
INTRODUCTION

Since Food and Drug Administration (FDA) approval for 
use of the da Vinci Surgical System (Intuitive Surgical Inc., 

Sunnyvale, CA, USA) in gynecologic procedures in 2005, 
many studies have demonstrated the advantages of robotic 
assistance in overcoming the drawbacks of traditional lapa-
roscopy [1-4]. These advantages include improved surgeon 
ergonomics, a magnified three-dimensional view, wider range 
of motion with wristed instruments, and filtration of hand 
tremor allowing for increased surgical precision [5,6]. There-
fore, theoretically, the incorporation of robotic technology 
is expected to help accomplish tasks such as intracorporeal 
suturing and knot tying, lymphadenectomy, ureterolysis 
and pelvic adhesiolysis with ease compared to conventional 
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Objective: The aim of this study was to evaluate the learning curve and perioperative outcomes of robot-assisted laparoscopic 
procedure for cervical cancer.
Methods: A series of 65 cases of  robot-assisted laparoscopic radical hysterectomies with bilateral pelvic lymph node dissection 
for early stage cervical cancer were included. Demographic data and various perioperative parameters including docking time, 
console time, and total operative time were reviewed from the prospectively collected database. Console time was set as a 
surrogate marker for surgical competency, in addition to surgical outcomes. The learning curve was evaluated using cumulative 
summation method.
Results: The mean operative time was 190 minutes (range, 117 to 350 minutes). Two unique phases of the learning curve were 
derived using cumulative summation analysis; phase 1 (the initial learning curve of 28 cases), and phase 2 (the improvement 
phase of subsequent cases in which more challenging cases were managed). Docking and console times were significantly 
decreased after the first 28 cases compared with the latter cases (5 minutes vs. 4 minutes for docking time, 160 minutes vs. 134 
minutes for console time; p<0.001 and p<0.001, respectively). There was a significant reduction in blood loss during operation 
(225 mL vs. 100 mL, p<0.001) and early postoperative complication rates (28% vs. 8.1%, p=0.003) in phase 2. No conversion to 
laparotomy occurred.
Conclusion: Improvement of surgical performance in robot-assisted surgery for cervical cancer can be achieved after 28 cases. 
The two phases identified by cumulative summation analysis showed significant reduction in operative time, blood loss, and 
complication rates in the latter phase of learning curve.
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straight stick laparoscopy. Also, application of robotics in the 
treatment of complex gynecologic oncology procedures such 
as radical hysterectomy and lymph node dissection seem 
feasible and safe [7-11]. However, the initial learning curve to 
acquire competency may be steep, and extensive assessment 
is important when adopting a novel surgical technique. 

Cumulative summation (CUSUM) analysis is a statistical tool 
originally used in the industrial sector for quality assurance 
and detection of areas for improvement. In the medical field, 
it has been used since the 1970s to analyze the learning curve 
for surgical procedures [12,13]. With this methodology, raw 
data can be transformed into running total data deviations 
from the group mean, enabling surgeons to visualize data for 
trends and to determine when a level of proficiency has been 
attained [14]. Analysis of learning curves related to robotic 
surgery in non-gynecologic field is well documented [15-19]. 
Meanwhile, the majority of data published on robotic surgery 
in gynecology primarily focused on surgical data and patient 
outcomes, and aspects of the learning curve have not been 
well described. Moreover, data on the learning experiences 
of a skilled conventional laparoscopic surgeon are scarce and 
no previous study has been reported on the learning curve 
for robot-assisted radical hysterectomy using the CUSUM 
analysis. Therefore, the purpose of this study was to determine 
the learning curve as well as differences in surgical outcomes 
before and after reaching proficiency, in robot-assisted 
laparoscopy for cervical cancer using CUSUM methodology.

MATERIALS AND METHODS

A total of 164 robot-assisted cases were performed between 
May 2006 to May 2011 in our institution. After excluding 
hysterectomy for benign conditions and endometrial cancer 
staging operation, we evaluated 65 consecutive cases of 
robot-assisted laparoscopic radical hysterectomy with pelvic 
lymphadenectomy for early stage cervical cancer. Inclusion 
criteria were women with newly diagnosed invasive cervical 
cancer without treatment, International Federation of Gyne-
cology and Obstetrics (FIGO) stage IB2 or less disease, Gyne-
cologic Oncology Group (GOG) performance ≤1, and financial 
capability to pay the surgical cost ($10,000). Exclusion criteria 
for performing robotic surgery were patients with uterine 
size greater than 16 gestational weeks by pelvic examination 
and those with previous history of 3 or more open abdominal 
surgeries. All procedures were performed by a single surgeon 
already experienced and proficient in advanced laparoscopic 
gynecologic procedures. Prior to performing robot-assisted 
laparoscopic procedures for gynecologic cancer, the surgeon 

had accomplished computer-based training, observed cases, 
and also had completed 8 cases of robotic laparoscopic hys-
terectomy for benign conditions. The surgical team consisted 
of a fellow as bedside assistant and a resident as second 
assistant to manipulate the uterus.

