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Abstract Niemann–Pick type C disease (NPC) is a devastat-
ing, recessive, inherited disorder that causes accumulation of
cholesterol and other lipids in late endosomes and lysosomes.
Mutations in 2 genes, NPC1 and NPC2 , are responsible for
the disease, which affects about 1 in 120,000 live births.
About 95 % of patients have mutations in NPC1, a large
polytopic membrane protein that is normally found in late
endosomes. More than 200 missense mutations inNPC1 have
been found in NPC patients. The disease is progressive, typ-
ically leading to death before the age of 20 years, although
some affected individuals live well into adulthood. The dis-
ease affects peripheral organs, including the liver, spleen, and
lungs, but the most severe symptoms are associated with
neurological disease. There are some palliative treatments that
slow progression of NPC disease. Recently, it was found that
histone deacetylase (HDAC) inhibitors that are effective
against HDACs 1, 2, and 3 can reduce the cholesterol accu-
mulation in fibroblasts derived from NPC patients with muta-
tions in NPC1 . One example is vorinostat. As vorinostat is a
Food and Drug Administration–approved drug for treatment
of cutaneous T-cell lymphoma, this opens up the possibility

that HDAC inhibitors could be repurposed for treatment of
this rare disease. The mechanism of action of the HDAC
inhibitors requires further study, but these drugs increase the
level of the NPC1 protein. This may be due to post-
translational stabilization of the NPC1 protein, allowing it to
be transported out of the endoplasmic reticulum.
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Niemann–Pick Type C Disease

Incidence and Pathology

Niemann–Pick type C disease (NPC) is an autosomal recessive,
inherited lysosomal storage disorder that leads to abnormal
accumulation of cholesterol and other lipids in late endosomes
and lysosomes (LE/Ly) [1]. The lipid accumulation can be seen
in tissues throughout the body, but the major disease-associated
pathologies are due to progressive neurological deterioration
[1]. NPC is a typical example of a large family of lysosomal
storage disorders. Other members of this class of diseases
include the closely related Niemann–Pick types A and B, as
well as Wolman, Gaucher, Fabry, and Tay–Sachs diseases [2].
First described in the early twentieth century [3, 4] and more
thoroughly characterized in the 1950s [5], the molecular pro-
cesses involved were uncovered beginning with the work of
Pentchev and coworkers, starting in the 1980s [6–8].

The incidence of NPC disease has been estimated to be
approximately 1:120,000 live births [1]. However, patients are
frequently misdiagnosed or undiagnosed for several years
after the onset of symptoms, and it seems likely that the
incidence is actually substantially higher than this [9–11].
The age of onset can be from infancy to adulthood, but the
majority of patients develop symptoms in early childhood,
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with death frequently occurring before the age of 20 years.
The rate of progression of the disease is somewhat variable
[9], although some reports indicate that once a threshold of
disability is reached there is a fairly uniform rate of progres-
sion that is apparently independent of age of onset [12]. A
slowly progressing form of the disease has been reported with
a very small number of patients as old as 68 years [13].

The health of NPC patients is negatively affected by pro-
gressive neurodegeneration and inflammatory events in the
brain and visceral organs, with effects on the liver, spleen, and
lung being most pronounced. Typical neurological manifesta-
tions include vertical supranuclear gaze palsy [14], saccadic eye
movement abnormalities, cerebellar ataxia, dystonia, dysmetria,
dysphagia, and dysarthria [1]. The central nervous system
(CNS) deficits are associatedwith the presence ofmeganeurites,
ectopic dendrites, and axonal spheroids [15]. There is also
extensive neurodegeneration, neuroinflammation, and a pat-
terned loss of cerebellar Purkinje cells [15]. Oropharyngeal
dysphagia can be particularly problematic as it can often lead
to food or fluid aspiration and subsequent pneumonia.

