavitation and increased

Vemuganti Page 10

Neurochem Int. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



motor function in rats subjected to SCI (Xu et al., 2012a). The miR-21 is a prototypic
miRNA that is consistently reported to be induced after an acute injury to CNS including
ischemia, TBI and SCI and the astrocytes adjacent to the post-SCI lesion expressed high
levels of miR-21 (Bhalala et al., 2012). The hypertrophic response to SCI was observed to
be attenuated in the astrocytic miR-21 overexpressing transgenic mice while augumented by
the expression of miR-21 sponge indicating this miRNA as a potential future therapeutic
target to improve outcome after an injury (Bhalala et al., 2012).

10. Conclusions
Various classes of ncRNAs control the transcription and translation to maintain normal
cellular homeostasis in mammals. Acute injuries to CNS including stroke, TBI and SCI
significantly alter ncRNA profiles. Many studies showed that miRNAs altered after CNS
injury modulate processes that promote neuronal death including inflammation, apoptosis
and oxidative stress as well as processes that promote plasticity and regeneration.
Furthermore, miRNAs can act as sensitive biomarkers of secondary brain damage.
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Highlights

• Several classes of non-coding RNAs are actively transcribed in mammals.

• Non-coding RNAs are considered as master controllers of transcription and
translation.

• The role of non-coding RNAs in post-stroke brain pathology by controlling
multiple pathophysiologic mechanisms including inflammation and oxidative
stress is discussed.

• Particular focus of this review is the studies on microRNA, a class of non-
coding RNA.

• The review discussed the use of microRNAs in blood as biomarkers of stroke.

• The review discussed the translational potential and therapeutic implications of
microRNAs to protect brain after stroke.

Vemuganti Page 22

Neurochem Int. Author manuscript; available in PMC 2014 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1. Bioinformatics correlation of the miRNAs and the inflammatory mRNAs altered after
focal ischemia
Stroke-responsive miRNAs can modulate mRNAs that mediate the cerebral pro-
inflammatory response including cytokines, chemokines, cell adhesion molecules and free
radical generating enzymes. This figure appeared previously as supplemental information in
Dharap et al. (2009).
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Fig. 2. Bioinformatics correlation of the miRNAs and the neuroprotective mRNAs altered after
focal ischemia
Many neuroprotective and neurorestorative mRNAs are also the predicted targets of the
stroke-responsive miRNAs. These include protein chaperones, antioxidant enzymes and
growth factors. This figure appeared previously as supplemental information in Dharap et al.
(2009).
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Fig. 3. Bioinformatics correlation of the miRNAs and the transcription factor mRNAs altered
after focal ischemia
Transcription factor mRNAs are a major group of predicted targets of the miRNAs altered in
the post-ischemic brain. Some of them are known promoters of inflammation and neuronal
death, while some are upstream to neuroprotective pathways. This figure appeared
previously as supplemental information in Dharap et al. (2009).
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Fig. 4.
Many pathophysiologic mechanisms synergistically contribute to neuronal death and
neurologic dysfunction after stroke. Excitotoxicity, energy failure and ionic imbalance start
within minutes after stroke and continue for days. Immediately after the insult, increased
glutamate release combined with a failure of the glutamate transporters lead to elevated
glutamate levels in the synaptic cleft, contributing to excitotoxic neuronal death. The energy
failure leads to ionic imbalance that induces water to rush in leading to edema. Oxidative
stress, ER stress and inflammation that start within hours after stroke are major events that
lead to neuronal death if not controlled. A massive induction of HSPs in the post-ischemic
brain might be an endogenous effort of self-protection. In addition, transcriptional and
translational failure that encompasses altered expression of transcription factors, epigenetic
changes like altered promoter methylation, post-translational modifications and altered
ncRNA function also play a role in post-stroke pathophysiology.
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Table 1

Various classes of ncRNAs

Size (bp) Current
number*

Putative functions

Small ncRNAs

tiRNA 17–18 >5,000 Transcriptional initiation

miRNA 18–25 2042 Translational repression; Transcriptional activation

siRNA 19–25 >20,000 mRNA degradation

tasiRNA 20–22 unknown Gene silencing in plants

tel-sRNA 23–28 unknown Epigenetic regulation of telomerase

rasiRNA 24–29 >1,000 Transposon silencing

piRNA 26–31 >60,000 Transposon silencing

CRISPR 24–48 Unknown Prokaryotic immune control

crasiRNA 34–42 Unknown Heterochromatin recruitment

Medium-size ncRNAs

TSS-aRNA 20–90 >10,000 Transcriptional regulation

PASR 22–200 >10,000 Transcriptional regulation

snoRNA 60–300 >300 Maturation of other ncRNAs

scaRNA 83–330 >26 Guiding spliceosomal RNAs

Long ncRNAs

lncRNA >200 >10,000 Transcriptional regulation

T-UCR 200–779 481 Antisense inhibition of mRNAs and ncRNAs

CUT 200–800 >900 Chromatin regulation

SUT 200–800 >800 Transposon silencing

TERRA 100–9,000 unknown Regulation of telomere length

PROMPT >200 unknown Promoter control

*
Current number in humans is given as of today. New ncRNAs of all classes are still being discovered. tiRNA, transcription initiation RNA;

miRNA, microRNA; siRNA, short interfering RNA; tasiRNA, trans-acting siRNA; tel-sRNA, telomere small RNA; rasiRNA, repeat-associated
siRNA; piRNA, piwi-interacting RNA; CRISPR, clustered regularly interspaced short palindromic repeats; crasiRNA, centromere repeat associated
short interfering RNA; TSS-aRNA, transcription start site associated RNA; PASR, promoter associated small RNA; snoRNA, small nucleolar
RNA; scaRNA, small Cajal body-specific RNA; lncRNA, long noncoding RNA; T-UCR, transcribed ultraconserved region; CUT, cryptic unstable
transcript; SUT, stable unannotated transcript; TERRA, telomere-associated ncRNA; PROMPT, promoter associated pervasive transcript.
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