Data pertaining to patient characteristics (age, parity, body 
mass index, and general health status) and perioperative 
parameters including docking time (DT), console time (CT), 
total operative time (OT), estimated blood loss, number of 
retrieved lymph nodes, length of hospital stay, and periopera-
tive complications were retrospectively reviewed from the 
prospectively entered database. DT was defined as time to 
position the robot and install the robotic arms securely to the 
port sites. CT was defined as the time the surgeon spent at 
the robotic console for performing the main procedural steps 
of radical hysterectomy and pelvic lymph node dissection. 
The total OT was the time from the first skin incision to the last 
port site skin closure. Lymph node retrieval was the number 
of pelvic lymph nodes at pathologic analysis. Complications 
were categorized as intraoperative and postoperative (early/
late) events.

1. Surgical techniques
All surgeries were performed using da Vinci Robotic Surgical 

with Maryland Bipolar and Permanent Cautery Spatula or 
needle holder on each robotic arms. After general anesthesia, 
the patient was placed in a low dorsal lithotomy and steep 
Trendelenburg position. A nelaton catheter was inserted 
to drain the bladder. We routinely placed a RUMI uterine 
manipulator with a Koh colpotomy ring and vaginal balloon 
pneumo-occluder (Cooper Surgical Inc., Trumball, CT, USA) for 
adequate pelvic exposure. After creating pneumoperitoneum 
by Veress needle insertion at the umbilicus, four trocars were 
placed: a 12-mm trocar at the umbilicus for the camera, two 
8-mm lateral trocars at each lower quadrant of the abdomen 
2 to 3 cm below the umbilical level, and a fourth assistant port 
(either 5 or 10 mm) at mid-distance between the umbilicus 
and the left robotic arm. The surgical management of cervical 
cancer included radical hysterectomy with removal of bilateral 
pelvic lymph nodes as described in our previous report [20]. 
In brief, the procedure consisted of eight component parts: 
1) right and left pelvic lymphadenectomy, 2) development of 
the paravesical and pararectal spaces, 3) ureteral dissection, 4) 
ligation and dissection of the uterine artery, 5) development of 
the vesicouterine and rectovaginal spaces, 6) resection of the 
parametria, 7) resection of the upper vagina, and 8) vaginal 
cuff closure. Adequacy of the component parts of this proce-
dure was routinely determined and documented on video. 
The vaginal cuff closure was performed intracorporeally using 
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interrupted sutures of 1-0 Vicryl (Ethicon, Piscataway, NJ, USA) 
and extracorporeally using a Clarke-Reich knot pusher. The 
surgeon would usually place 1 or 2 intracorporeal sutures and 
2 extracorporeal sutures for the bedside assistant to proceed 
for training purposes. Upon completion of the procedure, the 
fascia of the port sites greater than 8 mm in diameter were 
closed with interrupted suture using 2-0 Vicryl (Ethicon). 

2. Statistical analysis
CUSUM analysis was used to quantitatively assess the learn-

ing curve of docking (CUSUMDT) and console time (CUSUMCT). 
This technique provides a graphical information of the 
trend in the outcome of consecutive procedures performed 
over time, since it is a plot of cumulative total of differences 
between each data point and the mean of all data points 
[21]. Therefore, CUSUMDT was calculated as the difference 
between the DT for the first case and the mean DT for all 65 
cases mounted chronologically. The CUSUMDT for the second 
case would be the previous case’s CUSUMDT added to the 
difference between the DT for the second case and the mean 
DT for all the cases. The same calculation applied for CUSUMCT. 
When this process is continued until the last case, a recursive 
curve can be achieved as shown in previous studies [18,22].

Statistical analysis was performed with SPSS ver. 18 (SPSS 
Inc., Chicago, IL, USA) and SAS ver. 9.2 (SAS Inc., Cary, NC, 
USA). Kolmogorov Smirnov test was used to verify standard 
normal distributional assumptions. Student’s t-test and Mann-
Whitney U-test were used for parametric and non-parametric 
variables, respectively. Differences between proportions were 
compared using Fisher’s test or χ2 test. A p-value of less than 
0.05 was regarded as statistically significant. 