Molecular and Cellular Characterization of NPC Disease

Two genes (NPC1 and NPC2 ) have been linked to NPC
disease in humans [1]. Approximately 95 % of cases are
associated with mutations in NPC1 . The NPC1 protein is a
large membrane protein that is localized in the LE/Ly and is
predicted to have 13 transmembrane domains. Most of the
NPC1 mutations are missense point mutations, and more than
200 differentNPC1 mutations have been found in patients [1].
The NPC2 protein is a small globular protein that is targeted to
LE/Ly by a mannose-6-phosphate modification that causes it
to bind to mannose-6-phosphate receptors, which direct it to
late endosomes [16].

Both NPC1 and NPC2 have been shown to bind cholester-
ol [16, 17]. In NPC1 there is a well-characterized cholesterol
binding site in the N-terminal domain, which faces the lumen
of the LE/Ly. X-ray crystallography shows that cholesterol is
bound in a pocket in the NPC1 N-terminal domain with the
hydroxyl moiety oriented inward away from the surface of the
protein [18, 19]. In contrast, cholesterol binds to NPC2 with
the hydroxyl oriented outward toward the surface of the
protein [20]. It is relatively difficult to directly load the
NPC1 N-terminal domain with cholesterol [17], but the rate
of loading is greatly increased when cholesterol is first bound
to NPC2 and then transferred to NPC1 [18]. This led to a
model in which lipoprotein cholesterol esters are hydrolyzed
in LE/Ly, and the cholesterol, which is very insoluble in water,
binds to NPC2. The NPC2 would then transfer cholesterol to
the NPC1 N-terminal domain in the limiting membrane of the
LE/Ly [19]. By a process that is yet to be characterized,
cholesterol can then exit the LE/Ly and be delivered to other
cell membranes. This model of a cholesterol hand-off is

strongly supported by in vitro studies showing that
NPC2:cholesterol binds to the first lumenal loop of the
NPC1 protein, while apo-NPC2 does not bind [21]. Addition-
ally, someNPC1 disease-associatedmissensemutations found
in the first lumenal loop abrogate the binding of
NPC2:cholesterol to NPC1 [21], which prevents the efficient
transfer of cholesterol from NPC2 to NPC1. These data sup-
port a directional transfer of cholesterol from NPC2 to NPC1
in the lumen of the LE/Ly.

The biochemical studies of NPC1 and NPC2 strongly
support the hypothesis that defects in cholesterol transport
are the underlying mechanism responsible for NPC disease.
However, several other lipids accumulate in the lysosomal
storage organelles found in NPC mutant cells, including
sphingomyelin and bis(monoacylglycero)phosphate, which
is also known as lysobisphosphatidic acid [2, 22]. In the
CNS the most prominent stored lipids are glycosphingolipids,
but cholesterol accumulation is also seen [2].

It has been proposed that the secondary accumulation of
sphingolipids may relate to the biophysical properties of cho-
lesterol and sphingolipids as they associate in lipid bilayers.
Cholesterol is stabilized in lipid bilayers by the presence of
sphingolipids either because of specific interactions or be-
cause the structures of the sphingolipids with their large head
groups and saturated acyl chains effectively shield the choles-
terol from the aqueous phase [23]. As a consequence of these
interactions, accumulation of cholesterol may lead to an en-
richment of sphingolipids in the internal membranes of lyso-
somal storage organelles. Similarly, high levels of sphingo-
lipids would be predicted to stabilize the cholesterol in these
membranes. Consistent with this model, augmenting the ly-
sosomal hydrolysis of sphingolipids by increasing acid
sphingomyelinase levels in NPC mutant fibroblasts leads to
a decrease in the cholesterol storage [24]. It is generally
unclear if the cellular pathology associated with NPC disease
is caused by the accumulation of the cholesterol itself or by the
dysregulation of other lipids, including sphingolipids.
Miglustat, a drug that inhibits an early step in glycosphingo-
lipid synthesis and is approved for use in NPC patients in
several countries, has been found to provide some benefit to
NPC patients [25].