RESULTS

Sixty-five consecutive robot-assisted laparoscopic radical 
hysterectomy procedures were performed during the study 
period. Patient demographics, operative characteristics, and 
postoperative outcomes are shown in Table 1. Most of the 
patients (53/65, 81.5%) had clinical FIGO stage 1B1 disease. 
All cases were completed robotically without conversion to 

Table 1. Overall patient characteristics (n=65)

Characteristic Value

Age (yr) 46.2±10.4

BMI (kg/m2)    22.2 (17.4-38.6)

Parity 2 (0-5)

No. of previous abdominal surgery 0 (0-2)

Uterine weight (g)   114.6 (52-453)

Clinical FIGO stage  

    1A1, LVI 4 (6.2)

    1A2 1 (1.5)

    1B1 53 (81.5)

    1B2 7 (10.8)

Total operative time (min) 190 (117-350)

Docking time (min) 4 (1-13)

Console time (min) 141 (36-307)

Retrieved pelvic lymph nodes 20±9.2

Estimated blood loss (mL) 260 (20-500)

No. of complications 14 (21.5)

Postoperative hospital stay (day) 12 (5-20)

Values are presented as mean±SD, median (range), or number (%).
BMI, body mass index; FIGO, International Federation of Gynecology 
and Obstetrics; LVI, lymphovascular space infiltration.

Fig. 1. Console time (CT) plots. (A) The raw CT plotted against chronological case number. (B) Cumulative sum (CUSUM) of CT plotted against 
case number (solid line). CUSUM curve of best modeled fit for the plot (dashed line).
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conventional straight stick laparoscopy or laparotomy. Fig. 1 
shows the raw surgeon CT plotted chronologically against the 
case number (Fig. 1A). Using CUSUMCT, the learning curve was 
drawn by plotting the cumulative sequential differences be-
tween each CT data point and the process average over time. 
This curve was best modeled as a second-order parabola with 
the equation: CUSUM in minutes equals 0.46×case number2 
-27.43×case number-63.04, with a high R-value of 0.89 (Fig. 
1B). The CUSUM value of 28 divided the learning curve into 
two distinct phases: phase 1, a negative slope representing 
the initial 28 cases with an average lower than the process 
average, and phase 2, a positive slope indicating the next 37 
cases with an average higher than the process average (Fig. 
2A). From this data, increased competence of surgeon could 
be seen after the first 28 cases.

Patient characteristics and perioperative outcomes were 
compared between the two phases identified by CUSUMCT 
analysis (Table 2). Age, body mass index, previous surgical 

history, and clinical stage did not differ significantly between 
the two groups. The median uterine weight was slightly 
higher in phase 2 compared to the first phase (140 g vs. 105.5 
g; p=0.0243). A significant reduction in total OT was observed 
during phase 2 compared with phase 1 (167 minutes and 
206.5 minutes, respectively; p<0.001). The median DT for the 
first 28 cases (phase 1: 5 minutes; range, 2 to 13 minutes) was 
slightly longer than that for the last 37 cases (phase 2: 4 min-
utes; range, 1 to 11 minutes; p<0.001). The median console 
time of phase 2 was also significantly shorter than that of 
phase 1 (134 minutes [range, 36 to 203 minutes] vs. 160 min-
utes [range, 100 to 307 minutes], respectively, p<0.001). The 
shortest CT in the last 37 cases was 36 minutes. This particular 
case with the shortest CT was a 42-year-old patient with 
clinical stage 1A1 squamous cell carcinoma. Modified radical 
hysterectomy was performed with bilateral pelvic lymph node 
dissection with total yield of 11 nodes (with no lymph node 
extension on final pathology). The absence of pelvic adhesion, 

Fig. 2. Two phases and the lines of best fit for each phase of the cumulative sum (CUSUM) learning curve. (A) The CUSUM value 28 divides the 
learning curve of the console time (CT) into two phases. (B) Lines best fit for each phase. Phase 1 represents the initial learning curve. Phase 2 
represents increasing competence of surgeon after the initial 28 case.
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normal sized uterus, and no intraoperative enlarged or bulky 
pelvic lymph node resulted in the shortest CT for this case 
which was performed during phase 2. There was no signifi-
cant difference in the acquired number of pelvic lymph nodes 
and the length of postoperative hospital stay between the 
two phases. Intraoperative and postoperative complications 
(including all minor complications such as transient febrile 
event to major complications including bowel injury) oc-
curred in 10 patients (35.7%) during the first phase of 28 cases, 
and in 4 patients (10.8%) during phase 2. Early postoperative 

complications (≤6 weeks after surgery) were significantly 
lower in the later phase of the learning curve (28.6% vs. 8.1%, 
respectively; p=0.033).There was one case of intraoperative 
blood transfusion to a patient with known anemia because of 
an ongoing estimated surgical blood loss of about 500 mL. No 
postoperative severe leg edema, ileus, or wound dehiscence 
developed during the later phase. Most of the early and late 
postoperative complications were spontaneously resolved by 
conservative management, except one case of panperitonitis 
due to bowel perforation, which developed postoperatively 

Table 2. Interphase comparisons of patient characteristics and perioperative outcomes

Variable Phase 1 
(n=28, cases 1-28)

Phase 2 
(n=37, cases 29-65) p-value

Age (yr) 46.2±10.4 45.6±10.2 NS*

BMI (kg/m2) 21.7 (17.4-31.6) 22.4 (18.7-38.6) NS†

No. of previous abdominal surgery     NS‡

    0 26 (92.9) 30 (81.1) -

    1 2 (7.1) 6 (16.2) -

    ≥2 0 1 (2.7) -

Uterine weight (g) 105.5 (52-286) 140 (53-453) 0.024†

Clinical FIGO stage     NS§

    1A1, with LVI 3 (10.7) 1 (2.7) -

    1A2 0 1 (2.7) -

    1B1 22 (78.6) 31 (83.8) -

    1B2 3 (10.7) 4 (10.8) -

Total operative time (min) 206.5 (164-350) 167 (117-349) <0.001†

Docking time (min) 5 (2-13) 4 (1-11) <0.001†

Console time (min) 160 (100-307) 134 (36-203) <0.001†

Retrieved pelvic lymph nodes 20.1±8.8 20.1±9.1 NS*

Estimated blood loss (mL) 225 (20-500) 100 (20-300) <0.001†

Complications      

    Intraoperative transfusion 1 (3.6)   0 NS§

    Early postoperative (≤6 wk) 8 (28.6) 3 (8.1) 0.033§

        Severe leg edema/numbness 3 0 -

        Ileus 3 0 -

        Febrile event 1 1 -

        Wound dehiscence/infection 1 0 -

        Voiding difficulty 0 1 -

        Bowel injury 0 1 -

    Late postoperative (>6 wk)  1 (3.6) 1 (2.7) NS§

        Ureter stricture 0 1 -

        Leg edema/numbness 1 0 -

Postoperative hospital stay (day)  12 (6-19) 11 (5-20) NS†

Values are presented as mean±SD, median (range), or number (%).
BMI, body mass index; FIGO, International Federation of Gynecology and Obstetrics; LVI, lymphovascular space infiltration; NS, not significant.
*Student’s t-test, †Mann-Whitney U-test, ‡Fisher’s exact test, §chi-square test.
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in the 59th patient (phase 2). The patient had developed fever 
and abdominal pain from postoperative day 5, and diagnostic 
laparoscopy revealed extensive stool soilage in the abdominal 
cavity leaking from an approximately 1-cm sized laceration 
site on the anterior wall of the upper rectum. Low anterior 
resection with diverting ileostomy was proceeded via a 
laparotomy. The same patient developed vesicovaginal fistula 
with ureteral stricture about 2 months after the bowel surgery. 
However, it healed spontaneously without surgical interven-
tion after prolonged bladder catheterization. Ileostomy was 
successfully repaired 3 months after low anterior resection 
and she is currently being followed up without further com-
plication or cancer recurrence.

DISCUSSION

The results of this study showed that improvements in the 
surgical performance of robot-assisted radical hysterectomy 
with pelvic lymph node dissection in the treatment of cervical 
cancer can be achieved after 28 cases in terms of procedural 
time, blood loss, and complication rates. We used CUSUM 
analysis to identify two phases of learning in regards to 
surgeon CT as a surrogate marker for surgical competency.

To date, most publications investigating the learning curve 
for robot-assisted laparoscopy for gynecologic conditions 
split chronological cases into predetermined phases and used 
simple comparisons such as univariate and/or regression 
analysis [23-31]. It may not be easy to identify a significant 
trend in surgical performance when the raw data are simply 
plotted against the chronological case number, such as that 
shown in Fig. 1A. CUSUM analysis is a technique which plots 
the cumulative sequential differences between each data 
point and the process average over time [13,14]. Therefore, 
a shift in the learning average can be observed more easily 
by a graph than in a standard control chart format, enabling 
investigators to visualize the data for trends not discernable 
with other approaches. As shown in Fig. 2A, the CUSUMCT 
graph showed variance from the mean for each case, yielding 
a parabolic curve with two distinct phases from which the 
learning curve could be assessed. The negative slope of the 
graph indicates longer CT with greater variance from the 
overall average, and represents the initial learning curve 
(Fig. 2B). A positive slope of the graph indicates an average 
higher than the overall performance average, and represents 
a proficiency phase with a reduction in CT. The high R values 
for the line of best fit in each phase (0.897 and 0.806 for phase 
1 and 2, respectively) indicate the unique components of 
the surgeon’s learning curve. Likewise, the CUSUM method 

can be used to demonstrate the level of competence with a 
surgical technique, since it is better at detecting small shifts in 
the process mean. 