Studies on the NPC1I1061T mutant, the most common mis-
sense mutation observed in NPC1 patients that represents 15–
20 % of all disease alleles, provided insights into the molecular
mechanisms of NPC [26]. In NPC patient-derived fibroblasts,
the NPC1I1061T protein is synthesized, but is mislocalized and
present at reduced levels. In wild-type fibroblasts, NPC1 pro-
tein predominantly distributes to the late endosomal compart-
ment, while in human fibroblasts homozygous for the
NPC1I1061T the mutant protein fails to localize to the late
endosomes. Even though NPC1 mRNA transcript levels are
elevated 1.4–2.4-fold in NPC1I1061T vs WT fibroblasts, NPC1
protein levels are reduced by 85 % in the NPC1I1061T
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fibroblasts. Thus, the NPC1I1061T substitution affects steady-
state levels of endogenously expressed NPC1 protein, possibly
by impairing translation of the NPC1 protein or by rendering
the protein unstable. Metabolic labeling studies demonstrate
that the wild-type protein has 2 distinct rates of degradation
[26]. About half of the protein exhibited a t½ of 9 h, after which
the remaining protein exhibits a glycosylation pattern shift from
an endoglycosidase H-sensitive to an endoglycosidase H-
resistant species, extending the t½ to 42 h. In contrast,
NPC1I1061T protein remains almost exclusively endoglycosi-
dase H-sensitive and exhibits a t½ of 6.5 h. These data indicate
that about half of the wild-type NPC1 and nearly all of the
NPC1I1061T protein is degraded in the endoplasmic reticulum
(ER). Overexpression of NPC1I1061T or treatment with general
protein stabilizers, such as glycerol, led to partial correction of
the NPC phenotype [26].

An interesting observation is that siblings with identical
mutations in NPC1 can have very different ages of onset and
rates of progression of the disease. This observation suggests
that factors outside of the NPC1 protein itself can profoundly
affect the disease progression, and therefore changes in other
genes or epigenetic changes might alter the susceptibility to
mutations in NPC1 or NPC2. It also opens the possibility that
drugs might be used to alter the sensitivity to these mutations.
As discussed in the next section, histone deacetylase inhibitors
(HDACi) appear to be good candidates for therapy of most
NPC1 patients. Preliminary findings suggest that this role may
be due to an increase in the fraction of mutant NPC1 proteins
that leave the ER and are delivered to LE/Ly.

HDACi and Treatment of NPC Disease

Therapies Tested Previously for Treatment of NPC Disease

Over the last few decades, several small molecule agents have
been investigated as potential treatments for NPC. These
studies have been performed mainly in cell culture and mouse
models, and, to a lesser extent, in human patients, as summa-
rized in previous reviews [1, 27]. The choices of many of these
agents have been based upon previously known effects of
these compounds on sterol absorption, biosynthesis, and me-
tabolism, or, alternatively, upon agents involved in
sphingolipid pathways. These studies have largely had limited
effect on the NPC disease phenotype. The compounds that
have been examined include statin drugs (lovastatin and prav-
astatin) [28–30], a squalene synthesis inhibitor (CP-340868)
[31], cholestyramine [28, 29], nicotinic acid [28], ezetimibe
(Zetia) [32], peroxisomal inducers (clofibrate, perfluoro-
octanoic acid, dehydroepiandrosterone, and diethylhexyl-
phthalate) [33, 34], neurosteroids or their mimics (allopregna-
nolone, ganaxolone, and T-0901317) [35, 36], oxysterols (25-
and 27-hydroxycholesterol, 7-ketocholesterol, and 17b-

estradiol) [17, 37–40], synthetic liver X receptor ligands (T-
0901317 and bexarotene) [40–43], sphingolipid pathway-
targeting agents (miglustat and n -butyldeoxygalacto-
nojirimycin) [44–46], calcium regulators (curcumin,
thapsigargin, and myriocin; note that curcumin is also an
HDACi) [47–49], apoptosis inhibitors (imatinib, minocycline,
and B-cell lymphoma 2 protein) [50, 51], a neurodegeneration
inhibitor (Nω-nitro-L-arginine methyl ester) [52], α-
tocopherol (vitamin E) [53, 54], tamoxifen [53], nitrovin
(difurazone) [55], and several members of 3 heterocycle series
consisting of highly substituted pyrrolinones, triazines, and
thiadiazoles [56–59]. Low cholesterol diets have been found
to be ineffective [60].