We compared various parameters between the two 
distinct phases of learning identified by the CUSUM analysis. 
There was a significant decrease in total OT during phase 2, 
attributed mainly to a decrease in CT (Table 2). Of particular 
note, the longest CT of 307 minutes occurred during phase 1, 
while the shortest (36 minutes) was performed during phase 
2 (case number 33). This decrease in OT, despite an increase in 
median uterine weight and no decrease in lymph node yields 
in later cases, may indicate the performance and selection 
of more challenging cases taken on with increased surgeon 
competence. As for DT, only a subtle decrease in phase 2 may 
be explained by rotating bed side assistants every 4 months 
(usually a fellow) who assisted or performed most of the 
docking procedure under the supervision of the operator. 
Therefore, DT may not entirely reflect the learning curve of 
a single surgeon in this study. Still, the overall total OT de-
creased in phase 2, and the performance of the first assistant is 
speculated to have improved at the same time, since robotic 
surgery is a procedure that requires well orchestrated team 
work. The number of retrieved pelvic lymph nodes remained 
consistent during the study period with less blood loss in the 
later phase. No difference in hospital stay was documented 
since we routinely start bladder catheter training from 
postoperative day 6 and discharge patients after resuming 
self-voiding function. Therefore, the length of postoperative 
hospital stay was longer than 10 days in both groups.

Our data appears to be compatible with other studies that 
have addressed learning curves in robot-assisted gynecologic 
surgery. Published series with specific suggestions on the 
number of cases needed for proficiency or that analyzed 
surgical performance in robotic gynecologic surgery are 
summarized in Table 3. Robot-assisted urogynecologic and 
infertility procedures, and studies addressing less than 20 
cases were excluded from review. Many publications have 
set OT as the standard to assess proficiency, and the number 
of cases needed to achieve competency ranged from 9 to 
as many as 50 cases. Learning curve analyses for benign 
procedures demonstrated proficiency upon completion of 
approximately 20 cases with improvement over time [25,31]. 
However, in a prospective evaluation of 113 patients with 
benign gynecologic conditions by Lenihan et al. [29], robotic 
CT and total OT plateaued after approximately 50 cases. This 
is probably due to many changes in the surgeons’ techniques 
and instrumentation during the initial cases. Also, perfor-
mance assessment was not stratified by the type of procedure 
or surgeon, because two surgeons unequally operated or 
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assisted on various cases.
Several contributing factors may affect learning curve 

outcomes for robotic surgery. First is the surgeon’s previous 
experience in robotics or advanced laparoscopy. Whether 
prior proficiency in advanced laparoscopy contributes to 
faster learning curve in robotic surgery is still under discus-
sion. Moreover, previous surgical experience and training 
prior to adopting robotic surgery has varied between studies 
or has not been well described. In this study, an advanced 
laparoscopic surgeon who had been performing more than 
80% of all procedures laparoscopically, received computer-
based training, case observation, porcine lab training, and had 
operated on benign gynecologic cases prior to commencing 
robot-assisted radical hysterectomy with lymph node dis-
section. However, the number of cases needed to achieve 
proficiency in our study was not significantly less than that of 
other studies performed by inexperienced or under trained 
surgeons [24,27,28].	

Second, differences in the metrics used to assess surgical 
proficiency may contribute to the discrepancy among studies. 
Most published articles have used total OT in addition to 
other factors such as estimated blood loss and complication 
rates to evaluate surgical proficiency. However, the use of 
certain standard may not accurately reflect competency over 
time [23,24,29,32]. For example, as a surgeon becomes more 
comfortable and competent with the procedure, he or she 
may operate on more challenging patients such as those ex-
pected to have adhesions from prior surgeries, obese patients, 
advanced stages of cancer, or increase the extent of certain 
procedures such as lymphadenectomy. Holloway et al. [32] 
compared the first 50 and the last 50 cases in a cohort of 100 
patients undergoing robotic surgical staging for endometrial 
cancer. Three attending surgeons and two fellows-in-training 
performed all or portions of each procedure, and the results 
revealed a shorter OT, higher number of retrieved lymph 
nodes, and a lower rate of operative complications in the 
later cases. Not surprisingly, the OT for one of the surgeons in-
creased from 120 minutes during the first-half to 176 minutes 
in the second-half, with an almost two-fold increase in the 
lymph node yield. This finding obviously indicates evolving 
operative limits set by the surgeon as he or she gains more 
experience.