With respect to the current state of available therapies,
miglustat (Zavesca; Fig. 1) was approved in 2009 for treat-
ment of NPC in the European Union and, subsequently, in
Canada, Brazil, Turkey, Australia, and Japan [44, 61]. Al-
though it has been reviewed by the Food and Drug Adminis-
tration (FDA), it has not been approved for NPC in the USA.
Miglustat functions as a glucosylceramide synthase inhibitor
and therefore affects the glycosphingolipid pathway. It had
previously been approved by the FDA for treatment of Gauch-
er disease, which is another lysosomal storage disorder char-
acterized by accumulation of glucosylceramide [62].The past
several years of experience with miglustat indicate that it is
able to stabilize NPC patients and is likely to extend their life
spans [44, 61].

The most effective treatment for NPC disease in animal
models is injection of 2-hydroxypropyl-β-cyclodextrin
(HPBCD) (Fig. 1), a cholesterol chelating cyclodextrin [63,
64]. Unfortunately, HPBCD is excreted rapidly and crosses
the human blood–brain barrier very poorly; therefore, this
treatment requires infusion of high-dose HPBCD for several
hours a few times per week and intrathecal injections for
delivery into the CNS. A clinical trial for HPBCD therapy is
currently underway [65]. Significant side effects that have
been observed in cat and mouse models of NPC include
hearing impairment and lung complications [66].

HDACi and NPC Disease

HDACi were tested as part of a high-throughput screen for
compounds that would reduce cholesterol accumulation in
LE/Ly of human fibroblasts derived from patients with muta-
tions in NPC1 or NPC2 [67]. A collection of HDACi was
specifically included in the screen for several reasons. Cells
with the NPC1I1061T mutation could be partially corrected by
protein overexpression or by glycerol, which acts as a
nonspecific protein chaperone [26]. A basic hypothesis is that
up-regulation of mutant, but functional, NPC1 or NPC2 protein
or up-regulation of chaperones to overcome protein misfolding
may serve to restore normal cholesterol trafficking. By altering
chromatin structure, HDACi change the expression of a large
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number of proteins. HDACi have also been shown to increase
production of protein chaperones, which may, in turn, assist
transport of themutant NPC1 protein out of the ER and to avoid
protein destruction by ER-associated degradation of misfolded
proteins [68]. Preliminary studies of valproic acid supported the
hypothesis that HDACi may have a therapeutic effect in NPC
disease [69]. Trichostatin A has also been shown to be a
repressor of the cholesterol biosynthetic pathway [70], which
might provide a secondary benefit. For these reasons, the
Maxfield, Wiest, and Helquist laboratories obtained and
screened a small set of well-known HDACi representing a
range of chemical structural types, potencies, and isoform
selectivities. (To avoid duplication, the reader is referred to
[71] where the range of HDACi structures, potency, and selec-
tivity are described in greater detail than is the intent here.)

The initial test set consisted of vorinostat (Fig. 2), trichostatin
A, panobinostat, PCI-34051, CI-994, and thiophene benzamide
(Fig. 3) [67]. The screening was accomplished using filipin
staining for fluorescent determination of lysosomal cholesterol
in NPC1 mutant GM03123 human fibroblasts carrying hetero-
zygous P237S and I1061T mutations, and GM18443 carrying
the homozygous I1061T mutation on both alleles. GM05659
wild-type cells were used as a control. For both of the NPC1
mutants, a dose and time response for lowering of cholesterol
levels was observed for 5 of the 6 compounds, with PCI-34051
being the exception.

The strongest responses were seen for the most potent
HDACi used in this survey, namely panobinostat (LBH-589)
and trichostatin A, with EC50 values of <5 nM and ~60 nM,
respectively. The dose–response curve for vorinostat is shown
in Fig. 4. Essentially, complete correction of the NPC pheno-
type was seen with 10 μM vorinostat (Fig. 5). Based upon the
known isoform selectivities of the HDACi in this survey (see
Figs 2 and 3), the relevant target for correction of the NPC1

phenotype is likely to be HDAC1, 2, or 3, whereas HDAC 8 is
ruled out by lack of response to PCI-343051. These HDACi
were also screened in the NPC2 mutant GM18445 human
fibroblast cell line having the homozygous V39M mutation,
but there was no significant response. The HDACi examined
here did not show cytotoxicity, but they did show cytostatic
activity in the NPC1 mutant GM03123 cells.