Third, the specific characteristics of robotic surgery, i.e., the 
various surgical steps of the procedure, may alter learning 
curve outcomes. Total OT, for example, may be subdivided 
into specific components such as initial robotic system setup, 
trocar insertion, docking, and console time according to 
the steps of procedures. A recent analysis by Lim et al. [28] 
revealed that each specific robotic procedure has its own 

unique learning curve. The efficiency for docking and trocar 
placement (10th case), hysterectomy (8th case), cuff closure 
(21st case), pelvic lymph node dissection (55th case), and 
paraaortic lymph node dissection (17th case) stabilized after 
a varying number of cases. Also, the set-up including draping 
and docking of the robotic system may be time consuming at 
first and affect data when mastered rapidly by a designated 
and well-trained team [34].

The major limitation of this study is that this cohort repre
sents a small window of learning curve data of a single sur-
geon that may not be generalized to the entire gynecologic 
oncology public. However, data available in the literature on 
robotic radical hysterectomy is limited, and single surgeon 
experience is important to consider, especially when taking 
in account that our institution is one of the early adopters of 
robotic surgery and a leading national/international teaching 
center in Asia. Therefore, the authors believe that the current 
data could be applied to surgeons of similar settings (single 
or small surgeon practice, prior instructor-level laparoscopic 
experience considering robotic surgery, extensive background 
with open procedures, and dedicated robotic surgical team). 
In addition, we stress that the number of cases need to 
achieve competency may be vastly different according to 
previous experience and individual skills of surgeon. Another 
limitation is that our robotic cohort was not compared with a 
conventional laparoscopic cohort. Nonetheless, the fact that 
cases were performed by a single surgeon without any fluc-
tuation in the surgical procedure is one of the major strengths 
of this study. Studies including different surgeons at different 
time points in their learning curve may cause variability in the 
outcome. 

The method of learning curve analysis in this study is distinct 
from previous studies because the unique phases of the learn-
ing curve were not derived from a predetermined grouping 
of cases. In the field of obstetrics and gynecology, studies 
using the CUSUM method have been limited to assessing 
proficiency in procedures such as embryo transfer for in vitro 
fertilization [35], certain diagnostic ultrasound procedures 
[36,37], and fetoscopic laser ablation [38]. To our knowledge, 
this is the first report to evaluate the learning curve of robot-
assisted surgery in gynecology using the CUSUM method. 
Graphical representation of learning experience by CUSUM 
analysis can be a useful tool for quality assessment of surgi-
cal novices. Furthermore, the quantitative assessment of 
individual performance by CUSUM analysis can help prevent 
wasting of resources and time needed to train surgeons who 
are already proficient [14]. 

In conclusion, a minimum of 28 cases of robot-assisted 
laparoscopic radical hysterectomies is suggested in the treat-
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ment of early cervical cancer for an experienced laparoscopic 
surgeon to achieve surgical improvement. With exponential 
growth and rapid adaptation of robotic surgery in many 
institutions, there may not be enough time for surgeons to 
thoroughly assess their learning curves or develop structured 
training programs. However, we believe that defining the 
learning curve is important to reduce the risks associated 
with incompletely trained surgeons performing complex 
procedures. The results of this study may serve as a reference 
for learning assessment in similar clinical settings.

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was 
reported.

ACKNOWLEDGMENTS

This study was supported by a grant of the Korea Healthcare 
Technology R&D Project, Ministry for Health, Welfare & Family 
Affairs, Republic of Korea (A084120). 

REFERENCES

1.	 Mendivil A, Holloway RW, Boggess JF. Emergence of robotic 
assisted surgery in gynecologic oncology: American perspective. 
Gynecol Oncol 2009;114(2 Suppl):S24-31.

2.	 Lin PS, Wakabayashi MT, Han ES. Role of robotic surgery in 
endometrial cancer. Curr Treat Options Oncol 2009;10:33-43.

3.	 Jung YW, Kim SW, Kim YT. Recent advances of robotic surgery 
and single port laparoscopy in gynecologic oncology. J Gynecol 
Oncol 2009;20:137-44.