With respect to mechanism of action, treatment of the
NPC1 mutant cells with the HDACi led to increased produc-
tion of NPC1 protein in parallel with correction of the NPC
phenotype. Also observed was decreased uptake of low-
density lipoprotein, reduced proteolytic processing of sterol-
responsive element binding protein-2 transcription factor, and
increased cholesterol esterification by acyl Co-A:cholesterol
acyl transferase—all consistent with restoration of normal
cellular cholesterol homeostasis. Studies are in progress to
determine if the effect of HDACi treatment is mainly due to

Fig. 1 Niemann–Pick type C
disease therapeutics. Miglustat
(left) inhibits the synthesis of
glycosphingolipids, which
accumulate alongwith cholesterol
in late endosomes and lysosomes
of neurons. 2-Hydroxypropyl-β-
cyclodextrin (right) binds
cholesterol and solubilizes it. This
can lead to efflux of stored
cholesterol from late endosomes
and lysosomes. NB-DNJ = n-
butyldeoxygalactonojirimycin

Fig. 2 Histone deacetylase (HDAC) inhibitors previously approved by
the Food and Drug Administration. The various names used for the
compounds are provided. Entries in parentheses indicate the HDAC for
which the strongest inhibitory effects are seen.

Treatment of Niemann–Pick Type C Disease 691



protein stabilization in the ER [72]. Ongoing studies in the
Maxfield laboratory have shown that many different NPC1
mutations found in several patient-derived fibroblast cell lines
respond to HDACi with a dose-dependent reduction in stored
cholesterol [72]. Testing is also underway using an engineered
cell line expressing many different NPC1 mutations, and pre-
liminary results are encouraging in that a high fraction ofNPC1
mutations are responsive (F. Maxfield, unpublished data).

Subsequent studies by Munkacsi et al. [73] confirmed that
vorinostat and trichostatin A reduce lysosomal cholesterol
levels in human NPC fibroblasts along with lowering
sphingolipid accumulation and increasing esterification of free

cholesterol, which is deficient in untreated NPC cells. The
cholesterol lowering effect was seen to be less pronounced
with the more isoform-selective HDACi MC1568 (HDACs 4,
5, 7, 9) and MGCD0103 (HDACs 1, 2, 3, 11) compared with
the less selective vorinostat and trichostatin A. Wehrmann
et al. [74] have also confirmed the cholesterol lowering effect
of vorinostat and panobinostat in human NPC fibroblasts.
This effect was enhanced in the presence of HPBCD.

Considerations for Use of HDACi as Therapies for NPC1
Disease

In recent years, a very large number of compounds have been
designed and developed specifically as HDACi. The first 2 to
receive FDA approval for clinical use were suberoylanilide
hydroxamic acid (vorinostat, Zolinza) in 2006 and romidepsin
(Istodax, FK-228, FR-901228) in 2009, both for treatment of
cutaneous T-cell lymphoma (Fig. 2) [75, 76].

Although HDACi have been developed most prominently
for treatment of cancers, their effectiveness in many other
diseases has also been investigated [71, 77]. 4-Phenylbutyric
acid and valproic acid are among the simplest and also the
weakest HDACi (Fig. 6), although their function as HDACi
was not recognized until long after early studies of their
therapeutic properties. Regardless of its simplicity, the sodium
salt of the former was approved by the FDA in 1996 and
commercialized as Buphenyl (Ucyclyd Pharma) for the treat-
ment of urea cycle disorders—another group of rare diseases
[78, 79]. It was subsequently studied in thalassemia [80],
sickle cell anemia [81], and cystic fibrosis [82]. The deriva-
tive, glycerol phenylbutyrate (Ravicti), has also been

Fig. 3 Histone deacetylase (HDAC) inhibitors. Entries in parentheses indicate the HDAC for which the strongest inhibitory effects are seen