4.	 Advincula AP, Wang K. Evolving role and current state of robotics 
in minimally invasive gynecologic surgery. J Minim Invasive Gynecol 
2009;16:291-301.

5.	 Nezhat C, Lavie O, Lemyre M, Unal E, Nezhat CH, Nezhat F. Robot-
assisted laparoscopic surgery in gynecology: scientific dream or 
reality? Fertil Steril 2009;91:2620-2.

6.	 Chen CC, Falcone T. Robotic gynecologic surgery: past, present, 
and future. Clin Obstet Gynecol 2009;52:335-43.

7.	 Yim GW, Kim SW, Nam EJ, Kim YT. Role of robot-assisted surgery 
in cervical cancer. Int J Gynecol Cancer 2011;21:173-81.

8.	 Soliman PT, Frumovitz M, Sun CC, Dos Reis R, Schmeler KM, Nick AM, 
et al. Radical hysterectomy: a comparison of surgical approaches 
after adoption of robotic surgery in gynecologic oncology. Gynecol 
Oncol 2011;123:333-6.

9.	 Geisler JP, Orr CJ, Khurshid N, Phibbs G, Manahan KJ. Robotically 
assisted laparoscopic radical hysterectomy compared with open 

radical hysterectomy. Int J Gynecol Cancer 2010;20:438-42.
10.	 Magrina JF, Kho R, Magtibay PM. Robotic radical hysterectomy: 

technical aspects. Gynecol Oncol 2009;113:28-31.
11.	 Ramirez PT, Soliman PT, Schmeler KM, dos Reis R, Frumovitz M. 

Laparoscopic and robotic techniques for radical hysterectomy 
in patients with early-stage cervical cancer. Gynecol Oncol 
2008;110(3 Suppl 2):S21-4. 

12.	 Wohl H. The cusum plot: its utility in the analysis of clinical data. N 
Engl J Med 1977;296:1044-5.

13.	 Williams AK, Chalasani V, Martinez CH, Osbourne E, Stitt L, Izawa 
JI, et al. Cumulative summation graphs are a useful tool for 
monitoring positive surgical margin rates in robot-assisted radical 
prostatectomy. BJU Int 2011;107:1648-52. 

14.	 Biau DJ, Williams SM, Schlup MM, Nizard RS, Porcher R. Quanti
tative and individualized assessment of the learning curve using 
LC-CUSUM. Br J Surg 2008;95:925-9.

15.	 Secin FP. The learning curve of robotic assisted laparoscopic 
radical prostatectomy: what is the evidence? Arch Esp Urol 2011; 
64:830-8.

16.	 Pierorazio PM, Patel HD, Feng T, Yohannan J, Hyams ES, Allaf ME. 
Robotic-assisted versus traditional laparoscopic partial nephrec
tomy: comparison of outcomes and evaluation of learning curve. 
Urology 2011;78:813-9.

17.	 Lee J, Yun JH, Nam KH, Soh EY, Chung WY. The learning curve 
for robotic thyroidectomy: a multicenter study. Ann Surg Oncol 
2011;18:226-32.

18.	 Bokhari MB, Patel CB, Ramos-Valadez DI, Ragupathi M, Haas 
EM. Learning curve for robotic-assisted laparoscopic colorectal 
surgery. Surg Endosc 2011;25:855-60. 

19.	 Yu SC, Clapp BL, Lee MJ, Albrecht WC, Scarborough TK, Wilson 
EB. Robotic assistance provides excellent outcomes during the 
learning curve for laparoscopic Roux-en-Y gastric bypass: results 
from 100 robotic-assisted gastric bypasses. Am J Surg 2006;192: 
746-9.

20.	 Kim YT, Kim SW, Hyung WJ, Lee SJ, Nam EJ, Lee WJ. Robotic 
radical hysterectomy with pelvic lymphadenectomy for cervical 
carcinoma: a pilot study. Gynecol Oncol 2008;108:312-6.

21.	 Hawkins DM, Olwell DH. Cumulative sum charts and charting for 
quality improvement. New York: Springer; 1998.

22.	 Bege T, Lelong B, Esterni B, Turrini O, Guiramand J, Francon 
D, et al. The learning curve for the laparoscopic approach to 
conservative mesorectal excision for rectal cancer: lessons drawn 
from a single institution's experience. Ann Surg 2010;251:249-53.

23.	 Seamon LG, Cohn DE, Richardson DL, Valmadre S, Carlson 
MJ, Phillips GS, et al. Robotic hysterectomy and pelvic-aortic 
lymphadenectomy for endometrial cancer. Obstet Gynecol 2008; 
112:1207-13.