Fig. 4 Dose–time response for treatment of GM03123 Niemann–Pick
type C disease 1 mutant cells with vorinostat. The vertical axis measures
the fluorescence response of filipin staining of cholesterol in lysosomal
storage organelles (LSO). Cells were treated for 48 h with varying con-
centrations of vorinostat. The cells were then fixed and stained with filipin
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approved for the treatment of urea cycle disorders [83]. The
likewise simple valproic acid is used to treat epilepsy, other
seizures, and bipolar disorder [84]. Also of relevance in a
neurodegenerative disease such as NPC is that HDACi have
been studied for treatment of cognitive disorders such as
Alzheimer’s, Huntington’s, and Parkinson’s diseases [85].
HDACi are also reported to function as cognitive enhancers
[86]. Whereas increased histone acetylation in the brain is
associated with improved memory, histone deacetylation cor-
relates with poorer memory [87, 88].

For an ultra-rare disease such as NPC, the most reasonable
strategymay be to identify a treatment from among previously
approved drugs or, at the least, other previously known com-
pounds that have already been through extensive studies,
including clinical trials. Developing a new drug de novo
would likely encounter enormous costs that could not be
recouped from the very small NPC patient population.

Prospective

Although the study of HDACi for treatment of NPC is at a
relatively early stage, this therapeutic strategy shows signifi-
cant promise. In order to accelerate such a treatment into the
clinic, the selection of a previously approved drug is a reason-
able choice. Of the HDACi screened to date for NPC,
vorinostat meets this criterion, whereas romidepsin, another
approved HDACi has apparently not been screened yet for
this disease. This latter compound is also more chemically
complex than vorinostat and may be less accessible.

The advantages of seeking clinical trials of vorinostat are
numerous. There has been considerable prior human experi-
ence with its use, albeit as a cancer treatment. A search of the
MedLine, Web of Science, and Biosis Previews databases
shows 81 journal citations beginning with Phase I studies in
cancer patients monitoring the pharmacology and pharmaco-
kinetics following intravenous and oral drug administration.
The level of acetylated histones in human peripheral blood
mononuclear cells (PBMCs) was established as a reliable
biomarker of drug action [89, 90]. The acetylation of PBMC
histones by vorinostat paralleled its pharmacodynamic effects
in tissue. Rapid induction of histone acetylation in PBMCs
occurs after intravenous and oral dosing in a time- and
concentration-dependent manner [89, 90]. Elevation of acet-
ylated histones was consistently observed 2 h after a single
oral dose of vorinostat ranging from 200 to 600 mg. With an
increasing vorinostat dose, the duration of the elevated levels
of acetylated histones in PBMCs was maintained up to 8 h. In
patients who were under study for 6 months or longer,
vorinostat was found to continue to stimulate an increase in
PBMC acetylated histones, indicative of a sustained pharma-
cological effect over time [89–91]. The major pathways of
vorinostat metabolism involve glucuronidation and hydrolysis
followed by α-oxidation [92]. The major metabolites, O-
glucuronide and 4-anilino-4-oxobutanoic acids, are both phar-
macologically inactive. The clinical pharmacology profile of
vorinostat is favorable, exhibiting dose-proportional pharma-
cokinetics and modest food effect. There appear to be no major
differences in the pharmacokinetics of vorinostat in special
populations, including varying demographics and hepatic dys-
function. Combination therapy pharmacokinetic data indicate
that vorinostat has a low propensity for drug interactions [93].

Until recently, the mouse models for NPC1 deficiency have
been NPC1-/-, so they would not be good models for testing a
drug that worked by increased expression of a mutant, but
somewhat functional, NPC1 protein. Recently, a mouse model
with a point mutation in NPC1 (D1005G) has been described
[94], and mouse models with other mutations are being

Fig. 5 Effect of vorinostat on
cholesterol storage. Fluorescence
microscopy images of filipin-
stained GM03123 Niemann–Pick
type C disease 1 mutant cells
treated with dimethyl sulfoxide
vehicle (a) or 10 μM vorinostat
(b) for 2 days. Scale bar=15 μm

Fig. 6 Simple, weak histone deacetylase inhibitors with therapeutic
applications
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developed. These mouse models will provide the capability of
testing HDACi therapy in mouse models. In addition, there is
a line of cats with a naturally-occurring missense mutation in
the feline NPC1 protein [95], and these provide an opportunity
for testing in a large mammal. Such animal testing may not be
required for regulatory approval of tests of vorinostat in adults,
but it would be useful for testing dosing regimens and for
testing efficacy in juvenile animals.

In order for vorinostat to be clinically effective for the
treatment of NPC, sufficient levels must be achieved in the
brain to increase the brain level of acetylated histones leading
to pharmacologically correct cholesterol processing and traf-
ficking. The passage of vorinostat across the blood–brain
barrier has been observed in laboratory animals using several
techniques. An increase of acetylated histones levels in the
brain following vorinostat treatment is observed in cancer [96,
97] and noncancer animal models [98, 99]. Following system-
ic administration, uptake of [14C]vorinostat was significant
into normal rodent brain reaching a brain/blood concentration
ratio at 30 min that exceeded the brain residual blood volume
by 5- to 7-fold [97]. An increase in the level of acetylated
histones was measured in biopsies of brain tumor in patients
with neuroblastoma treated with vorinostat [100]. Vorinostat
is reported to slow neurodegenerative processes in laboratory
cellular and animal disease models, indicative of its pharma-
cological activity in whole animal brain tissue [101].

Inflammation in the brain and visceral organs is also a major
pathogenic process in NPC patients that requires therapeutic
intervention. The anti-inflammatory activity of vorinostat that
has been observed in human cancer patients, and its immuno-
suppressive properties in multiple laboratory models, may
have potential benefits in treated NPC patients. Histone acet-
ylation status has been found to regulate inflammatory gene
expression in laboratory models of chronic inflammatory lung
diseases and other autoimmune diseases [102].

Since vorinostat was developed as a cancer treatment, most
of the safety testing in humans has been in adults, although
there have also been trials in pediatric patients. The pediatric
studies have, likewise, been for treatment of cancers, includ-
ing CNS or non-CNS solid tumors, lymphomas, and leuke-
mias [103–106]. Most of the published clinical studies with
vorinostat include the tabulation of clinical and laboratory
adverse events for patients with recurrent or relapsed carcino-
ma. For FDA approval of vorinostat to treat cutaneous T-cell
lymphoma, the safety and adverse event data came from 73
patients [107]. In a later review of pooled clinical data from
498 patients with solid and hematological malignancies, it was
shown that vorinostat was well tolerated as monotherapy or
combination therapy [108]. The most commonly reported
drug-related adverse events associated with monotherapy
were fatigue (61.9 %), nausea (55.7 %), diarrhea (49.3 %),
anorexia (48.1 %), and vomiting (32.8 %), and Grade 3/4
drug-related adverse events included fatigue (12.0 %),

thrombocytopenia (10.6 %), and dehydration (7.3 %). The
clinical use of vorinostat to treat NPC patients will most likely
use a cyclic treatment schedule of 3–5 days with intervals of
no treatment.

On the whole, the preceding observations are supportive of
vorinostat as an epigenetic treatment for NPC, but there are
some factors that suggest room for improvement in longer-
term drug development efforts. Vorinostat is not nearly as
potent as many other HDACi. Its lack of HDAC isoform
selectivity likely leads to changes in expression of a large
number of genes that have no relevance to NPC. Although
there is evidence of some penetration of the blood–brain
barrier by vorinostat, other HDACi have measurably superior
penetration [109–112].

Much remains to be learned about the function of HDACi
in NPC. Which of the several HDAC isoforms is (are) the
relevant target for this disease? What is the mechanism by
which HDACi correct the NPC phenotype—is it due to up-
regulation of NPC protein biosynthesis, a protein chaperone
mechanism, or yet additional cellular pathways? Addressing
these questions will continue in parallel with medicinal chem-
ists needing to pursue development of a pipeline of other
compounds as improved treatments for this disease. Ultimate-
ly, the knowledge gained for treatment of NPC will likely
translate to other related diseases.
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