24.	 Schreuder HW, Zweemer RP, van Baal WM, van de Lande J, 
Dijkstra JC, Verheijen RH. From open radical hysterectomy to 
robot-assisted laparoscopic radical hysterectomy for early stage 
cervical cancer: aspects of a single institution learning curve. 
Gynecol Surg 2010;7:253-8.

25.	 Pitter MC, Anderson P, Blissett A, Pemberton N. Robotic-assisted 



Ga Won Yim, et al.

http://dx.doi.org/10.3802/jgo.2013.24.4.303312 www.ejgo.org

gynaecological surgery-establishing training criteria; minimizing 
operative time and blood loss. Int J Med Robot 2008;4:114-20.

26.	 Payne TN, Dauterive FR. A comparison of total laparoscopic 
hysterectomy to robotically assisted hysterectomy: surgical 
outcomes in a community practice. J Minim Invasive Gynecol 
2008;15:286-91.

27.	 Lowe MP, Johnson PR, Kamelle SA, Kumar S, Chamberlain DH, 
Tillmanns TD. A multiinstitutional experience with robotic-
assisted hysterectomy with staging for endometrial cancer. 
Obstet Gynecol 2009;114(2 Pt 1):236-43. 

28.	 Lim PC, Kang E, Park DH. A comparative detail analysis of the 
learning curve and surgical outcome for robotic hysterectomy 
with lymphadenectomy versus laparoscopic hysterectomy with 
lymphadenectomy in treatment of endometrial cancer: a case-
matched controlled study of the first one hundred twenty two 
patients. Gynecol Oncol 2011;120:413-8.

29.	 Lenihan JP Jr, Kovanda C, Seshadri-Kreaden U. What is the 
learning curve for robotic assisted gynecologic surgery? J Minim 
Invasive Gynecol 2008;15:589-94.

30.	 Fanning J, Hojat R, Johnson J, Fenton B. Robotic radical 
hysterectomy. Minerva Ginecol 2009;61:53-5. 

31.	 Bell MC, Torgerson JL, Kreaden U. The first 100 da Vinci hysterec
tomies: an analysis of the learning curve for a single surgeon. S D 
Med 2009;62:91, 93-5.

32.	 Holloway RW, Ahmad S, DeNardis SA, Peterson LB, Sultana N, 
Bigsby GE 4th, et al. Robotic-assisted laparoscopic hysterectomy 

and lymphadenectomy for endometrial cancer: analysis of 
surgical performance. Gynecol Oncol 2009;115:447-52.

33.	 Leitao MM Jr, Briscoe G, Santos K, Winder A, Jewell EL, Hoskins WJ, 
et al. Introduction of a computer-based surgical platform in the 
surgical care of patients with newly diagnosed uterine cancer: 
outcomes and impact on approach. Gynecol Oncol 2012;125:394-9.

34.	 Iranmanesh P, Morel P, Wagner OJ, Inan I, Pugin F, Hagen ME. 
Set-up and docking of the da Vinci surgical system: prospective 
analysis of initial experience. Int J Med Robot 2010;6:57-60.

35.	 Dessolle L, Freour T, Barriere P, Jean M, Ravel C, Darai E, et al. How 
soon can I be proficient in embryo transfer? Lessons from the 
cumulative summation test for learning curve (LC-CUSUM). Hum 
Reprod 2010;25:380-6.

36.	 Bazot M, Darai E, Biau DJ, Ballester M, Dessolle L. Learning curve 
of transvaginal ultrasound for the diagnosis of endometriomas 
assessed by the cumulative summation test (LC-CUSUM). Fertil 
Steril 2011;95:301-3.

37.	 Balsyte D, Schaffer L, Burkhardt T, Wisser J, Zimmermann R, 
Kurmanavicius J. Continuous independent quality control for fetal 
ultrasound biometry provided by the cumulative summation 
technique. Ultrasound Obstet Gynecol 2010;35:449-55.

38.	 Papanna R, Biau DJ, Mann LK, Johnson A, Moise KJ Jr. Use of the 
Learning Curve-Cumulative Summation test for quantitative and 
individualized assessment of competency of a surgical procedure 
in obstetrics and gynecology: fetoscopic laser ablation as a 
model. Am J Obstet Gynecol 2011;204:218.e1-9.


	Learning curve analysis of robot-assisted radical hysterectomy for cervical cancer: initial experienceat a single institution
	INTRODUCTION
	MATERIALS AND METHODS
	1. Surgical techniques
	2. Statistical analysis

	RESULTS
	DISCUSSION
	CONFLICT OF INTEREST
	ACKNOWLEDGMENTS
	REFERENCES


